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SUMMARY

Sufficient dimension reduction (SDR) is a class of supervised dimension reduction techniques which generally perform
much better than unsupervised dimension reduction techniques like Principal Component Analysis (PCA). In this paper we
present classic methodology in the SDR framework that is based on inverse moments and we discuss the theoretical assumptions.
At the end we demonstrate the advantage of a recently introduced method known as Principal Support Vector Machine (PSVM)
in the presence of predictors which violate the theoretical assumption of ellipticity of the marginal distribution.
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Principal component analysis.

1. INTRODUCTION

The increase in computing storage capabilities and
the low cost of data storage have made high
dimensional data a daily phenomenon in a number of
sciences, like Biosciences, Geosciences, Medical
Sciences, Engineering and Agriculture. These high
dimensional datasets create huge challenges for
scientists to find effective ways to analyze them.
Traditional statistical techniques were derived during
an era when datasets were small and most of them lack
the ability to work as effectively in the massive datasets
we collect today. Therefore, there is a need for
techniques that work effectively with large datasets and
methodology that can effectively identify the most
important features in a large datasets. In this work we
will focus on the latter and we will present methods for
dimension reduction in a regression setting.

Dimension reduction in regression, goes back to
the early 20th century and the introduction by Pearson
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(1901) of Principal Component Analysis (PCA) which
was later formalized by Hotelling (1933). PCA
extracted the axis that had the most variation in the
cloud of data points. PCA is a simple technique which
works well, but at the same time has some
shortcomings. The most important shortcoming of PCA
is the fact that it is an unsupervised dimension reduction
technique and nothing ensures that the extracted
features in a regression setting are actually features
correlated with the response. This led to a long debate
among researchers (see Cook 2007) as some of them
(see Joliffe 1982 and Hadi and Ling 1998) showed
examples where PCA failed to capture the features most
correlated with the response. Artemiou and Li (2009,
2013) and Ni (2011) demonstrated that PCA most of
the times captures features that have the highest
correlation with the response under different models but
at the same time emphasized the fact that there was an
unmeasurable risk that PCA will not capture the desired
features, but rather capture features uncorrelated with
the response.
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This shortcoming of PCA led to a number of
solutions in the literature such as projection pursuit and
sufficient dimension reduction (SDR). In this work we
will focus on the most well known methods in SDR as
well as a recent method which has garnered a lot of
interest due to its robustness to violation of theoretical
assumptions that are commonly used in this framework.

In SDR we assume that we have a univariate (for
simplicity) response variable ¥ and a p dimensional
predictor vector X. The objective is to estimate a set
of d features (where d < p) without losing information
about the conditional distribution of the Y| X. In other
words we are trying to estimate a p x d matrix g which
satisfies

Y1 X |B"X. (1

This is known as linear sufficient dimension
reduction since the extracted features are linear
functions of the original predictors. The space spanned
by the columns of fis called a Dimension Reduction
Subspace (DRS). There are many fs that satisfy model
(1) - for example the identity matrix which of course
does not achieve any reduction to the dimension of the
regression problem. The intersection of all possible
DRSs if it is itself a DRS, it is called the Central
Dimension Reduction Subspace (CDRS) and it is
denoted with Syx- CDRS is the space that has the
smallest dimension (d) among all DRSs. Although the
CDRS doesn’t always exist the assumptions required
for existence are mild so for the rest of the paper we
assume existence of the CDRS (see Cook 1998b and
Chiaromonte and Cook 2002). Classic methods are
described in Li (1991), Cook and Weisberg (1991),
Li (1992), Cook (1998a), Cook (2000), Li (2005) and
Li and Wang (2007).

More recently, there has been interest in sufficient
dimension reduction under the model:

Y U X/¢(X). 2

where ¢ : R? — R?. Model (2) is more general than
(1) since function ¢(X) can be nonlinear function of the
original predictors. This model has been discussed in
Wu (2008), Fukumizu et al. (2009), Yeh et al. (2009)
and Li ef al. (2011).

Most SDR methodology was introduced under the
following assumption which is known as the linear
conditional mean (LCM) assumption:

Assumption 1. The E(X|A'X) is a linear function of
B'X for all possible Ss.

It is well known that this assumption needs to be
valid only for the Sthat spans the CDRS (which makes
the assumption a lot weaker) but since this £ is not
known then we have to generally use the stronger
assumption. Furthermore, this assumption is equivalent
to assuming the ellipticity of the marginal distribution
of the predictors.

