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SUMMARY

The usefulness of penalized regression to analyze large datasets is increasingly recognized, with a growing role in genome-
wide association scans and in the analysis of data from other -omics technologies. Penalized regression has been applied to
data in fields as diverse as health sciences, economics, and finance. We investigate connections between procedures to address
“significance bias” or “winner’s curse” in genome-wide association studies and the shrinkage of coefficient estimates and variable
selection that is applied in existing penalized regression procedures. We use a conditional likelihood approach that has been
applied to correct for significance bias in order to propose a new penalized regression procedure. The approach has a natural
interpretation when the number of predictors is smaller than the sample size. In addition, we describe an analogous procedure
when the number of predictors is larger than the sample size. We demonstrate via data examples and simulations that the
procedure performs favorably in terms of prediction error in both low-dimensional and high-dimensional settings in comparison
to competing approaches, especially when the proportion of true nonzero coefficients is small.

Keywords: Variable selection, Shrinkage, Penalized regression, Conditional likelihood, Significance bias, Winner’s curse.

1. INTRODUCTION (predictors) and only a few hundred arrays
(observations). High-dimensional data arises in various
fields of scientific research including computational

biology, finance, biomedicaical imaging, satellite

In applications of linear regression, the goal is to
find a linear model that provides a concise description

of how the measured predictors affect the response. The
model selection problem entails selecting variables that
might best describe that relationship, and estimating the
coefficients corresponding to those variables. As a
consequence of the simultaneous development of high-
speed computing and high-throughput measurement
technologies, many research problems involve data with
a large number of predictors, and in many cases, more
predictors than observations. For example, a typical
gene expression data set has tens of thousands of genes
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imagery, and many others. At the same time as they
enhance the need for model selection in linear
regression, high dimensional datasets provide a number
of challenges to traditional model selection procedures.

It is common to judge the usefulness of a
regression model on the basis of prediction accuracy
and interpretability. The prediction accuracy of a model
is typically measured by the expected prediction error
of the regression fit, also known as test error or
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generalization error (Hastie et al. 2001). Interpretability
of a model is often more qualitative in nature, and
involves discerning which variables play an important
role in predicting the response.

Ordinary least squares (OLS), minimizing the
residual sum of squares, is intuitively appealing but
does not always provide a satisfactory model in terms
of prediction accuracy and interpretability. It produces
best linear unbiased estimates, but the variance of the
predicted values is often high. The interpretability of
the model is also seriously hampered since OLS retains
all the predictors. With too many variables in the model,
it is dificult to understand which variables are really
important in predicting the response. Moreover, in the
high-dimensional setting, it is not possible get an OLS
solution, there being no unique solution to the system
of linear equations involving the coefficients. Several
penalized methods have been developed over the last
two decades to remedy these problems and achieve
better prediction accuracy. We briey review some of the
most commonly used methods here.

Traditional approaches to model selection, such as
best subset regression or stepwise regression, retain a
subset of the candidate predictors, eliminate the rest,
and use OLS to estimate the coefficients corresponding
to the ones retained. Subset selection generally achieves
better prediction accuracy than the full model by
selecting only a subset of the candidate predictors. The
selection of the subset of variables is based on either
best subset regression or forward/backward stepwise
selection. Among the sequence of models produced by
each of the above procedures, it is common to select
one that minimizes an estimate of the expected
prediction error. Although it is conceptually simple and
produces easily interpretable models subset selection
suffers from the fact that it is a discrete process: it either
makes a coefficient zero or inates it. This feature of the
method makes it unstable with respect to small
perturbations in the data.

Ridge regression (Hoerl and Kennard 1970), on
the other hand, retains all the predictors in the model
and modifies how the coefficients are estimated. Ridge
regression achieves better performance than OLS
through a bias-variance trade-off. It is a continuous
process and the ridge estimates are stable: if we delete
a single data point, the new ridge estimates, for the
same tuning parameter will be close to the old ones.

However, like OLS, ridge regression retains all the
predictors in the fitted model, resulting in less
interpretability. On the other hand, the use of
regularization means that ridge regression can be used
in the high-dimensional setting.

