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SUMMARY

The Genome-wide association studies have been partially successful in identifying novel variants involved in complex
disorders. However, correcting for multiple testing in such studies becomes inevitable to maintain the appropriate overall false
positive error rate. In this article, we consider a block wise strategy MVNblock of multiple testing correction based on an
asymptotic multivariate normal framework for performing tests of association at correlated SNPs in a case-control study design.
We investigate few of its important theoretical properties and using extensive simulations, compare its performance with a
principal components analysis (PCA) based approach simpleM. We find that MVNblock behaves less conservatively than simpleM
with respect to controlling for FWER. Moreover, MVNblock consistently produces a lower estimate of the effective number of
independent SNPs compared to simpleM, and hence is expected to produce higher power compared to simpleM.

Keywords: Genome-wide association analyses, Family-wise error rate, Linkage disequilibrium.

1. INTRODUCTION

Genome-wide case-control association studies
(GWAS) have provided an ideal platform for identifying
novel variants involved in the pathogenesis of common
genetic disorders. Such disorders are complex in nature
and are controlled by multiple genes, each having
moderate to small effect sizes. Since the genome-wide
approach involves an unbiased screening of single
nucleotide polymorphisms (SNPs) without any
biological prior, one can obtain novel association
findings in genes that would not have been considered
in candidate gene studies. However, given the large
number of SNPs that are screened in genome-wide
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studies, association analyses without correcting for
multiple testing would result in inflated rates of false
positives. Moreover, since the SNPs are in linkage
disequibrium, development of an efficient multiple
testing correction for correlated association tests
remains a major statistical challenge.

Various methods have been proposed for
controlling the probability of at least one false positive
[known as the family wise error rate (FWER)]. Sidak’s
method provides an exact correction for controlling
FWER when the tests for association are carried out at
uncorrelated SNPs while Bonferroni’s correction is the
most standard approach when testing for correlated
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SNPs. However, both the approaches become almost
equivalent to each other when the number of SNPs is
very large as encountered in genome-wide association
studies and tend to be over-conservative, that is, result
in extremely low false positive rates and hence, lead
to substantial loss in power. In the last decade, different
methods controlling for FWER in genome-wide
association studies have been explored. While
permutation testing (Westfall and Young 1993) is a
popular method for multiple testing correction due of
its adaptability to arbitrary correlation structures among
the SNPs, the computational load increases rapidly with
the large number of SNPs at the genome-wide level. In
order to circumvent this problem, two other prudent
strategies have been investigated: one based on an
asymptotic multivariate normal distribution framework
for the test statistics at the correlated SNPs (Lin 2005,
Seaman and Muller-Myhsok 2005, Conneely and
Boehnke 2007, Han et al. 2009), and the other based
on an estimation of the effective number of independent
SNPs using a principal components analysis at the
correlated SNPs (Cheverud 2001, Nyholt 2004, Li and
Ji 2005, Gao et al. 2008).

If the sample size is sufficiently large, most
association test statistics at correlated SNPs would
asymptotically follow a multivariate normal distribution
and hence, the adjusted p-values can be suitably
computed to keep the desired control over FWER. In
order to estimate the multivariate normal probabilities,
Lin (2005) and Seaman and Muller-Myhsok (2005)
used a simulation-based approach while Conneely and
Boehnke (2007) employed numerical integration. Han
et al. (2009) developed the method SLIDE based on a
sliding window approach for locally inter correlated
SNPs. On the other hand, Cheverud (2001), Nyholt
(2004), Li and Ji (2005), and Gao et al. (2008) have
investigated the strategy of using an estimate of the
effective number of independent tests in the
denominator of the classical Bonferroni correction
instead of the total number of SNPs. Among these
approaches, the method simpleM proposed by Gao
et al. (2008), that estimates the effective number of
independent SNPs based on the eigenvalues of the
correlation matrix of composite linkage disequilibrium
(CLD) structure among the correlated SNPs, is
considered to be an efficient strategy at the genome-
wide level. It has been shown that simpleM performs
better than SLIDE for imputed SNPs at the genome
wide level (Gao 2011).

In this article, we consider a block wise strategy
MVNblock to adjust for multiple testing while testing
association at correlated SNPs in a case-control set-up
using an asymptotic multivariate normal framework. We
investigate some of its important theoretical properties
and also compare its performance with that of simple M
using extensive simulations. We find that MVNblock is
not only less conservative with respect to controlling
for FWER, but also consistently yields a lower estimate
of the effective number of independent SNPs than
simpleM subject to controlling FWER at the desired
level. We also evaluate the relative performances of the
two methods using real data on cardiovascular disease.