The second main assumption that appears in some
SDR methodology is the constant conditional variance
(CCV) assumption:

Assumption 2. var(X|4'X) is non random.

Methods which require the second assumption,
also require the first assumption. The existence of both
LCM and CCV assumptions is equivalent to assuming
that the predictors have a Normal marginal distribution.
This marginal distribution assumption on the predictors
is very strong and it is believed to be the main reason
algorithms that require both assumptions are sensitive
to the choice of slices (a tuning parameter) and as we
demonstrate in our real dataset examples later, these
methods are also very sensitive to violations of this
assumption.

The purpose of this paper is mainly to present
some of the most common SDR techniques and at the
same time demonstrate the advantage one of them has
in cases where the above assumptions are violated, due
to the presence of categorical predictors. The rest of the
paper is organized as follows. In section 2 we will give
an overview of some classic and easy to use methods
that are probably the most well known methods in SDR,
along with a technique called Principal Support Vector
Machine (PSVM) that was introduced recently and has
many advantages over previous methodology. In the
third section we will demonstrate the advantages of the
PSVM algorithm with the application of two real
dataset applications and a small discussion will close
the paper.

2. REVIEW OF SUFFICIENT DIMENSION
REDUCTION METHODOLOGY

In this section we discuss some of the most well
known Sufficient Dimension Reduction (SDR)
methods. These methods (except the first one) have the
common theme of slicing the response variable, Y, in
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a sense discretizing the response and using information
from the discretized response variable. Also, these are
fast algorithms that do not need a lot of computation
time thus making them more appropriate for use with
larger datasets.

2.1 Ordinary Least Squares

The common regression estimator derived by the
method of Ordinary Least Squares (OLS) is

Bors =2 'Zyy

where X! is the variance matrix of X and X, is the
covariance matrix between ¥ and X. It can be shown
that under Assumption 1 this vector is actually in the
CDRS, thatis B, ¢ € SY]X (see Li and Duan 1989). One
of the main disadvantages of OLS is that it can find at
most one direction, so if the S,,, has dimension greater
than 1, OLS will fail to recover the whole space.

2.2 Sliced Inverse Regression

Sliced Inverse Regression (SIR) was introduced in
the breakthrough work of Li (1991) which sparked an
interesting discussion and initiated interest in the area
of sufficient dimension reduction. SIR like OLS
requires Assumption 1 to theoretically work, but it can
capture more than one direction, therefore if the CDRS,
Sy has dimension greater than 1, SIR can still perform
well.

The algorithm of SIR, requires the slicing of the
response variables into H slices containing
approximately the same number of points, and the
standardization of the predictors using the formula:

Z = (diag(c)))' (X — uy)

where uy is the p dimensional mean vector of the
predictors, o, i = 1, ..., p is the variance of the ith
predictor and diag(-) denotes a matrix for which all off
main diagonal elements are 0. The idea of SIR is to
calculate the mean of the standardized predictors in

each slice 71,;,i=1,..., H and then use those means to
form the candidate matrix:

(Here we note that if the slices have different number
of observations one can multiply with the proportion

of observations in each slice instead of the ratio 1/H in
the above formula). Then an eigenvalue decomposition
of this matrix will give us p eigenvalues and
eigenvectors. Theoretically, we expect d = dim(SY|z)
< p to be non-zero and therefore using the eigenvectors
corresponding to the largest d eigenvalues will reveal
the vectors which span SYIZ. One may notice that these
vectors span the CDRS of the regression of ¥ on Z. To
find the vectors that span SY|X one needs to use the
following proposition which is very common in the
SDR literature and is known as the invariance property
of the SDR methodology.

Proposition 1. Let Sy|X be the central dimension
reduction subspace for the regression of ¥ on X spanned
by S, and SY[Z the central dimension reduction subspace
for the regression of Y on Z, spanned by 7, where
Z=A"X. Then Syz = A‘lSYIX and n=A"'p.

One example to demonstrate how SIR works is
illustrated in Fig. 1. We have simulated 100
observations X from a bivariate standard Normal
distribution and 100 errors € ~ N(0, 0.2). We set the
regression function ¥ = X| + € which is a regression
function whose corresponding CDRS is spanned by
B=1[10], that is, it depends only on X,. In Fig. 1, we
have a scatterplot of the points projected on the
predictors 2-dimensional plane. We use 4 slices (circles,
triangles, crosses, X’s) with 25 points each. Each slice
has a point denoted with a * which is the mean of each
slice. If you connect the mean of each slice to the
overall mean of the predictors (which is [0 0] since they
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Fig. 1. This figure shows how SIR works when ¥ =X, + €
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are simulated from a bivariate standard normal) we get
4 vectors that are almost parallel to the direction of X.
These 4 vectors are the ones used to construct the
candidate matrix.