The nonnegative garrote, proposed by Breiman
(1995), retains good features of both subset selection
and ridge regression. The nonnegative garrote starts
with the OLS estimates. As one increases the penalty
(tightens the garrote), some of the coefficients are set
to zero and the remaining ones are shrunk towards zero.
Breiman showed via simulations that nonnegative
garrote outperforms subset selection and is comparable
to ridge regression unless the model has a large number
of small effcts. In terms of stability, the nonnegative
garrote is intermediate between subset selection and
ridge regression. As it depends heavily on the OLS
estimates, the nonnegative garrote estimates are
expected to suffer in situations where the OLS estimates
perform poorly, and cannot be used when there are
more predictors than samples.

Motivated by the idea of nonnegative garrote,
Tibshirani (1996) proposed a new technique called
LASSO: least absolute shrinkage and selection operator.
When there are a large number of candidate predictors
parsimony is an important issue, LASSO can reduce
coefficients to exactly zero and thus produce sparse
solution. In other related work around the same time,
Frank and Friedman (1993) introduced bridge
regression, which includes subset selection, LASSO,
and ridge regression as special cases.

LASSO can be implemented in the high-
dimensional setting but it cannot select more variables
than number of observations. Also, if there is a group
of correlated variables among which the pairwise
correlations are very high, then LASSO tends to choose
any one variable from that group. In the usual
regression setup, if the correlation between the
predictors is high, ridge regression usually outperforms
LASSO. In an attempt to retain good features of both
ridge regression and LASSO, Zou and Hastie (2005)
presented a new regularization and variable selection
method, called the elastic net. The elastic net uses a
penalty that is a convex combination of the lasso and
ridge penalties. The elastic net penalty has a “grouping
effect” property, in which highly correlated predictors
have the same regression coefficients.
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In 2001, Fan and Li proposed a non-convex
penalty function, the smoothly clipped absolute
deviation (SCAD) penalty. The authors argued that a
“good” penalty function should be unbiased, sparse, and
continuous in the data, and showed that the SCAD
penalty possesses all three of these properties. Efron
et al. (2004) introduced a new model selection
algorithm on least angle regression (LARS). Simple
modifications of LARS give LASSO and forward
stagewise regression. The LARS procedure has affected
implementation of the LASSO in large data sets.

All the methods described above can be viewed
as applying different penalty functions to the OLS
criterion, and can be regarded as penalized least squares
procedures. The idea of applying penalty functions to
the OLS criterion can be extended to a penalized
likelihood framework, thereby encompassing
likelihood-based models. Penalized likelihood
estimators can also be interpreted from a Bayesian point
of view, in which the penalty function plays the role
of a log-prior density for the parameters. Thus the
LASSO estimates can be viewed as the Bayes posterior
mode when the parameters are a priori independent,
each having a Laplacian prior distribution. Similarly,
the ridge estimate can be interpreted as mode of the
posterior distribution with independent Gaussian priors
for the parameters. The SCAD penalty corresponds to
an improper prior.

In some situations, LASSO is inconsistent for
variable selection. Zou (2006) proposed a variant of the
LASSO, called the adaptive LASSO, that incorporates
data-dependent weights to reduce the bias of the
ordinary LASSO. Yuan and Lin (2006) studied the
problem of selecting grouped variables (factors) for
achieving better prediction accuracy in regression
problems where interest lies in finding important
explanatory factors for the response variable. They
extended LASSO, LARS, and nonnegative garrote to
group LASSO, group LARS, and group nonnegative
garrote for factor selection. Wang et al. (2007)
developed group SCAD regression in the same spirit.
Fan and Lv (2006) introduced sure independent
screening (SIS) in high-dimensional problems based on
a correlation learning. Wasserman et al. (2007)
advocated a three-stage procedure for model selection
and fitting: in the first stage, a set of candidate models,
LASSO, marginal regression, and forward stepwise
regression, are fit to the data; in the second stage one

of the methods is selected by cross-validation; and in
the third stage, hypothesis testing is used to eliminate
some of the variables.