2. DATA DESCRIPTION

Consider a case-control study design comprising
2n unrelated individuals with equal number of cases and
controls. Suppose that genotype data are available at L
SNPs (not necessarily uncorrelated) for all 2n
individuals. The alleles at the /# locus are A;and a, [
=1, 2, ..., L. We denote the genotype data of i’ case
by X, = { > Xigs oo X oo Xy}, 0= 1, 2, ., m, Where,
X, denotes the number of 4, alleles at the I'" Jocus, and
hence, assumes value 0, 1 or 2. Similarly, the genotype
data of i control individual is denoted by Y, =Y,
Yoo s Yy oo Y, 3, for i =1, 2, ..., n. Suppose X, and
X, are indicator random variables, each assuming
values 1 or 0, according as the allele 4, is present or
not at the /" locus on the two chromosomes,
respectively, of the i’ case individual, i = 1, ..., n,
[=1,.., L Similarly, Y, and Y,,,, i =1, ...n, [ =1, ...,
L, are defined for the control individuals. Thus, X, =
X+t Xp Y=Y Y i=1,..nl=1,.,L

3. MVNblock

Suppose the allele frequency at the I locus is p, ;
among cases and p,, among controls, /=1, 2, ..., L. Each
of the SNPs is assumed to be in Hardy-Weinberg
Equilibrium. Thus, X, and Y, are distributed,
respectively, as Binomial(2, p,,) and Binomial(2, p,)),
I=1,2,...L i=1,2, .. n We also assume that the
linkage disequilibrium (LD) structure between SNPs
within cases is identical to that within controls and
denote the coefficient of linkage disequilibrium between
the & SNP and the /" SNP in the whole population by

Oy k. 1€ {1,2, ..., L}. Hence, Con(X,,, X;) = Cov(X,,
+Xlk2, ‘lel +X2) 26,=Con(Y,, Y,). k. 1€ {1,2, ..,
Ly;i=1,2, .. n We shall discuss later a simple
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modification of MVNblock to incorporate separate LD
structures between the SNPs among cases and controls.

In order to test for possible association between
each of the L SNPs and the disease phenotype, the null
hypothesis of no difference in allele frequencies
between the cases and controls is considered at each
SNP. Thus, we test H, : p,, = p,, versus H,,: p,, # P,
/=1, 2, .., L. Suppose that the common value of p,,
and p,, under H, be denoted by p, (the overall allele
frequency at the /, SNP in the whole population),
/=1, .., L.

Suppose H,, denotes the intersection of the L null

hypotheses, i.e., H =ﬂlL:1 Hy;. The difference in the

estimated allele frequency of 4, between cases and
control at the /" SNP is given by: V, =

1 n 1 «n .
Z i=1X” —ZZ#IY,-Z, [ =1, ..., L. The variance-
ovariance matrix of V.

- Vp, can be easily derived
and is given by:

Var(v,) = pud=pu) | pu(=py) ’
2n 2n

Cov(Vy,, Vi) =@; kilel{l,2,.., L}
n

1_
Thus, under H,, s.d.(V,) = Jp’(Tp’) and .

the sample standard deviation of ¥, , based on the
combined set of cases and controls, is a consistent

estimator of s.d.(V),). In order to test H,, versus H, , the

S
Using the multivariate central limit theorem, one can
show that for large n, under H,

Jn < (T, Ty oo

where, §" is a L x L matrix representing the correlation
structure of the L SNPs with its (k, /) element given

_ O
(= pp(-p)

In order to test H,,, ..., H,, simultaneously, we
consider a uniform critical region of the form {|7) | >
C}, =1, ..., L, where, C is an unknown positive real
number that needs to be determined subject to
controlling the FWER, Fy, (at least one false positive),
at the desired level. We note that since the genome-wide

test statistic 7}, = » is considered for /=1, 2, ..., L.