2.3 Sliced Average Variance Estimation

Sliced Average Variance Estimation (SAVE) was
introduced by Cook and Weisberg (1991) as part of the
discussion of the SIR work and discussed further by
Cook (1998). In their discussion, Cook and Weiberg
(1991) pointed out that SIR is based on the first inverse
moments, and will have problems identifying the
correct directions in cases where the response variable
Y depends symmetrically on one or more predictors.
Using the fact that not only predictors but also variances
vary across the slices of the response variable Y, they
proposed SAVE, a method that also exploits the second
inverse moments. Although SAVE addresses one issue
of the SIR algorithm it does that at the expense of an
additional assumption. Therefore in theory SAVE
depends on both Assumptions 1 and 2 to capture the
vectors that span the CDRS.

The algorithm for SAVE is very similar to the SIR
algorithm. The only difference is that within each slice
one needs to calculate the covariance matrix of the
standardized predictors denoted by ‘}Z,i and constructs
the candidate matrix:

A

1 & N A
M, :EZ(I_VZJ)(I_VZJ)T
i=1

where I denotes the p x p identity matrix. Theoretically
SAVE is more powerful than SIR in estimating SY‘X
(see Cook and Critchley 2000) but the fact that it
requires both Assumptions 1 and 2 restricts it to a
smaller set of problems. Since it depends on second
inverse moments while SIR only on first moments it
needs a larger sample size to work appropriately.

In Fig. 2, we demonstrate an example where SIR
fails and SAVE works. We have simulated 100
observations X from a bivariate standard Normal
distribution and 100 errors € ~ N(0, 0.2). We set the
regression function Y =X?+XZ+€ which is a
regression function whose corresponding CDRS is
spanned by two column vectors 5, = [1 0]" and B, =
[0 1]T. In Fig. 2, we have a scatterplot of the points
projected on the predictors plane. We use 4 slices
(circles, triangles, crosses, X’s) with 25 points each and
the * denotes the mean of each slice. We can see that
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Fig. 2. This tigure shows why SIR will fail when
Y=X +X +¢

the means are very close to the overall mean of [0 0].
Therefore SIR will return a degenerate direction as the
means do not differ between the slices. Now it is
obvious though that the variances of the points differs
between slices and therefore SAVE performs much
better in capturing the vectors that span the CDRS.

2.4 Directional Regression

Directional Regression (DR) was introduced by Li
and Wang (2007) and the main objective was to have a
hybrid method that combines the benefits of both SIR
and SAVE. It requires both Assumptions 1 and 2 to be
true for the theoretical work to hold. The candidate
matrix is based on both the mean and the variance of
the points in each slice and it works better than both
SIR and SAVE in several occasions.

2.5 Principal Support Vector Machine

Principal Support Vector Machine (PSVM) is a
recent algorithm proposed by Li et al. (2011) which
unlike previous methodology we discussed above does
not depend on moments. PSVM uses instead a modified
version of the Support Vector Machine (SVM)
algorithm (Cortes and Vapnik 1995) that has been used
effectively for classification problems the last 20 years.
PSVM still uses the idea of slicing the response in order
to discretize it. Discretization of the response is exactly
the main reason one can employ classification
techniques to achieve dimension reduction in the SDR
framework.
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In its simpler form SVM is applied when we have
two classes of data and the objective is to construct a
hyperplane that separates the data. The hyperplane that
achieves the maximum separation and minimizes the
misclassification distance of the incorrectly classified
points is called the optimal hyperplane. The optimal
hyperplane has equation y’x — =0 where ¥ € R and
t € R. In the SDR framework Li ef al. (2011) showed
that under Assumption 1, y € SY‘ - In Fig. 1 one can
see that the separating hyperplane between any two
slices (i.e. triangles and X’s) will be a line that is
parallel to X, and therefore the normal vector of the
hyperplane (which is vertical to the hyperplane) will be
parallel to X, which is the correct direction in the
CDRS.

