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SUMMARY

We consider the problem of fitting a nonparametric curve to Arctic Ocean temperature data. Since several alternative
curves may be fitted, we consider borrowing strength over fitted curves to create an esemble fit. This lead to a novel exercise
involving nonparametric curve fitting and small area methods. Our results indicate that climate data analysis is a complex
process, and standard statistical techniques may need to be considerably enhanced for applicability to big data arising from

climate studies.
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1. INTRODUCTION

In recent years there has been a growing awareness
and concern about climate change and its effects, both
among the general populace and experts in various areas
related to climate study. Natural phenomena like climate
patterns are complex, typically non-stationary, spatio-
temporal processes involving several variables; the
relationship between the climate variables, and among
the parameters of the distribution of such variables are
not fully understood at present.

For example, consider the dataset on global
seawater (Schmidt et al. 1999), accessible from the
repository (http://data.giss.nasa.gov) of the Godard
Institute of Space Studies, which will be the focus for
the rest of this paper. This dataset includes
measurements of temperature, salinity, deuterium, the
ratio of the O-18 and O-16 isotopes of oxygen;
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co-variable information about the depth of the sea, the
latitude and longitude, and the month and year at which
the data was collected; along with references and notes.
It is a compilation of data gathered by various teams
of researchers at different points of time and location.
Calibrations are carried out to correct for the difference
in standards, techniques and instruments used by these
teams, and such corrections are flagged. Missing values
are present. Further technical minutiae relating to the
dataset is available in the aforementioned website.

The pattern of seawater temperature, at any given
latitude and longitude and depth of ocean, during a
given season, is complex. We may study this pattern
assuming that the seawater temperature is a random
variable. The parameters or processes governing the
seawater temperature distribution possibly depends on
other variables like the salinity, North Atlantic or Arctic
Oscillations, solar activity, and anthropogenic factors.
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In order to study such patterns, there are typically
two widely used approaches. First, we may attempt
parametric distributional modeling, which typically
involves making simplifying assumptions and
restricting the class of features that are allowable in the
data. For example, we may assume that some
transformation of the seawater temperature is Normally
distributed with a mean that is a linear combination of
the other climate variables, and constant variance.
Moreover, we might assume that conditional on other
climate variables, seawater temperature at various
locations and time points are independently distributed.
Elementary exploratory analysis of data suggests such
models are overly simple and do not explain most
properties of the observed data, however, similar
models are routinely used in climate data analysis
(Allen and Tett 1999, Hasler et al. 2009). More
systematic analysis, but still keeping to the parametric
statistical paradigm, might involve including parametric
spatio-temporal dependency patterns, heteroscedasticity,
and hierarchical modeling assumptions. These are quite
common in Bayesian modeling of climate and other
kinds of data, which is also practiced by a large group
of researchers (Lee et al. 2005, Min et al. 2005,
Bhattacharjee and Chatterjee 2013). For example, we
may use a spatio-temporal conditional autoregressive
model to build-in space-time dependency, and allow the
hyper-parameters of this conditional autoregression to
vary to reflect non-stationarity.

Bayesian, or other complex parametric modeling,
of climate data, is satisfactory in many cases, but not
in all situations. To start with, complex parametric
models might obfuscate the properties of the observed
data with hidden, strong assumptions, and the
practioneer may not realize that the results of their data
analysis reflect the assumptions they started with,
simply because of complexity of the model. Second,
such complex modeling almost always involves high-
dimensional numerical computations using techniques
like Markov Chain Monte Carlo, and it is not always
evident how much of the resulting analysis depends on
the “luck of the draw”. In principle, the latter aspect
should not be present in any careful data analysis, but
it is not always possible to verify software performance
and functionality with big data, high-dimensional
parameters and complex statistical models.

Hence, complex hierarchical models should be
used with caution, and ought to be cross-checked using
other models, robustness studies involving both prior
and likelihood specifications, and multiple numerical

approaches. Also, no matter how careful and diligent a
researcher is, and how complex a model they might
build, a parametric model is always limited by the
imagination of the modeler, and can reflect only those
properties of data that directly or indirectly captured by
the assumed parametric process.