T,)' ~N, (0,8) (M

by: §kl* ) fOI‘ k, l € {1, 2, ceey L}

association approach involves an unbiased scan of
SNPs without any biological prior, it is a natural choice
to consider the same threshold for the test statistic at
each SNP. Thus, the critical region for testing H,, H,,,
..., Hy, simultaneously is {|7 | > C}, {|T,,|>C}, ...,
{IT,,| > C}, such that, C satisfies the condition

L
Py, (Ul=1{|Tln|>C})$ &, where, the FWER is to be

controlled at the level .. An useful expression of FWER
corresponding to this critical region can be obtained as
follows:

By (Ur il > €1)=1= B, (1, 17| 1)

=1-Fy, (max|7},,| < C)
I</<L

Note that, FWER < o = Py (max,_,,|T,| < C) =

I — a. In fact, since max,_, |7, | is a continuous
random variable, C can be chosen to attain the FWER
exactly at the level a. Hence, the critical region for
testing H,,, ..., H,, simultaneously, with the FWER
controlled at the level o, is {(|7},| > C), [ =1, ..., L},
where, C is the (1 — ®)% quantile of the one

dimensional random variable max,_,, [T, |.

4. THEORETICAL PROPERTIES OF
MVNblock

We shall state and prove two important properties
of this method. The proofs of the properties are
provided in the Appendix.

Property 1: The method controls the FWER strongly,
that is, it controls the FWER under any
configuration of the true and false null
hypotheses.

Property 2: The power yielded by the method cannot
be less than that produced by Sidak’s
correction.

5. IMPLEMENTATION OF MVNblock

Next, we discuss the implementation of the
multiple testing method. We estimate the correlation
structure (8°) between pairs of SNPs from the data.
Since information on haplotype phase is likely to be
unknown, we execute the EM algorithm (Dempster et
al. 1977) to estimate two-locus haplotype frequencies
corresponding to each pair of SNPs and hence, estimate
the coefficient of linkage disequilibrium between them.
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Since it is extremely difficult to determine C
analytically, it is estimated based on Monte Carlo
simulations as follows. We generate a large number
(say, N) of random observations of T}, 7, ..., T}, from
the L dimensional multivariate normal distribution with
a zero mean vector and the estimate of correlation
structure §° using its spectral decomposition and hence,
obtain a random sample (of size N) of max,_,|T,,|.
Since, the sample quantile is a consistent estimator of
the theoretical quantile for a continuous distribution, C
is estimated to be the sample quantile based on the
random sample of size N of max, ., [T, [. Our
simulations based on a choice of N = 100K have
provided desirable results.

When this method is implemented at the genome-
wide level (where, L in the order of thousands), the
computation of the exact spectral decomposition of the
entire (L % L) correlation matrix becomes infeasible.
Hence, we consider partitioning the total set of SNPs
into smaller linkage disequilibrium blocks (LD blocks)
of some fixed size. In other words, &' is constructed as
consecutive nonzero diagonal blocks of a fixed size
with all the other elements of the matrix set to zero.
Gao et al. (2008) had also adopted a similar strategy
and had set the fixed size of each LD block as 133 in
their software simpleM. In our simulations, we set the
size of each LD block as 150 for both simpleM and
MVNblock. 1t is obvious that the size of the last LD
block (the last diagonal block of &) may be smaller
than the fixed size of the other blocks. We note that,
since, a correlation matrix with nonzero diagonal blocks
represents a series of uncorrelated blocks of SNPs, the
two important properties of MVNblock stated earlier
also hold in the genome-wide set-up.

6. simpleM

Given that, A,, ..., A, are the eigenvalues of the
CLD correlation matrix of L correlated SNPs arranged
in descending order of magnitude, the effective number
of independent SNPs is estimated as L, satisfying the

<A, where, 4

1o lo-t )
conditions: ¥2A and =E£L _—

L

DI P
is usually set at 0.995. In other words, the underlying
idea in simpleM is to use the minimum number of
eigenvalues explaining at least 99.5% of the total
variance as an estimate of the effective number of
independent SNPs.

7. MVNBLOCK UNDER SEPERATE LINKAGE
DISEQUILIBRIUM STRUCTURES IN CASES
AND CONTROLS

In the preceding sections, we have described
MVNblock assuming that the LD structures are identical
in cases and controls. However, it is possible that while
the allele frequencies at the two loci are equal in cases
and controls, the two-locus haplotype frequencies may
be unequal resulting in different LD structures in cases
and controls. It is interesting to note that MVNblock
requires a simple modification in this scenario.