The algorithm of PSVM can be described as
follows. For all possible pairs of slices, we find the
optimal separating hyperplane by minimizing the
following objective function:

y'Sy+AE(1-Y (X - X) 'y —1]}"

over (v, 1) € R? x R and X is the predictor matrix, )

is the estimator of = = cov(X) and Y™ € R” is a vector
with entries

Yr=0g,_ <Y, <q)- Mg, <Y, <q,),

where Y is the response for the i observation and q,
j=1, .., H—1 are the cutoff points between the slices
(With 4o <min Y, and g, 2 max ¥)). Us'ing the Ve_ctor
minimizer ¥ one can construct the candidate matrix:

. k
M= Zy/ill/ir
=

where k is the number of total comparisons [in the case

H

that we use all possible pairs it is 5 | |- Itwas shown

that the eigenvectors corresponding to”the d non-zero
eigenvalues of this matrix span Syx- Since using all
possible pairs might be time consuming especially when
we have a large number of slices, Li et al. (2011)
proposed the LVR (“left vs right”) approach which uses
the dividing points between slices to apply SVM and
therefore does only H — 1 comparisons.

PSVM is a method that combines machine
learning and sufficient dimension reduction, which both

have been used independently to handle high
dimensional problems.

It has several advantages over previous
methodology. First of all, it is the first method that can
do linear and nonlinear dimension reduction in a unified
framework. Since SVM uses kernel functions in Hilbert
spaces, one can use the linear kernel to do linear
dimension reduction under model (1) or use one of
many nonlinear kernels to do nonlinear dimension
reduction under model (2). It was also shown that in
the linear case one can do dimension reduction without
the need for matrix inversion which is a numerically
unstable computation. Finally, for the nonlinear
dimension reduction it was shown that PSVM does not
depend on the two assumptions that classic SDR
methodology depends on - that is to show that the
normal of the separating hyperplane is in the CDRS in
the nonlinear case does not need Assumption 1 which
is required for linear dimension reduction. The great
performance and applicability of PSVM has already led
to several extensions as Artemiou and Shu (to appear)
and Shin (2013) demonstrate.

Based on this final observation of Li ez al. (2011)
we investigate how robust the linear version of PSVM
is in cases where Assumption 1 is violated and more
specifically when the predictors are discrete. As it is
shown in the real applications section later in this work,
although the theoretical framework requires this
assumption, the algorithm is not as sensitive as other
methodology to this assumption.

2.6 Other Methodology

Our choice for this work is to focus on
methodology that is based on slicing the response
variable, but the SDR framework is rich with other
methodology which would need a long review article
to describe in full detail. Each method has its own
advantages and shortcomings. Some examples are
principal Hessian directions (pHd) by Li (1992) and
Cook (1998), Minimum Average Variance Estimation
(MAVE) by Xia et al. (2002) and Contour Regression
(CR) by Li et al. (2005). Methods like MAVE and CR
are themselves powerful, but they are at the same time
very expensive computationally so it is not efficient to
use them in large datasets.

Related to this work is the work by Chiaromonte
et al. (2002), Li et al. (2003) and Wen and Cook (2007)



278 Andreas Artemiou / Journal of the Indian Society of Agricultural Statistics 68(2) 2014 273-283

who proposed algorithms to perform dimension
reduction in the presence of a categorical predictor.
Their method proposed to perform dimension reduction
only on the continuous predictors for the different levels
of the categorical predictor. Therefore, they applied
SDR techniques only on predictors satisfying
Assumption 1.

2.7 Other Issues of Sufficient Dimension Reduction

The use of the aforementioned methodology in
SDR creates a number of questions as to how the tuning
parameters should be treated. One such question for the
methods that require the slicing of the response variable
is how many slices to use. Although there is not a clear
answer to the question, it has been shown through
extensive simulation that methods that depend only on
Assumption 1 are more robust to the number of slices
while methods that depend on both 1 and 2 are very
sensitive to the number of slices. Generally having
about 10-20 points in each slice is considered a good
choice. PSVM gets better as the number of slices
increases but it is obvious that having less than 10
points per slice gives very little additional accuracy, that
is the benefit is almost non-existent beyond that point.

An even more important question is how to
determine the dimension d of the CDRS. In most cases
d is unknown and it has to be inferred from the data.
In the literature two different ways have been proposed,
one is using sequential tests based on the asymptotic
distribution of the candidate matrix and the other is
using a BIC type criterion.