Candes and Tao (2007) proposed the Dantzig
selector for linear regression models with a large
number of predictors but a sparse set of non-zero
coefficients. Dantzig selector minimizes the sum of the
absolute values of the coefficients, the 11 norm, subject
to a constraint on the correlation of the residuals with
the predictors. James et al. (2009) explored the
relationship between LASSO and Dantzig selector and
described a new algorithm, DASSO, which uses a
LARS-type algorithm to compute the entire solution
path for the Dantzig selector. Radchenko and James
(2008) described another modification to LASSO to
prevent overshrinkage of LASSO by using two tuning
parameters, one for selecting variables and the other to
control the amount of shrinkage. Many other extensions
and improvements of the methods described above have
been proposed in the model selection literature for
simultaneous variable selection and coefficient
shrinkage. These include Octagonal Shrinkage and
Clustering Algorithm for Regression (Bondell and
Reich 2008), Bolasso (Bach 2008), Forward-Lasso
Adaptive Shrinkage (Radchenko and James 2011), and
the Bayesian LASSO (Park and Casella 2008, Yuan and
Lin 2005, Kyung ef al. 2010).

In this paper we present a method for that
addresses the two major components of model
selection, variable selection and estimation of
coefficients, in a linked fashion. To select a variable,
we test whether the regression coefficient
corresponding to that variable is zero or not, based on
the observed test coefficient. Then we estimate the
regression coefficient based on a conditional likelihood
that takes into account the result of the hypothesis test.
In particular, we incorporate the information of whether
the variable was found to be significant or not while
constructing the conditional likelihood for estimation.
This idea is an application of the conditional likelihood
approach for overcoming the “winner’s curse”
(Lohmueller ef al. 2003, Znollner and Pritchard 2007),
or “significance bias” (Ghosh et al. 2008), in
genomewide association studies. The conditional
likelihood approach yields a non-convex penalty
function that can be used in the penalized likelihood
framework for coefficient shrinkage. Thus, our
proposed penalty function has a natural motivation
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based on the selection procedure involving the test
coefficient. We call the resulting method Test
Coefficient Shrinkage or TCS. We extend TCS to high-
dimensional regression problems. We use real data
examples and simulations to illustrate the performance
of TCS and to compare it with other popular penalized
regression methods.

3. THE TCS METHOD

Consider the standard linear regression model
y=Xp+ e,

where the response y is a n X 1 vector and the design
matrix X is of order n x p. So the data consists of (y,,
x;), i=1, ..., n where y, is the response and x; = (x,,, ...,
xl.p)' is the vector of predictor values for the ith
observation in the sample. Let €, i = 1, ..., n be
independently and identically distributed as N(0, 6°).
We assume, without loss of generality, that the
predictors are standardized and the response is centered
so that leg: 0, %x;=1j=1,..,p,and X y = 0.

Our goal is to find the best linear fit to the data in

terms of expected prediction error, Ej [(y Xﬁ)z}

With this objective in mind, we propose a shrinkage
method based on a penalized likelihood. In the linear
regression setup, the penalized log-likelihood assumes
the form

lpenali:ed(ﬂ’ 02) =n lOg o _2_;2()7 - Xﬁ)’(y - Xﬂ)
XA
J

where A > 0 is the complexity or tuning parameter and
the amount of shrinkage is dictated by A. We suggest a
novel penalty function

PIB)) = log[®(-A —) + D(=A + p)],

)’ (hH

where we define u, = > with Bobeing the

J SE(,B0
ordinary least squares (OLS) estlmate and SE(,BO) its
standard error. @ is the cumulative distribution function
for a standard normal variate. To obtain penalized
maximum likelihood estimate of g for a given A, we
maximize (1) with respect to (8, 6°). We choose A to
minimize an estimate of the expected prediction error.