One potential alternative approach is to use non-
parametric models, which are often infinite-dimensional
parametric models. These have the attractive property
of making less restrictive assumptions than finite-
dimensional parametric models, hence they are better
for capturing features of complex, high-dimensional
phenomena, especially in large datasets. For example,
instead of assuming that a conditional mean is linear
in the covariates, we may assume it to be an arbitrary
smooth function. Depending on the goal, it is sometimes
possible to treat some data features as high-dimensional
nuisance parameters that need not be explicitly modeled
or estimated, for example, as was the case of Chatterjee
et al. (2009). However, non-parametric models involve
assumptions also, and some of the caveats mentioned
above for parametric models are applicable in this case
as well. For example, the assumption that a conditional
mean is a smooth function may not be valid. Moreover,
in essentially all situations, the estimation process and
fitting of a non-parametric model is both less accurate,
and less precise, than any applicable parametric
alternative model. Thus, the property of robustness to
parametric assumptions comes at a price of less
accuracy and precision, which may defeat the purpose
of a data analysis project.

An attractive middle path, compared to complex
and obscure fully parametric modeling or inaccurate
and imprecise non-parametric modeling, is something
that mixes some components of both. While there are
several existing semi-parametric modeling techniques
available (Kosorok 2008), in this paper we propose a
new approach, that is perhaps more suitable for
analyzing complex, high-dimensional, and large sized
data that routinely arise in climate studies. We propose
to combine the framework of small area statistics with
that of non-parametric curve fitting, to suggest a new
semi-parametric approach. We discuss the details of the
new approach in Section 2.3.

We discuss small area techniques and one standard
non-parametric technique in Section 2. In Section 3, we
present some simulation-based results and observations
on our proposed scheme. The analysis for Arctic Ocean
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region seawater temperature is presented in Section 4.
Then, we conclude the paper with Section 5.

In order to establish a context for our study, for
the rest of this paper we consider temperature as the
response variable, and restrict our attention to
measurements taken at latitudes sixty degree North or
higher, at depths up to 1500 meters, and on or after
1975. For convenience, we assign the name “the Arctic
Ocean region” to the region of our study. We would like
to emphasize that the data analysis technique developed
for the climate study in this paper, and its associated
statistical methodology, are applicable to any suitable
response on the planet, and is not constrained by our
choice of latitude, depth or time-frame. We illustrate our
technique and present results for the Arctic Ocean
region in this paper only for reasons of clarity, and
because the Arctic Ocean region is one of the most
climatologically sensitive areas on Earth.

2. NONPARAMETRIC REGRESSION USING
SMALL AREA PERSPECTIVE

In this section, we first discuss in detail small area
models. We then present our proposed approach of non-
parametric curve estimation using small area
methodology.

2.1 Small Area Models

The term small area may refer to geographical or
spatial domains, demographic cohorts, or other
divisions or groups of some natural data-indexing
variable. The adjective small relates to the fact that the
sample sizes corresponding to some or all of these
groups may be limited. The art of small area statistical
modeling lies in borrowing strength across the groups
or small areas, so that the information from the limited
sized direct sample in any given area is augmented by
related information gleaned from other areas. This is
traditionally done using a two-level hierarchical model.
The second level linking model describes the model for
carrying information between small areas, thus linking
them together. Conditional on the second level, the first
level (sampling model) describes the model for the
limited sized direct sample (LSDS hereafter) for any
given small area.

Perhaps the simplest, and most widely used small
area framework is the Fay-Herriot (Fay and Herriot

1979) model, proposed to estimate the per-capita
income of small places with population size less than
1000. This model is for univariate, area-level response
Y. corresponding to the i small area, for i =1, 2, ..., n.
In addition to response ¥, we also know the sampling
model variance D, and covariates x, € R for i = 1, 2,

..., n. Suppose that (ei,u,-)l'lid' N,(0, L) (the standard
bivariate Normal distribution) for i =1, 2, ..., n, and in
terms of these random variables the Fay-Herriot model
is given by

Level — I (sampling model)

[Y,161=6,+ D" ¢, ~ N(6,,D,),
Level —II (linking model)

[61=x; B+y'"*u, ~ N(x; B, @)

The unobserved random variables 6,, ..., 6, that
denote the true underlying effect (TUE) all share the
same marginal distribution, mean structure, and have a
common variance y, and thus serve to relate all small
areas together and help carry information between small
areas. The prediction of the true underlying area effect
(TUE), conditional on the data, [(6,, ...,0 )|(Y, ,..., Y,)]
is the target, and measuring the prediction error is an
important related issue.