Suppose 5,511) and 5,512) denote the coefficient of linkage

disequilibrium between the £ and /" markers in cases

and controls, respectively. It can be easily shown that,

180 +82

COV(Vle’ V/n) = _u’k’le {17 25 s L}
n

However, under H,, variance of (V) remains as

1_
ni( . pl), for / =1, ..., L. Thus, we only need to

5O 4 5@
MK The
implementation of the method, of course, requires that
the LD structures of cases and controls are estimated
separately. We wish to highlight that both Property 1
and Property 2 hold under this set-up as well.

replace §,, in Equation (1) by

8. SIMULATIONS

In order to compare MVNblock with simple M with
respect to the estimation of the effective number of
independent SNPs and hence, controlling for FWER in
a case-control study, we carry out extensive simulations
by generating genotype data on 1000 cases and 1000
controls at L. SNPs not associated with the disease under
a wide spectrum of LD structures among the SNPs. The
minor allele frequencies at the L SNPs are generated
from the Uniform(0.05, 0.5) distribution. In order to
obtain the correlation structure of the SNPs, we
simulate the standardized LD coefficient (D') between
pairs of consecutive SNPs according to a Beta(a, b)
distribution. This allows us to create different LD
structures by varying the choice of the parameter values
of a and b.

For each individual, the genotype data at the L
SNPs are obtained sequentially: in the first step, we
generate the genotype at SNP 1 according to Hardy-
Weinberg Equilibrium; in the second step, we generate
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the genotype data at SNP 2 conditioned on the
generated genotype at SNP 1 using the D’ value
between the SNPs 1 and 2; in the third step, we generate
the genotype data at SNP 3 conditioned on the genotype
at SNP 2 using the D’ value between SNPs 2 and 3;
and so on. Thus, an overall correlation structure among
the L SNPs is induced by generating the genotype data
sequentially as described above. Since, none of the
SNPs is associated with the disease, the genotype data
for a case and a control at any SNP are generated using
the same parameters. While generating the LD
structure, it is important to ensure that the coefficient
of linkage disequilibrium between a pair of SNPs is a
decreasing function of the distance between them. We
observe from the rows of the estimated correlation
matrix of the SNPs that the strength of linkage
disequilibrium between a pair of SNPs decays with
increase in the number of SNPs present between them.

We note that, the expectation and the variance of

a random variable distributed as Beta(a, b), are

ab

and R (@bt D)
larger value of a compared to b induces a larger value
of the expectation and a smaller value of the variance.
Using this feature of the Beta distribution, we vary the
strength of the LD structure. We consider four different
values of L : 100, 150, 1000, 10000. For each choice
of L, we use five different choices of a : 2, 20, 50, 100,
200 but fix the value of b at 2. Thus, the strength of
the LD structure increases as the value of a increases.
For L = 10000, we have considered four different
choices of (a, b) with a being chosen as 2, 50, 100, 200
and b being fixed at 2.

We estimate the FWER at the level 0.05 based on
1000 replications for both the methods. We also
estimate the effective number of independent SNPs at
each of the 1000 replications for both the methods. We
estimate the effective number of independent SNPs for

a
+b

» respectively. Thus, choosing a

0.05
2X(1-D(C))
a standard normal distribution. However, since C is
estimated based on Monte Carlo simulations, it is
possible that the estimate of the effective number of
independent SNPs may exceed L, in which case, it is
estimated as L. We present a summary of the estimates
of the effective number of independent SNPs in the
1000 replications using the sample mean, the sample

MVNblock as , where, @ is the c.d.f. of

median and the percentage of replications in which the
estimate obtained for MVNblock is less than or equal
to that obtained for simple M.

9. RESULTS

The results of our simulations are presented in
Tables 1 and 2 for two LD blocks comprising 100 and
150 SNPs, respectively. In Table 3, we present the
results when a single LD block of size 1000 SNPs is
considered; while in Table 4, the results pertain to a set
of 1000 SNPs distributed in seven uncorrelated LD
blocks with the first six blocks comprising 150 SNPs
each and the last block comprising 100 SNPs. We note
here that the coefficient of linkage disequilibrium
between the terminating SNP of a LD block and the
starting SNP of the next LD block in the simulations

Table 1. Comparison of MVNblock and simpleM with
respect to the estimation of FWER and effective number of
independent SNPs for a LD block of 100 SNPs

shapel FWER effective L

MVN  siM  Bonf Sidak  mean median Lywn

MVN siM MVN siM <L,

2 0.052 0.050 0.050 0.050 945 979 945 98 99.3%
20 0.051 0.046 0.042 0.043 85.0 950 85.0 95 100%
50 0.047 0.045 0.041 0.043 819 93.0 81.9 93 100%
100 0.055 0.045 0.044 0.044 759 899 759 90 100%