The motivation for this penalty function stems
from the testing-based selection of regression
coefficients. Let us consider the situation where we
have only one predictor x,

y,=Px,te,i=1,..,n,

with ¥, x =0,%;x? =1,and Xy, = 0. We assume that
the error variance ¢ is known. Our goal is to build a
model for y. We first test whether x has any predictive
ability, that is, we test the null hypothesis H, : =0
against the alternative 7, : 8 # 0 on the basis of the

p___p A
test statistic Z = Var(p)) © where (0is the OLS

estimator. We reject /|, if observed value of Z is greater
in magnitude than some prespecified quantity A. If we
are unable to reject the null hypothesis based on our
sample, then we predict y using y. Whereas, if we are
able to reject the null hypothesis, we need an estimate
for B to be able to predict y. We construct a conditional
likelihood for B accounting for the fact that the null
hypothesis has been rejected.

We note that Z ~ M(u, 1), where ¢ = ﬁ Thus the
conditional likelihood for u is

@
L= pizp2)
o(z— 1)
T D-A- W)+ DA+ u) )

We maximize L (u) with respect to u to derive i,
the conditional maximum likelihood estimate of . Note
that & may be regarded as a penalized likelihood
estimator with penalty log [® (—A — u) + d(-A + w)],
since

i =
= argmax, log L (1)
= argmax, {log ¢(z — n) —
+ O(-A + wi}.
Thus we call log [®(—A — u) + D(-A + w)] the Test
Coefficient Shrinkage (TCS) penalty function. From a
Bayesian point of view jfi can be interpreted as the

Bayes posterior mode under the (improper) prior p(ut)
o< [O(-A — u) + P4+ ).

argmax,, L.(w

log[®(-2 — )
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The estimate [i can easily be converted into an

estimate f = jioc for . Thus we define B according
to the outcome of the hypothesis test as

_ 0, if Hy accepted
b= fio, if Hy rejected G)

Thus B is a thresholding rule shrinking the OLS
estimate 0 to zero if we fail to reject the null
hypothesis; and shrinking it to some non-zero value if
we reject the null. The larger the value of A, the greater
is the shrinkage.

We note that the estimate 3 is not a continuous

function of the OLS estimate 0. If we believe
continuity of a penalty function to be a desirable
property, as advocated by Fan and Li (2001), we can
define a modified estimate

B = fio. 4

B is purely a shrinkage estimator being no longer

subject to thresholding and variable selection. In the
general n > p setting, we apply the TCS penalty, p,(|3))
= log [D(-A — u) + ®(-A + u)] with u :LAO, to
the penalized log-likelihood in (1) to derive the
shrinkage estimate of £ for a given A.

3.1 High-dimensional Setup

The direct application of TCS in the p > n regime
is not possible since the penalty term involves standard
errors of OLS estimates, which are not defined in the
high-dimensional setup. To address this, we make use
of an iterative procedure in which we obtain shrinkage
estimate of one regression coefficient at a time using
the univariate TCS procedure. In particular, we obtain
estimates 30 and SE(f°) from univariate regression,

A

0

calculate z = »then derive the shrinkage

SE()
estimate for the regression coefficient by applying
either the thresholded or the non-thresholded TCS
penalty. For a prespecified value of A, the thresholded
estimate of f is

- 0, |zI<A
| aSER), (254

and the non-thresholded estimate of f is

B = ASE(f°), where ji is as defined before.

We have developed an iterative procedure in which
we apply the univariate regression with residuals as the
response variable. This idea is similar to the coordinate-
wise descent algorithm (Friedman et al. 2007) for
convex optimization problems. At each step of the
iterative procedure we start with an initial estimate of
B, update it one regression coefficient at a time till we
loop through all the predictors, then repeat this process
with the updated estimate as the initial value for the
next iteration cycle. Let B*-Dbe the initial estimate
of B at the k" step of the procedure. We use the
subscript — to signify that the j column or component
is left out. For the j predictor we regress y—X_; 8
onx;, get B by shrinking 30, and replace B}k_l) by f.
We then move on to the next predictor. After we have
cycled through all the predictors, one predictor at a
time, we finally have (). We then start the (k + 1)"
step with B as the initial estimator.