Much more detailed discussion on small area
models in general, including usage, history, unit and
area level models and so on may be found in Rao
(2003) and Jiang and Lahiri (2006).

The above Fay-Herriot model makes some
assumptions that need discussion. First, the small areas
or groups are assumed to be unambiguous and clearly
defined, and there is no overlap between the areas. This
feature is quantified in the assumption that the random
variable pairs (¥, 0) are independent for i =1, ..., n.
However, in reality, geographical areas, demographic
groups or other small areas may be expected to have
some degree of dependence, overlapping groups are
also a possibility. The notion of “what is a small area”
may not be very well defined in some contexts.

Second, in the Fay-Herriot model we assume that
the auxiliary variable x is linearly related to the
response Y or the true underlying effect 6, the sampling
or linking level variability do no depend on covariates,
and both Level-I and Level-II random variables have
the Normal distribution. These assumptions may not be
all valid in practice.
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2.2 Local Additive Polynomial Regression

Suppose {(Y, x) € YxyCRxRP,i=1,2, .,
n}is the data. Here, assume that 7 is a compact subset
of RP. Consider the model

Mx) = p(x) + o (x)e(x),

where {e(:)} is a mean zero, unit variance random field.
Suppose our primary interest is in estimation of the
mean function u : x — 3. The sample version of the
above model is ¥, = u(x,) + 0 (x,)e,, where Ee; =0, Ve; =
1. Generally, some more conditions are needed, for
example, we may assume that e,, ..., e, are
independently and identically distributed as standard
Normal random variables. Smoothness conditions on

u4() and o (1) may be assumed also.

For the moment assume p = 1, i.e., there is only
one covariate. Corresponding to the i observation (¥,
x,), for each fixed x € X C R and each non-negative
integer .J, define

B, ) =)= (B, ... B R™!
vi(x’ﬂ):zlgj(xi;—"x)]

Consider the problem of minimizing the following
function:

V.. (B)= zn:(Y: —V,«(X,ﬂ))2Kh(xi - X),

where K, (1) = K(t/h) is smoothing kernel function. For
example, the Gaussian kernel is given by K, (1) =
exp{—1*/(2h*)}.

The value of B say B= B(x;J,h)at which the
minimization of V¥, , ,takes place is naturally
dependent on the choices of xe %, J, and the smoothing
parameter /. Note that Bo (x; J, h) is alocal polynomial
estimate of u(x), the expectation of the response
corresponding to covariate value x (Fan and Gijbels
1996).The quality of this estimate depends on the
choice of the tuning parameters J and 4, and to some
extent, the nature of the kernel function K().

The above minimization is motivated by
considering the fact £Y, = u(x;) may be assumed to
allow a Taylor series expansion at x:

EY, = u(x) = }J‘, d(zlngmf;—f)]m(x, J)

- iﬁj &= e,

=0 J!

Here, R, is the remainder term, satisfying

du(x+d(x, —x) (x,—x)""
(dx)"™ (J +1)!

for some d € (0, 1). This shows that Bj(x; J,h)is an
estimate of the j” derivative of u(x), i.e. yj(x) =
d’ u(x)
(dx)’
M(J, h), in recognition that the results of this procedure
depends on J and 4. Note that if our model assumptions
allow, an estimate of R, ; in model M(J, /) might be
obtained by simply fitting model M(J + 1, 4) and

J+1

R(x, J)=

- Let us denote the above scheme as model

.. s (x—x)
obtaining R, ;= B J+D)!
every J, the last term in v(x, B) is close to the

approximation error for model M(J, h).

- In other words, for

For the case of p-dimensional covariates, we may
proceed along similar lines to those outlined above,
using a multi-variate Taylor series expansion. A
dimension-reduced alternative, in case we have p
covariates x_ = (x|, ..., X), is to use a generalized
additive mocgl (Hastie and Tibshirani 1990), where we
have a further assumption that

M) = DA (%),
k=1

where i () is a function of the " covariate only.