The sequential tests, are used to test the hypothesis
H,:d=jvsH, :d>jforj=0,..,p. Starting from 0,
if the null hypothesis is rejected we repeat the test,
increasing the value of j at each iteration. The smallest
value of j for which the test does not reject the null, is
the estimated dimension of CDRS. For SIR a number
of different sequential tests have been proposed under
different assumptions; Li (1991) assumes normality,
Bura and Cook (2001) require elliptic distribution of
the predictors and finite second moments, while Velilla
(1998) impose no assumption on the marginal
distribution of the predictors but assumes the number
of observations per slice to be fixed and impose some
regularity conditions on Y and the regression curve
E(Y]X). For SAVE sequential tests are developed by
Shao et al. (2007) and for DR by Li and Wang (2007).
The idea of using BIC type criteria to determine the

dimensionality of CDRS is more recent and is due to
Zhu et al. (2006). The estimated dimension of the
CDRS in this case will be the value d which maximizes
the criterion. For PSVM a cross validated BIC type
criterion was proposed that has the form:

d
Zﬂi —aldn"*logn
i=1

where A, is the i eigenvalue of the candidate matrix
and a is a quantity that is chosen such that the number
of misclassifications is minimized in PSVM. The value
of a is estimated using a cross validation procedure and
therefore this is known as the CVBIC criterion.

3. REAL DATA APPLICATIONS

As we have explained earlier the main objective
of this paper is to demonstrate that the dependence of
different methods on Assumption 1 might not be as
crucial for some methods as it is for some others. In
this section we will demonstrate the clear advantage of
the linear version of PSVM in this direction and its
robustness in handling data which violate Assumption
1. We have chosen two datasets from the UC Irvine
Machine Learning Repository (Bache and Lichman
2013), where the predictors violate Assumption 1 and
we compare the performance the four methods SIR,
SAVE, DR and the linear version of PSVM on these
datasets with non-elliptical predictors.

3.1 Soybean Dataset

The Soybean dataset (Michalski 1980) contains 47
plants with 4 different diseases, and reports 35
characteristics of the plants. All the predictor variables
are categorical and 14 of them were excluded from the
analysis since they had the same value for all plants
involved. The purpose of this is to see if we can extract
a direction that distinguishes the plants based on the 4
diseases. There are 10 plants for each disease, 1, 2 and
3 and 17 plants with disease 4 (there is no description
available for the type of each disease). To run the
analysis we are using the 4 naturally defined slices with
appropriate reweighting due to the imbalance of the
slices. As we can see from the Fig. 3 (where we
emphasize that on y-axis in each plot we put the label
of the disease) SIR essentially finds a direction that puts
almost all the plants in each disease at the same point
and fails to distinguish between diseases 3 and 4; SAVE
finds the direction where disease 3 has a lot of variation,
while the other 3 diseases are concentrated in one point
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Fig. 3. The first direction of SIR, SAVE, DR and PSVM when the methods are applied on the Soybean dataset.
Upper panel: SIR left, SAVE right and lower panel: DR left, PSVM right

and they cannot be distinguished; DR separates the 4
diseases (although this is not really clear in the graph)
since disease 3 and 4 are very close and within distance
1077; and finally PSVM achieves clear separation
between all 4 diseases with the closest distance being
about 1072 between diseases 1 and 2. In this example
although not shown SIR and SAVE actually need more
than 2 directions to achieve separation of the diseases.

3.2 E.coli Dataset

The E.coli dataset (Horton and Nakai 1996)
consists of 336 proteins from E.coli with 7 different
predictors which are biologically related characteristics,
and a categorical response variable which indicates
from which cell component part the protein is coming
from. The predictors are x, = McGeoch’s method for

signal sequence recognition, x, = von Heijne’s method
for signal sequence recognition, x; = von Heijne’s
signal peptide Il consensus sequence score (binary),
x, = presence of charge on N-terminus of predicted
lipoproteins (binary), x; = score of discriminant analysis
of the amino acid content of outer membrane and
periplasmic proteins, x, = score of the ALOM
membrane spanning region prediction program and
x, =score of the ALOM program after excluding
putative cleavable signal regions from the sequence.
The response variable has 8 levels to indicate proteins
from the cytoplasm (category 1), inner membrane
(categories 2, 3, 4, 5), outer membrane (categories 6 and
7), periplasm (category 8). More details are shown in
Table 1. In the analysis we are using the 8 naturally
defined datasets with appropriate reweighting due to the
unequal size.
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Table 1. Categories, number of data and color used in graphs for the E.coli dataset
Class Number of points Color (symbol) in graphs
cytoplasm 143 black (rectangle)
inner membrane without signal sequence 77 red (circle)
perisplasm 52 light blue (xed rectangle)
inner membrane, uncleavable signal sequence 35 yellow (%)
outer membrane 20 purple (diamond)
outer membrane lipoprotein 5 grey (reversed triangle)
inner membrane lipoprotein 2 blue (cross)
inner membrane, cleavable signal sequence 2 green (triangle)
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Fig. 4. The first and second directions of SIR, SAVE, DR and PSVM when the methods are applied on the E.coli dataset.
Upper panel: SIR left, SAVE right and lower panel: DR left, PSVM right
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Fig. 5. Using PCA on both the soybean (left) and E.coli (right) datasets