Getting 3 from 30is very fast and the computation
of the residuals is also quick because only one
component gets updated each time, which makes the
whole iterative procedure very efficient. For the first
step we define #®as a vector of §’s obtained by
shrinking the marginal regression coefficients. For a
particular step of the iteration we have to loop through
all the predictors, one predictor at a time, but we need
to decide on an order in which to loop through the
variables. We consider the predictors in decreasing
order of magnitude of the initial estimator for that
iteration. We decided on this order so as to eliminate
randomness from the iterative process, and to ensure
that we end up with the same estimate of S every time
we run the procedure for a particular dataset. Also, we
need a stopping rule for the iterative procedure. Tseng
(1988) established that coordinate-wise algorithms fo
convex optimization problems converge to their optimal
solution under separability of the penalty function. For
TCS penalty, the iterative procedure does not enjoy
such convergence properties since the penalty function
is not convex. Thus we continue the iteration for 50
steps and then choose the # which gives the minimum
training error in the last 10 steps. This strategy is based
on the empirical observation that the training and the
test errors have similar paths over the iteration steps,
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which led us to believe that training error can serve as
an adequate stopping rule criterion.

3.2 Data Analysis

We consider two different datasets and apply
commonly-used penalization techniques and the
proposed TCS method to study how each method
performs in finding the best linear fit to the data. We
first standardize the predictors to have 0 mean and unit
variance. We randomly split the data into a training set
and a test set. Every method, other than OLS, involves
a tuning parameter which is chosen to minimize an
estimate of the prediction error based on 10-fold cross-
validation. We follow a “one-standard error” rule, in
which the least complex model is chosen whose
estimated prediction error is one standard deviation
above the minimum estimated prediction error. This
conservative approach follows from the thought that
prediction error is estimated with some error. We fix
a, tuning parameter in the SCAD function, at 3.7. We
use a two-dimensional grid search for elastic net and
adaptive lasso tuning parameters. The final chosen
model is then applied to the test set to assess its
prediction error.

3.2.1 Prostate Cancer Data

The data on prostrate cancer has been widely used
in the variable selection literature. The data comes from
a study conducted by Stamey et al. (1989). The
dependent variable is /psa: level of prostate specific
antigen in blood serum. The relevant covariates are a
number of clinical measures in men about to receive a
radical prostatectomy: Icavol (log cancer volume),
hweight (log prostate weight), age, Ibph (log of the
amount of benign prostatic hyperplasia), svi (seminal
vesicle invasion), lcp (log of capsular penetration),
gleason (Gleason score), and pgg45 (percent of Gleason
scores 4 or 5). The dataset has 97 observations. We
randomly split the data into a training set of size 67 and
a test set of size 30.

3.2.2  National Family Health Survey 3

The 2005-06 National Family Health Survey
(NFHS)-3 is the third round in a series of national
surveys to provide estimates on key indicators of
maternal and child health in India at the state- and
national-level. NFHS-3 is a household survey;

individual interviews are conducted as well with women
aged 15-49 and men aged 15-54. Details on the study
design, sampling, questionnaires and data collection can
be found elsewhere (http://www.rchiips.org/nfhs/
nfhs3.shtml). For our analysis we used data on height-
for-age of children between 0 and 35 months old and
alive at the time of the interview. We further restricted
our analysis to only the last two children who were born
as singletons to ever-married women aged 15-49. We
examined correlation between the proportion of
children stunted, defined as more than two standard
deviations below theWorld Health Organization-
determined median scores by age and gender, in a
region and the socio-economic and demographic
characteristics of that region. We defined regions on the
basis of state and rural/urban classifications. For our
analysis, we considered predictors involving sanitation,
infrastructure and general well-being of the region;
women’s nutritional status, their educational attainment,
autonomy, employment and exposure to media.
Specifically, we considered proportion of households
in the region defecating in the open (opendefecation),
proportions of households with electricity
(haselectricity), 1improved drinking water
(hasdrinkingwater) and television (hastele), average
maternal height (momheight) and BMI (momBMI) in
the region, proportions of women who have primary
(wprimaryeducated), secondary (wsecondaryeducated)
and higher (whighereducated) education, proportion of
women who are illiterate (williterate), proportions of
women who at least once a week read newspaper
(wreadnewspaper), listen to radio (wlistenradio), and
watch television (wwatchtele), proportion of women
who have not worked in the past 12 months (wnotwork),
proportions of women who have say in matters of one’s
own health care (wsayinhealth) and spending of money
earned by husband (wsayinmoney) and the proportion
of women who have not heard of oral rehydration salts
(ORS) packets for treating children with diarrhea
(WORSnotknow) as predictors in the linear regression
model. We had 58 data points (rural and urban sectors
for each of 29 states) and we split the data into a
training set of size 40 and a test set of size 18.