We now describe how to use the generalized
additive model in a local polynomial framework. The
basic concept behind this model has been mentioned
earlier, see Hastie et al. (2009), Chapter 9, for example.
Suppose x;, is the i’ observation for the A covariate,
tagged to the i’ response Y.

For each fixed non-negative integer ./, smoothing
parameter /> 0, and each x_ = (x|, ..., x ) € X CR?,
u]
we define
(ﬂx s J) E)ﬂz (ﬁoa ﬁlla L ﬁlpa ﬁz]a ) ﬁzpa ees
B> - By) € R/P*1

LG (i_ )j
v,‘(x aﬂ) = ZZﬂjk%

j=0 k=1
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and minimize

Vs B) = S0 VK, (5, )

where here K, is a p-dimensional kernel. We call the
above scheme the local additive polynomial regression
(LAPR) technique. This is the special case of
multivariate local polynomial regression where the
cross-derivatives of u(') are assumed to be zero, as well
as a case of a generalized additive model fitting using
local polynomial method. We will use LAPR as our
nonparametric regression fitting methodology for the
rest of this paper.

As with any nonparametric regression, the tuning
parameters (J and /4 in this case) are important in
determining the quality of the fit. Also note that v (x
B is the estimate for u(x, ) a fact that we will use 1n
the sequel.

2.3 The Proposed Model: SmAr-LAPR

Note that the above scheme of local additive
polynomial regression, or LAPR, purports to find
f(x) for each x = Xq € X c RP through the estimated
intercept term ,Bo(x) in each model AAJ, h). But in
reality, model /I/I(J h) essentially substitues v(x_, f)

= 2 _OZk 1'Bﬂ<

expression of ¥, (,3) thus effectively ignoring that
the Taylor series remainder term R(x, J). This is an
essential step in making this a well-defined problem.
However, a careful study of this problem suggests that
this process has two sources of error: the noise terms
e; arising out of the random field e(-), which is an usual
component in statistics, and the approximation error
R(x, J). Let us use the notation v(x ) as a generic term
for the finite-dimensional parameter based
approximation of y(xn).

in place of u(x,) in the

Based on the above reasoning, we might propose
the theoretical model corresponding to LAPR as a Fay-
Herriot type hierarchical model as follows: for every
model AAJ, h), we have:

Level —1I (sampling model):
[Yoi)latxy). oG] =

~ Mutxg). 0*(x).

ulxg) + otxme

([Observation | True infinite dimensional parameters]
~ N (True mean, True var).)

Level — II (approximation model):

)] = Vi) + WP, ~ NOvg), ix):

([True mean] ~ N (Estimable approximate mean,
Approximation error var).)

In this Fay-Herriot type nonparametric regression
model, the first layer, Level-I, characterizes the nature
of the responses Y(x_) in terms of the infinite
dimensional (and hence not completely estimable from
finite sample data) unknown parameters, the mean
function u(x_) and the standard deviation function
o(x_). The second layer characterizes the workable
version of nonparametric regression, where y(x ) is
approximated by a workable, finite- parameter
approximate function, with an allowance for
approximation error characterized by the Level-II
randomness and variance . This is a multi-index model

as X, i1s a multi-dimensional covariate.

The above generic model holds for all viable
choices of J and 4, and this allows for model-averaged
estimates for v(x_) and w. As discussed earlier, we
estimate v (x_, B) in model A4J, h) by minimizing

Wxﬂ, J, h(ﬂ) = i(Yz _vi('xm’ ﬂ))th(-xiD _-xg)’

Let us define the model averaged Level-II mean
function as

o) = MUY 6 (. B)
A (J, h)
This is simply the average of the Level-Il mean
from all the models under consideration.

We might have considered more complex schemes
for averaging across models, but opted for simplicity
at this stage.

Similarly, we define the model averaged Level-II
variance function as

Y, (0.(x.B) = 0(x,)).

M(T, h)

Wxg) = A, B!

This variance describes the model to model
variability at each x € X.

The residual for the i observation is given by
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’;' :K_{)\i(xu’ﬁ)’

and notice that 7’ =y(x,)+0’(x,). This relation
allows us to propose that

ol(x)=r"—y.

Note that the above techniques of using least
squares for estimating the mean, and for decomposing
the observed variability into Level-I and Level-II
variability, is similar to the Prasad-Rao method (Prasad
and Rao 1990) for the Fay-Herriot model.