200 0.049 0.042 0.038 0.038 785 87.2 785 87 100%

MVN: MVNblock, siM. simpleM, L, ,,,.: effective number of independent
SNPs for MVNblock, L, : effective number of independent SNPs for

simpleM.
Table 2. Comparison of MVNblock and simpleM with

respect to the estimation of FWER and effective number of
independent SNPs for a LD block of 150 SNPs

shapel FWER effective L

MVN siM  Bonf Sidak  mean median Lywn

MVN  siM MVN siM <L,

2 0.045 0.044 0.042 0.044 143.6 143.6 146.7 147 92.8%
20 0.049 0.044 0.042 0.042 126.9 126.9 139.9 140 100%
50 0.053 0.045 0.041 0.042 124.7 138.8 124.8 139 100%
100 0.053 0.046 0.040 0.041 122.9 136.0 122.9 136 100%
200 0.054 0.043 0.039 0.040 119.2 134.8 119.2 135 100%

MVN: MVNblock, siM: simpleM, Lyyw effective number of independent

SNPs for MVNblock, L, : effective number of independent SNPs for
simpleM.
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Table 3. Comparison of MVNblock and simpleM with
respect to the estimation of FWER and effective number of
independent SNPs for a LD block of 1000 SNPs

shapel FWER effective L

median L

MVN  siM  Bonf Sidak  mean MUN

MVN  siM MVN siM <L,

2 0.052 0.052 0.050 0.052 959.7 959.9 972.3 972 82.2%
20 0.048 0.045 0.043 0.043 882.0 928.1 881.9 928 100%
50 0.042 0.037 0.035 0.035 840.3 840.6 898.4 899 100%
100 0.053 0.049 0.042 0.045 838.3 897.4 838.7 897 100%
200 0.044 0.041 0.035 0.035 823.3 875.7 823.9 876 100%

MVN: MVNblock, siM: simpleM, L, effective number of
independent SNPs for MVNblock, LS,.M . effective number of

independent SNPs for simpleM.

Table 4. Comparison of MVNblock and simpleM with
respect to the estimation of FWER and effective number of
independent SNPs for a set of 1000 SNPs composed of
seven uncorrelated LD blocks

shapel FWER effective L

median L

MVN  siM  Bonf Sidak  mean MUN

MVN  siM MVN siM <L,

2 0.055 0.053 0.053 0.053 961.1 973.6 960.6 974 81.4%
20 0.053 0.047 0.044 0.044 882.0 928.1 882.4 928 99.9%
50 0.055 0.053 0.044 0.047 843.4 902.0 842.8 902 100%
100 0.053 0.049 0.043 0.046 838.9 897.4 839.7 897 100%

200 0.047 0.043 0.037 0.037 822.8 875.7 823.3 876 100%

effective number of

siM - effective number of

MVN: MVNblock, siM: simpleM, LMVN:
independent SNPs for MV Nblock, L
independent SNPs for impleM.

Table 5. Comparison of MVNblock and simpleM with
respect to the estimation of FWER and effective number
of independent SNPs for a LD block of 10000 SNPs

shapel FWER effective L

MVN  siM  Bonf Sidak  mean median L

MVN siM MVN siM <L

2 0.048 0.048 0.047 0.047 9657.3 9729.8 9654.7 9730 71.1%
50 0.053 0.050 0.045 0.045 8773.7 9048.4 8776.1 9048 98.9%
100 0.049 0.048 0.043 0.045 8621.1 8904.4 8618.0 8904 98.1%
200 0.044 0.042 0.037 0.037 8539.4 8813.6 8539.9 813.5 98.8%

MVN: MVNblock, siM: simpleM, LMV'N"
independent SNPs for MVNblock, LSI.M :
independent SNPs for simpleM.

effective number of
effective number of

pertaining to Table 4 is set as zero to generate
uncorrelated LD blocks. We also simulate genoptype
data on 10,000 SNPs to assess the relative performances
of the two methods when the number of SNPs is very
large. The results are provided in Table 5.

It is clear from all the tables that both MVNblock
and simpleM control for FWER satisfactorily. However,
we observe that simpleM controls FWER more
conservatively compared to MVNblock. If we refer to
the first row of each table, we observe that when
Sidak’s and Bonferroni’s corrections are implemented,
both MVNblock and simpleM estimate FWER almost at
the same level. This suggests that the choice of Beta(2,
2) distribution for the LD structure induces SNPs that
are practically uncorrelated. The tables also show that
Sidak’s and Bonferroni’s corrections become more and
more conservative with respect to controlling for FWER
as the value of a increases, indicating that, the
correlations between the SNPs increase with a.