3.3 Simulations

We use a simulation study to compare OLS, ridge,
LASSO, SCAD, elastic net, and TCS in the usual n >
p situation where » and p are the number of
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observations and predictors, respectively. We simulated
100 datasets consisting of n observations from the
model

yr =X la en <l e <N (0, 1),

where f=(3,1.5,0, 0,2, 0, 0, 0). The columns of X
are standard normal. The correlation between x; and X,
is pli =/ with p = 0.5. This numerical example has been
used in several publications (Fan and Li 2001,
Tibshirani 1996, Zou and Hastie 2005) to discuss
relative merits of different variable selection and
shrinkage procedures. First we choose ¢ =3 and n =
40. Then we reduce o to 1 and finally increase the
sample size to 60. Following Zou and Hastie (2005),
for each simulation we have a training set, an
independent validation set, and an independent test set.
We use the training set to fit the data, the validation
set to choose the tuning parameter(s), and the test set
to estimate mean squared error. We compute RMSE
(relative mean squared error) for each procedure as the
mean squared error of the procedure relative to OLS.
We use the median of the relative mean squared errors
over 100 datasets (MRMSE) to compare performance
of different methods. We also compare the performance
of an oracle estimator to OLS.

To judge the performance of our proposed method
in the p > n situation, we simulate data from the same
linear model but with fewer observations than
predictors. We set n = 100, p = 1000, and o = 1. The
non-zero f’s constitute a random sample from normal

distribution with mean zero and variance O%. We

examine the performance of TCS, both the thresholded
and the non-thresholded versions, and compare them
with ridge, LASSO, and elastic net over a range of
simulation setups, generated by varying the number of
non-zero predictors from 5 to 1000 and o from 0.1 to
2. In our simulations, we cover the two extreme
situations of having very few big predictors and many
small ones. Through our detailed numerical exercise we
wish to verify the empirical observations about the
performance of the various variable selection
techniques, and to understand in which cases our
method works best. For each simulation setup we
compute the estimated test error for all three methods
over 100 replications and judge their relative
performance on the basis of the average test error. For
each replication we have a training set of size n to fit

the model over a range of values of the tuning
parameter, a validation set of size n on the basis of
which we decide on the value of the tuning parameter,
and a test set of size 10,000 to estimate the test error
of the fitted model. We standardize the covariates and
center the response variable before analysis.

4. RESULTS

Table 1 shows the results for the prostate cancer
data for different variable selection and shrinkage
methods. We see that ridge regression reduces OLS test
error only by a small margin, whereas LASSO offers
substantial improvement over OLS. Test errors for
SCAD, and elastic net are also similar. Our proposed
penalty has the lowest test error estimate with a small
standard error.

Table 1. Estimated coefficients and test error results for
prostate data

Term | OLS Ridge LASSO SCAD Elastic net TCS

Intercept | 2.480 2.472 2477 2483 2479 2478
Icavol [ 0.680 0.337 0.550 0.810 0.607  0.800
Iweight [ 0.305 0.234 0.205 0.109 0.255  0.044
age |-0.141 —0.016 0.000 0.000 0.000  0.000
Ibph | 0.210 0.145 0.059 0.006 0.120  0.024

svi | 0.305 0.205 0.129 0.000 0.185  0.019

lep [-0.288 0.052 0.000 0.000 0.000 -0.004
gleason |-0.021 0.051 0.000 0.000 0.000  0.005