The above framework now allows for prediction
of the mean function ,u(xn) atx_, i=1, .., n using

Gy = 020 + v ol (620 )¥(x)
() 5 (). @.1)

Here however, the availability of ¥(x_) depends on
whether (x_) has been observed in the data or not, so
some practical alternatives are needed. We suggest
some alternatives below:

[0 (x)+y " ()
(07 ()Y () +¥ 7 (x,)9(x,))s

A xne{xm,...,an 1,
h(x)=5 I
[0 +¥ 7 (%)) 22

(07 (VX)) +¥ ™ (x,)0(x,),

xn Q/ {xlu’ sy xn&u }’

[o7 (x)+y ™ ()T
(07 ()Y () +y 7 (x)0(x,),
X €{x_, X

NBox

)
[07 () +yw )T 23)
(07 ()%, (x) +1 7 (%,)9(x,),

X, & {xgs s, 1

g (x,) =

2.4

Ly (x,) = [0~ (x,)+ y! (x, )

(72 (x,)0. () +p (x,)0(x,), Vxe . (2.5)

A brief discussion is in order on these three
predictors. First, (2.2) and (2.3) are a convex
combination of the original observations and a

smoothed predictor. This can be thought of as a blend
of nearest neighbor and kernel smoothing methods.
These are obviously only available for those x_ which
have been observed, since these require Y,. The
predictors 4 (x,) and f,,(x,)differ on how
unobserved (x_) is handled. In the former, the model-
T, o

averaged mean is used, while in the latter case, the fit
from model AAJ, h) is used, consequently it varies
from model to model. The third kind of predictor,
i, (x,) is a convex combination of the fit from model
AMJ, h) and the model-averaged prediction.

Motivating from the Fay-Herriot model, in the
current framework each model AAJ, h) serves as an
“area”. The TUE is the true unknown mean function,
which does not depend on the area. In particular, we
broaden the concept of an “area”, and that of a “true
underlying effect” (TUE) that are central to small area
modeling.

Notice that the basic predictor f(x,)can be
thought of as a conditional expectation.

This predictor is associated with the conditional
variance

[62ig) + ¥ ' < min {0 (x). 3.
Herein lies the advantage of using a small area
model for prediction: the predictive variance is lower

than the minimum of both Level-I and Level-II
variances.

3. SOME SIMULATION-BASED EXAMPLES

We consider six models in all: we used J = 0 and
J =1, and two bandwidths # = 0.5 and another A
obtained by the default method due to Silverman
(1998). In addition, we used linear and quadratic
regression as two fully parametric models, to serve as
baselines. For each model, we have the model-specific
prediction, and the three blended predictions given in
(2.2), (2.3) and (2.5). Hence, there are twenty-four
predictors in all.

We report the performance of each of the twenty-
four predictors in three parts: as mean squared errors
for the entire data, for in-sample mean squared errors,
and out-of-sample mean squared errors.

We use a four-dimensional covariate for the
simulations. We consider the model:
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Table 5.1 Mean squared errors (MSE) from 24 predictors:
total, in-sample and out-of-sample values.

Predictor | Total |In-Sample | Out-Sample
Deg =0,h=0.5]5431.39| 5571.06 | 4872.68
Deg=1,h=0.5]5457.94| 5594.89 | 4910.14
Deg =0, h = SI | 8866.82| 8963.11 8481.67
Deg =1, h=SI | 5386.95| 5539.18 4778.02
Lin | 2508.78| 2565.86 | 2280.48
Quad | 1732.42] 1699.90 1862.51
Deg =0, h=0.5 (u)) [ 1570.23[ 1136.79 3303.99
Deg=1,h=0.5 (u)) [ 1573.19( 1140.49 3303.99
Deg =0, h=SI(x) | 1886.30( 1531.88 3303.99
Deg =1, h=SI(x) [ 1565.26( 1130.58 3303.99
Lin (u4,) | 1146.20| 606.75 3303.99
Quad () | 995.51| 418.40 3303.99
Deg =0, h =0.5 (4,) [ 2329.73( 1693.99 | 4872.68
Deg=1,h=0.5 (4,) | 2387.08( 1756.31 4910.14
Deg =0, h = SI (u,) | 4777.48( 3851.43 8481.67
Deg =1, h =Sl (u2) | 2372.14| 1770.67 | 4778.02
Lin (u,) | 785.39| 411.62 2280.48
Quad (u,) [ 593.05 275.68 1862.51
Deg =0, h = 0.5 (u3) | 4425.63| 4500.77 | 4125.06
Deg =1, h = 0.5 (u3) | 4492.06( 4567.08 4191.98
Deg = 0, h = SI (u5) | 6404.90( 6394.04 6448.34
Deg =1, h = SI () | 4490.20( 4569.35 4173.62
Lin (u5) | 3180.44| 3282.67 | 2771.51
Quad () [ 3306.09| 3411.56 | 2884.23