We also observe from all the tables that, the
sample mean and median of the estimated effective
number of independent SNPs for MVNblock is
consistently less than that for simpleM in all the
simulations considered. Moreover, in most of the
replications, the effective number of independent SNPs
estimated by MVNblock is smaller than or equal to that
estimated by simpleM. In fact, this phenomenon is
observed in more than 98% of the replications for all
choices of (a, b), except (2, 2) (that is the situation
where a weak LD structure is induced). Hence,
MVNblock is, in general, expected to yield higher power
than simpleM.

As observed from the tables, the estimates of the
effective number of independent SNPs for both the
methods, on an average, decrease with increase in the
value of a. Moreover, the difference between the
estimated effective number of independent SNPs for
MVNblock and simpleM, on an average, increases
with a.

9. AN APPLICATION USING REAL DATA

We use data from an ongoing genetic study on
coronary artery disease collected on a random sample
of 1248 individuals from a North Indian population. We
compare the performances of simpleM and MVNblock
using genotype data at 4330 SNPs on Chromosome 1
on a set of 578 individuals selected after some
initialltering of the original data.

Our results are based on 1500 replications. In each
replication, we divide the set of individuals at random
into two equal groups (each comprising 289
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individuals) while the set of SNPs are decomposed into
28 non-overlapping blocks each comprising 150 SNPs
and one block comprising 130 SNPs. We estimate the
effective number of independent SNPs for both
simpleM and MVNblock in each replication. We also
estimate the FIWER based on all the replications. We
find that the median and the mean of the effective
number of independent SNPs for MVNblock are 3356.9
and 3358.1, respectively, while both these measures for
simpleM are found to be 2931 (since the covariance
matrix and its spectral decomposition remains
unchanged over replications, a fixed estimate of the
effective number of independent SNPs is obtained in
each replication). The FWER obtained by Bonferroni’s
correction, Sidak’s correction, MVNblock, and simpleM,
are 0.041, 0.043, 0.053, and 0.059, respectively. As
expected, the corrections by Bonferroni and Sidak are
extremely conservative. We note that, while simpleM
provides marginally lower estimates of the effective
number of independent tests compared to MVNblock,
it is at the expense of a highly inated overall type I error
rate. On the other hand, MVNblock maintained the
overall false positive rate very close to the desired level.

10. DISCUSSION

We have compared a block-wise multiple testing
strategy MVNblock and a prinicipal components
analysis based method simpleM, both of which can be
implemented at the genome-wide level. An immediate
consequence of formulating MVNblock for obtaining a
common cut-off, C, to be used while testing association
at the individual SNP level is that C can be shown to
be the (1 — )% quantile of the one-dimensional test
statistic max,_,, |7},|, and can be estimated easily as
the (1 — @)% sample quantile of the test statistic.

The global null hypothesis H, can also be tested
in the MVNblock framework based on the minimum p-
value, p, .= P(max,_., |T,| > 1); where 7 is the
observed value of max,_,, |7, |. We note that the
quantity p, . can be estimated empirically based on a
large random sample of max,_,, |7},|. In fact, Seaman
and Muller-Myhsok (2005) executed this strategy
[direct simulation approach (DSA)] to compute p, . .

Among the multivariate normal approaches for
multiple testing (Lin 2005, Seaman and Muller-Myhsok
2005, Conneely and Boehnke 2007, Han et al. 2009),
SLIDE has been implemented at the genome-wide level
and seems to be the most efficient method (Han et al.
2009). On the other hand, simpleM seems to be the most
effcient method among the PCA based approaches (Gao

et al. 2008). A comparison between SLIDE and simpleM
at the genome-wide level (Gao 2011) showed that
simpleM performed better than SLIDE. However,
SLIDE is a sliding window based approach, but
simpleM considers a fixed windows approach (that is,
consecutive non-overlapping LD blocks of some fixed
size). Thus, it was of interest to evaluate the
performance of a multivariate normal based approach
using the same fixed windows along the genome as the
PCA based simpleM. Thus, we partitioned a series of
markers into a set of consecutive LD blocks of some
fixed size in our simulations and compared the relative
performances of simpleM and MVNblock based on the
same partition of LD blocks.