pggd5 | 0.267 0.112  0.034 0.000 0.072  0.021

Test error| 0.586 0.552 0.483 0.473 0.478 0.461

Std error [ 0.184 0.174 0.155 0.132 0.138  0.133

For the NFHS-3 data there were several correlated
predictors, with pairwise correlations as high as 0.99.
Table 2 presents the results for different variable
selection and shrinkage methods applied to the NFHS-
3 data on stunting in children under 3. OLS performs
poorly, SCAD and LASSO result in very little
improvement over OLS. Ridge regression outperforms
the LASSO due to the presence of many highly
correlated predictors. Elastic net offers marginal
improvement over ridge regression. The TCS penalty
has the smallest prediction error and standard error as
well.
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Table 2. Estimated coefficients and test error results for
NFHS-3 data on stunting in children under 3

Term| OLS Ridge LASSO SCAD Elastic net TCS

Intercept| 0.377 0.381 0.380 0379 0382 0.382

opendefecation| 0.046 0.005 0 0 0.012  0.001
haselectricity | 0.076 —0.003 0 0 0 —-0.001
hasdrinkingwater| 0.030 0.001 0 0 0 0
hastele [-0.006 —0.004 0 0 0 —0.004
mombheight | -0.063 -0.003 0 0 —0.007 -0.001
momBMI [-0.026 —0.005 —0.009 —0.008 —0.016 —0.001
wprimaryeducated [ —0.067 —0.005 0 0 -0.019 -0.025
wsecondaryeducated | 0.086 —0.004 0 0 0 —-0.005

whighereducated [ -0.018 —0.004 —0.002 —0.001 —0.009 —0.001

williterate| 0.048 0.004 0 0 0 0.013
wreadnewspaper | 0.004 —-0.004 —0.011 -0.010 0 —-0.001
wlistenradio| 0.026 0 0 0 0 0

wwatchtele | -0.062 —0.004 0 0 0 —0.004
wnotwork | 0.034 0 0 0 0 0
wsayinhealth| 0.024 0 0 0 0 0

wsayinmoney [ 0.015 0.004 0 0 0.014 0.001
wORSnotknow [-0.022  0.002 0 0 0 0

Test error| 0.515 0314 0471 0488 0.304 0285
Std error| 0.133  0.090 0.112 0.116  0.097 0.075

Table 3 shows the results for the simulations in the
n > p setup. The median of the relative mean squared
errors over 100 datasets (MRMSE) for different
procedures are reported in the table. Ridge regression
performs poorly in all situations. Mean squared error
for LASSO is smaller than that of ridge. When the noise
level is high and sample size is small, i.e., ¢ =3 and

Table 3. Results for simulated numerical example in n > p

scenario

MRMSE(%)
Method |n=40,0=3 n=40,0=1 n=60,0=1
Oracle 29.42 29.42 34.93
Ridge 86.41 100.00 100.00
Lasso 67.59 68.17 72.15
Scad 63.77 37.93 41.66
Elastic net 58.01 49.72 52.80
TCS 64.02 35.56 4145

n = 40, LASSO performs reasonably well, but its
performance deteriorates quickly as the signal to noise
ratio increases, i.e., as we decrease o or increase n. For
n =60, o= 3, adaptive LASSO performs the best, with
TCS and SCAD performing similarly well. Table 3
suggests that the proposed penalty performs remarkably
well and is indeed a worthy competitor.

Table 4. Simulation results for p > n

Number of non-zero predictors

op 5 10 50 100 500 1000

Lt o119t 117115 319.625 1699.79%  379.858
112N 122N 117500 335245 1732.265  3446.90F
5 | 1295 1.87% 136.87N 335.88% 1843.06N 3628.62"
1.50% 224 147.90" 352.74N 1969.42% 4019.68"

17.168 32.69% 168.85% 383.04T 2014.587 4032.967

1170 1370 31.08F  80.90F  425.84%  845.80%
L1oN 141N 31238 8432F  433.965  861.47F
1| 1288 1755 36.39N  84.85R 46077V 906.27N
144 2028 39647 88.17N  494.16% 1004.667
5148 9.03%  43.06% 96.15T  511.40" 1006.20"
1217 150" 9228 2127F 107.34R 21231R
122N 152N 9248 22008 109.18F  215.93F
05| 1245 1585 1053N 22148 115308 227.68Y
1335 170t 112t 2285 123880 252.74%
228 3.09%  11.62R 24827 127.017  255.05T
1057 1.097 147N 193N 539R 0 950R