Y. = exp(1.2X[i, 1]) + 10 sin(1.05XTz, 3])
+ 2X[0, 1] + X[i, 2] + 0.5X[4, 3] + 0.25X]7, 4]
+elil,i=1,..,n

with a sample size of n = 500. We randomly select 20%
of data as hold-out for out-of-sample evaluation. Table

5.1 provides the results for this example. Notice that,
as a whole, blended predictors like &, (-) do very well
across the board. Predictors like linear or quadratic
regression perform well also when blended into
/al() or ﬂ2 ()

We present some plots for comparison. In Fig. 5.1
we present the plots for the six versions of £, (-)
(corresponding to the six models). Each plot in that
figure has covariate X[, i], i = 1, 2, 3, 4 in the x-axis.
Owing to similarity in predictions from some of the
models.

In Fig. 5.2 we compare the “degree = 1, 7 = 0.5”
fits for the four kinds of models. The different curves
represent the unblended local polynomial fit, and Z;(-),
j=1,2,3. Each plot in that figure has covariate X, i,
i=1,2, 3,4 in the x-axis. Notice that the usual local
linear regression fit is a poor fit in this case. On the
other hand, /() seems to overfit. The
f,(-) or fi,(-) curves seem to do better both in capturing
the shape of the curve as well as not overfitting.

In Fig. 5.3 we compare the linear regression fits
for the four kinds of models. The different curves
represent the unblended linear regression fit, and
£;(), j=1,2,3. Each plot in that figure has covariate
X[, i],i=1, 2,3, 4 in the x-axis. Our observations are
similar to that of the previous figure.

More simulations were carried out, that are not
reported here. We used several alternative mean and
variance functions, and did replicated experiments to
study the effect of chance factors. Various choices of
degree of fitted curve and bandwidths were used. Our
general observations are similar to the descriptions
above: that £ (-), and many times f,(-) curves seem to
capture the shape of the curve as well as prevent against
overfitting. Both these curves have an interesting
explanation: they represent a weighted combination of
a nearest neighbor curve fit and a local polynomial
curve fit. All the blended curves are not particularly
smooth, a fact illustrated in the spikes on the presented
figures. This suggests our blended Fay-Herriot type
curves can possibly capture non-smooth shapes as well.
Very interestingly, the blended curves 4,(-), j=1,2,3
also seem to be remarkably robust to bandwidth
selection, and to some extent to degree specification.
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X[1] X[,2]

Fig. 5.1. Simulated data: curves of various u,(-) predictors. (Red:degree = 0, 2 = 0.5, green:degree = 1, 2 = 0.5, blue:degree = 0,
h = Silverman, cyan:degree = 0, 4 = Silverman, magenta:linear, yellow:quadratic)
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Fig. 5.2. Simulated data: curves of various kinds of predictors. We use the degree = 1, 4 = 0.5 case. (Red:local polynomial,

green: f,(+), blue: [, (), cyan: f,(-))
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Fig. 5.3. Simulated data: curves of various kinds of predictors. We use the linear regression case. (Red: regression, green: [tl(-),

blue: i, (:), cyan: f,(-))
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Table 5.2. Mean squared errors (MSE) from 24 predictors:

total, in-sample and out-of-sample values in the
temperature of sea water in the Arctic Ocean region.