In addition to having a compact theoretical
support, our simulation studies show that MVNblock
controls for FWER less conservatively and produces
lower estimates of the effective number of independent
SNPs. Since this estimate is used as the denominator
in the Bonferroni correction while testing association
at the SNPs, MVNblock is expected to yield higher
power compared to simpleM in case-control association
studies. However, given the inherent differences in the
theoretical frameworks of multivariate normal based
approaches and PCA based approaches, it is intuitively
difficult to explain the less conservative behavior of
MVNblock compared to simpleM.

However, simpleM is computationally faster than
MVNblock. For example, if genotype data are available
at 10000 SNPs for 1000 cases and 1000 controls as in
Table 5, MVNblock has a runtime of four and half
minutes, while simpleM requires less than a minute to
run on a desktop with processor frequency of 3.0 GHz
and 3.9 GB of RAM. Hence, even though simpleM is
computationally faster, the runtime of MVNblock is
quite managable. While we have performed all our
simulations with null markers, we would like to
emphasize that Property 1 ensures that MVNblock
controls for FWER even when the data comprises one
or more associated SNPs. Thus, one can utilize all
available SNPs in a genome-wide association study to
correct for multiple testing.

The method implemented in simpleM models the
composite linkage disequilibrium (CLD) structure as
the correlation matrix for the correlated SNPs. The
coefficient of CLD between two biallelic loci with
alleles (4, a) and (B, b), respectively, first introduced
by Weir (1979) and denoted by A, is defined as
P gtP,— 2P Py, where P is the frequency of the
gamete 4B, P, , is the joint frequency of alleles 4 and
B at two different gametes, P, and Pyare the frequencies
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of alleles 4 and B at the two loci. Estimation of A ,,
does not require haplotype phase information and
hence, is computationally simpler. Suppose x, and y,
denote the number of 4 and B alleles, respectively, in
the " individual (both assuming the values 0, 1, 2). It
can be shown that, E(x,) = 2P,, E(y;) = 2P, and
Covariance(x, y,) = 2A ,, (Zaykin 2004).

1
We note that, the difference between —27_13%’
2n ==

in cases and controls can be used as a test statistic to
test for H,, : ‘P tease = Lalconrorr We NOtE that Mmblock
can also be implemented using the CLD matrix as the
correlation matrix. It can be easily verified that both the
theoretical properties of MVNblock discussed earlier
will also hold in this case. We have also found in our
simulation study that considering the CLD matrix as the
correlation matrix in MVNblock yields very similar
results with respect to the estimated FWER and
effective number of independent tests and requires
almost the same runtime compared to an analysis
considering the LD matrix as the correlation matrix,
where we have executed the EM algorithm to estimate
the LD coefficient between pair-wise SNPs.

We have considered 100K random samples to
estimate C in MVNblock throughout our simulation
study. However, given the huge number of SNPs
involved in genome-wide association studies, a larger
sample size is required for accurate estimation of C. It
may be more optimal to use 500K random samples
when data are available on 100K SNPs. In such
situations, it is clear that the computational runtime will
increase but will still be feasible to implement.

It has been discussed in Han et al. (2009) that, at
the extreme tails, the true null distribution of the test
statistic may deviate from the approximated
multivariate normal distribution, especially when a
large number of SNPs have rare variants (minor allele
frequency < 0.01). In such situations, the approximated
multivariate normal distribution needs to be scaled to
fit the true null distribution of the test statistics (Han
et al. 2009).

ACKNOWLEDGEMENTS

We are grateful to Professor Partha Pratim Majumder
for initiating the statistical issues pertaining to the problem
and to Dr. Indranil Mukhopadhyay for helpful methodological
discussions. We sincerely thank Dr. Shantanu Sengupta of the
Institute of Genomics and Integrative Biology (IGIB), New
Delhi for providing access to data collected in the project on

coronary artey disease. This work was partially supported by
the Council of Scientific and Industrial Research (CSIR)
fellowship 09/093(0112)/2008-EMR-I to Arunabha
Majumdar.

REFERENCES

Cheverud, J.M. (2001). A simple correction for multiple
comparisons in interval mapping genome scans. Heridity,
87, 52-58.

Conneely, K.N. and Boehnke, M. (2007). So many correlated
tests, so little time! rapid adjustment of P values for
multiple correlated tests. Am. J. Hum. Genet., 81, 1158-
1168.

Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977).
Maximum likelihood from incomplete data via the EM
algorithm. J. Roy. Statist. Soc., Ser. B, 39, 1-38.

Gao X., Starmer J. and Martin, E.R. (2008). A multiple testing
correction method for genetic association studies using
correlated single nucleotide polymorphisms. Genet.
Epidemiol., 32, 361-369.

Gao, X. (2011). Multiple testing corrections for imputed
SNPs. Genet. Epidemiol., 35, 154-158.

Han, B., Kang, H.M. and Eskin, E. (2009). Rapid and
accurate multiple testing correction and power estimation
for millions of correlated markers. PLoS Genet., 5,
1-13.

Li, J. and Ji, L. (2005). Adjusting multiple testing in
multilocus analyses using the eigenvalues of a correlation
matrix. Heridity, 95, 221-227.

Lin, D.Y. (2005). An efficient Monte Carlo approach to
assessing statistical significance in genomic studies.
Bioinformatics, 21, 781-787.

Nyholt, D.R. (2004). A simple correction for multiple testing
for single-nucleotide polymorphisms in linkage
disequilibrium with each other. Am. J. Hum. Genet., 74,
765-769.

Seaman, S.R. and Muller-Myhsok, B. (2005). Rapid
simulation of Pvalues for product methods and multiple-
testing adjustment in association studies. Am. J. Hum.
Genet., 76, 399-408.

Sidak, Z. (1967). Rectangular confidence regions for the
means of multivariate normal distributions. J. Amer.
Statist. Assoc., 62, 626-633.

Weir, B.S. (1979). Inferences about linkage disequilibrium.
Biometrics, 31, 235-254.

Westfall, P.H. and Young, S.S. (1993). Resampling-based
Multiple Testing. Wiley, New York.
Zaykin, D.V. (2004). Bounds and normalization of the

composite linkage disequilibrium coefficient. Genet.
Epidemiol., 27, 252-257.



Arunabha Majumdar ef a/ / Journal of the Indian Society of Agricultural Statistics 68(2) 2014 217-225 225

Appendix

Proof of Property 1: Suppose that, m; SNPs out of the
L SNPs under consideration are in reality not associated
with the disease, that is, m, null hypotheses among
{H,,, ..., H,,} are true. Suppose that the index set of
these m,, unassociated SNPs is denoted by {i, i,, ...,
i, },» that is, H,H,...H; are true and the
remaining null hypotheses are false. Under this
configuration of true and false null hypotheses, FWER
of the above simultaneous critical region is as follows:

FWER = FBy,....H, (at least one false positive)

1=Fy, . ... H, (no false positive)

1—PH[1,...,H,-mo({|Tln|SC},Vl:i1,i2,...,i )

= I_PHil""’Him() (maxle{ilw Tl'n|SC)

g } |
<1- By, (maxige [T,|SO) S

We have used the fact that, under H, max,_., |7},

B

.....

i
under 112'1 Hy,.

Proof of Property 2: The first theorem of Sidak (1967)
states that, if, Z= (Z,, Z,, ..., Z,) is a vector of random

variables having a k-dimensional normal distribution
with mean vector zero and an arbitrary variance-
covariance matrix, then, for any positive real numbers
Cps Cys veves Cp
P(Z|<c,|1Z)<cpy s |Z)Sc) 2 P(Z)| £ ¢)) %
P(Z)|<c,, ..n 2] <c))
It trivially follows from the above theorem that:
P(Z\|<c, |Z|<cy, s 1) S c) 2 P(Z)| <)) %
P(|Z,| <c,) x .. x P(Z]<c)

Using the above inequality in our set-up, we can
easily see that, for a positive real number c,

By (maxg<p [T,| < ©) = Py, (T| S .|y | S €sns [T S ©)
> Py, (Tin| < €)X Py, (T S )X X Py, (Tpa| <)

We note that the right hand side (R.H.S.) of the
above inequality is identical to By, (no false positive)
in Sidak’s correction that assumes all the SNPs to be
independent. In order to control the FWER at level o
by Sidak’s correction, ¢ in the above inequality needs
to be chosen such that R.H.S. = (1 — &) (we denote this
choice of ¢ as C, ). Thus, the above inequality implies

that, Py, (maxq<;, |Tl,,| < Cgigax) = (1—). Since, C in

the proposed multiple testing method is the (1 — )%
quantile of max,_,, |7}, |, it follows that C < C,, ..
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