LosN 10N 1497 1968 5.53F 9.83F

01| 1065 1.10F 150"  1.08" 560N 10.08N
Lot L1t 151F 0 1997 6008 11.067
LR Lok 53R 1998 04T 11120

R: Ridge, L: Lasso, E: Elastic net, N: Non-thresholded TCS,
T: Thresholded TCS

Table 4 shows the results for the simulations in the
p > n situation. The different columns of the table are
for the number of non-zero predictors and the rows
signify different values of og. For each cell
corresponding to a particular number of non-zero
predictors and a value of Oj we have recorded the
average test error over 1000 datasets for TCS,
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thresholded and nonthresholded versions of it, ridge,
LASSO, and elastic net in increasing order of
magnitude.

If we are interested in the performance of a
particular method we can trace the method across the
grid and its position in various cells describes its overall
performance. For example, if we compare the LASSO
and ridge paths across the grid, we observe that in
situations where we have fewer non-zero predictors
than samples LASSO does better than ridge, while ridge
does better than LASSO when the number of non-zero
predictors is greater than the sample size. In the latter
situation, LASSO is at a disadvantage since it cannot
choose more predictors than the number of
observations. In the case where there are equal number
of nonzero predictors and observations, LASSO and
ridge are very close, but LASSO does better when the
non-zero coefficients are big whereas ridge outperforms
LASSO when the nonzero coefficients are small in
magnitude. Elastic net performs remarkably well when
there are more non-zero predictors than number of
observations. The table illustrates the complementary
nature of the methods under study, and suggests that
no method outperforms all other methods all situations.
It is important to understand the strengths and
weaknesses of different methods when applying them
in different situations.

The first two columns of the table show that
thresholded TCS almost always has the smallest test
error among all the methods when s truly sparse. But
it performs poorly in situations where we have more
non-zero predictors than samples. Though
nonthresholded TCS is less frequently the best choice,
it performs similarly to thresholded TCS in sparse
situations, and performs acceptably in many situations
when thresholded TCS performs poorly, often
dominating the performance of the LASSO.

5. DISCUSSION

We used a conditional likelihood approach to
propose a new regression penalty function, and showed
that the proposed method compares favorably with
other penalized regression procedures on a number of
real and simulated datasets. By implementing a
significance threshold as a tuning parameter for
individual predictors, our procedure can create a sparse
set of predictors with non-zero coefficient estimates. In
addition, the proposed method can be used to obtain

estimates when the number of predictors is greater than
the sample size. When combined with cross-validation,
our procedure is an automatic variable selection and
coefficient shrinkage approach.

In the high-dimensional setting, we have judged
the performance of the estimators in terms of prediction
error. But the number of fB-coefficients wrongly
predicted as non-zero, better known as false-positives,
or the number of S-coefficients wrongly predicted as
zero, known as false-negatives, can also serve as criteria
for judging the performance of these methods. Ridge
regression and the non-thresholded version of proposed
TCS penalty select all the candidate predictors and
these measures will not mean much in these cases. But
this criteria might be informative for comparing the
performance of LASSO with the thresholded-TCS

penalty.

Several issues warrant further research. In the
usual # > p setting we have used the TCS penalty in
the penalized likelihood framework and implemented
coefficient shrinkage, but the penalty is not a
thresholding one and as a result does not participate in
variable selection. We can implement a thresholded
version of this in the n > p scenario by investigating
each predictor individually as we have done in the high-
dimensional case. But we would have to deviate from
the penalized likelihood framework where we optimize
a single objective function over all the coefficients
simultaneously. In the high-dimensional case we
describe an iterative procedure that examines each
predictor separately. So, the method for the
highdimensional model is not an automatic extension
of the method in the n > p situation. For future work
in this area it would be important to build a unified
algorithm that can be applied to both the situations.
Also, additional comparisons to other approaches would
help us understand the method better.
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