As we can see from Fig. 4 SAVE and DR
completely fail to capture anything meaningful in the
first two directions. SIR performs inefficiently due to
10 points (which are also visible in SAVE and DR) that
are completely separated from the rest of the points.
Excluding those 10 points and zooming in the area
where the other 326 points are concentrated one can see
that one gets a nice picture that looks similar to the one
by PSVM. PSVM does not achieve perfect separation,
but it achieves a meaningful separation of the large
slices. The vast majority of the points in the four
categories that represent proteins from the inner
membrane are grouped together (circle, X, cross,
triangle), the rectangle points representing proteins from
the cytoplasm are grouped together, the xed rectangle
points that are the proteins from the periplasm and are
grouped together and the diamond and reversed triangle
points that represent proteins from the outer membrane
are grouped together.

Finally, a closer look at the 10 points that seem to
affect greatly SIR, SAVE and DR, revealed that these
are the only proteins that differ from the other proteins
on the binary predictors. That is, all other 326 proteins
have the same values on the two binary predictors,
while those 10 had a different value at one or both of
the binary predictors.

Here we feel the need to say that although both
datasets have discrete responses and we are discussing
how well each method separates the different levels of
the response, these methods are not necessarily
classification methods. As was demonstrated by Li et
al. (2011) in the final section of their work, SDR
methodology has its own power in analyzing,

visualizing and explaining high dimensional datasets.
It is though, easier to visualize the advantages and
shortcomings of this methodology in cases where the
response is discrete.

Before we close the section we want to discuss the
advantage of PSVM over unsupervised dimension
reduction techniques and more importantly over PCA.
As one can see from Fig. 5 when PCA is applied on
the soybean dataset the first principal component cannot
separate the 4 diseases (left figure) and when PCA is
applied on the E.coli dataset the first two PCA
directions give better separation than SIR, SAVE and
DR, (although for SIR if we exclude the 10 strange
points and we zoom in at the mass of the rest of the
points we get a similar separation to PCA) but this
separation is not as good as the separation achieved by
PSVM since it cannot discriminate among proteins on
the periplasm and outer membrane.

4. DISCUSSION

The SDR framework, consists of a number of
methods for reducing the dimension of the predictor
vector in high dimensional regression problems through
feature extraction. This methodology is supervised, in
the sense that information of the response is used in
extracting the lower dimensional predictors. In this
article we gave a brief overview of well known
methodology in the SDR framework. We focus on
classic algorithms like SIR, SAVE and DR which are
based on the idea of slicing the response and we
included also a powerful newly developed algorithm,
known as PSVM, which is also based on the idea of
slicing the response. Unlike the other methods, PSVM
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does not depend on using inverse moments to derive
the vectors which span the CDRS, but rather it depends
on a modified version of the SVM algorithm.

Among the methodology presented SIR and the
linear version of PSVM depend on Assumption 1 which
implies the elliptical distribution of the predictors, while
SAVE and DR depend on both Assumptions 1 and 2
which together imply that the predictors are normally
distributed. In this work we focus on two datasets
violating Assumption 1 because they have all or some
categorical predictors. We demonstrate using two
datasets that PSVM is the most robust among all four
methods to violations of this assumption and is able to
capture meaningful results in both cases.

Overall, SDR methodology includes some very
powerful supervised dimension reduction techniques
that usually perform much better than unsupervised
dimension reduction techniques like PCA. In the
previous section we have shown this superiority of
newer SDR methodology like PSVM through two real
data examples where assumptions are violated.
Although SDR methodology can be useful in all
sciences handling large dimensional datasets including,
Biosciences, Medical Sciences, Geosciences,
Engineering and Agriculture they are not used as
frequently as PCA and other unsupervised dimension
reduction techniques as most scientists are not familiar
with them. We hope that this article will serve the
purpose of introducing the SDR methodology to a wider
audience of scientists and help increase the use of this
methodology in the future.
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