Predictor | Total | In-Sample|Out-Sample
Deg=0,h=0.5 [ 120.63 116.41 137.47
Deg=1,h=0.5 [ 9589 94.51 101.36

Deg=0,h=SI [ 131.22 125.35 154.66
Deg=1,h=SI |221.77 228.28 195.80

Lin | 44.26 45.30 40.12

Quad | 25.29 25.06 26.19
Deg=0,h=0.5(u) [ 3721 27.13 77.48
Deg=1,h=0.5 (u)) | 3343 22.40 77.48
Deg=0,h=SI(u) | 38.77 29.07 77.48
Deg=1,h=SI(u) | 4835 41.05 77.48
Lin (u)) [ 25.18 12.08 77.48

Quad (u)) [ 20.08 5.70 77.48
Deg=0,h=10.5 (4, [ 5751 37.49 137.47
Deg=1,h=0.5 (4, [ 53.54 41.57 101.36
Deg =0, h=SI(u,) | 67.27 4538 154.66
Deg=1,h=SIl(u,) [ 111.59 90.49 195.80
Lin (u4,) | 18.86 13.53 40.12

Quad () 8.19 3.68 26.19
Deg=0,h=0.5 (43) | 89.69 87.01 100.38
Deg=1,h=0.5 (u3) | 90.33 88.95 95.82
Deg =0, h =Sl (u;3) | 97.26 93.69 111.52
Deg =1, h =Sl (u;) | 133.94 132.42 140.01
Lin (uy) | 7126 69.95 76.49

Quad (u;) | 64.41 62.80 70.87

4. ARCTIC OCEAN SEAWATER
TEMPERATURE DATA ANALYSIS

We apply the techniques described above on the
Arctic Ocean region seawater temperature data. We use
Time, as defined by a Year-Month combination,
logarithm of depth, and trigonometric transformations
of latitude and longitude as covariates. We standardize
the covariates for better fitting. Similar to the simulation
example, we hold out a randomly selected 20% of data
for out-of-sample prediction evaluation. The results
from the mean squared error analysis is presented for
all the twenty-four models in Table 5.2. Plots
comparable to the simulation section are presented in
Fig. 5.4, Fig. 5.5 and Fig. 5.6.

Note that &,(-) with quadratic and linear fits, and
[,(-) with the quadratic fit seem very good fits and
considerably better than other models. Hence, we
consider these, along with £ () with the linear fit as
another option, for an observed-versus-predicted plot.
We divide this figure into two parts, one for those data
points that were in the sample, and another for those
points that were not used in the model construction.
This result is presented in Fig. 5.7. It can be seen that
[, (-) with quadratic fit, which appears to be the best
predictor from Table 5.2, does not capture the patterns
particularly well in either in-sample or out-of-sample
data. The predictor f,(-) with linear fit also performs
poorly in out-of-sample pattern matching. On the other

hand, predictors g, (-) with linear or quadratic fit seem

to match patterns much better. However, their poorer
numeric performance is a reflection of having less
accuracy and precision on an average.

The better prediction based on linear and quadratic
fits suggest that there are more structures in the data
than what we have evinced so far. This is also in
keeping with what Bhattacharjee and Chatterjee (2013)
obtained from a Bayesian perspective.
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Fig. 5.7. Arctic Ocean region water temperature data: curves of
observed versus predicted data. Top figure is in-sample
prediction, bottom figure is out-of-sample prediction. (Red:
[, (+) with linear regression blend, green: [, (-) with quadratic
regression blend, blue: ﬂ2 (-) with linear regression blend, cyan:
A, (-) with quadratic regression blend.)

5. CONCLUSION

We have proposed a way of blending in
nonparametric regression with the Fay-Herriot type
small area model. This can be used in two ways at least:
to improve regression performance, or to use non-
parametric surve fitting in small area problems. In this

paper, we have illustrated the former. We have proposed
three kinds of blended curves. In our simulation
examples, £ (-), and many times f,(-) curves seem to
capture the shape of the curve as well as prevent against
overfitting, while f,(-) seems to do quite well many
times. The curves £, (-) and f,(-) represent a weighted
combination of a nearest neighbor curve fit and a local
polynomial curve fit, which might explain their good
performance. All the blended curves are not particularly
smooth, which suggests our blended Fay-Herriot type
curves can possibly capture non-smooth shapes as well.
The blended curves &;(), j = 1, 2, 3 also seem to be
robust to bandwidth selection, and to some extent to
degree specification.
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