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SUMMARY

Sustainable agriculture requires a site-specific approach to address crop management problems and environmental
degradation processes that are spatially and temporally variable. These issues lead to production losses (water stress, low fertility,
pest problems), soil degradation (erosion, soil organic carbon losses, compaction), and water quality degradation (sediment,
nutrients, agrochemicals) - often at the sub-field scale. Management solutions must be implemented at the resolution of the
problems; however, changes require information on the magnitude and extent of the issue. Unfortunately, landscape processes
and properties can change at a finer spatial resolution than can be practically analyzed with lab methods due to time and cost
of sampling and analysis. Thus, it is increasingly important to augment lab methods with field-sensor methods that can accurately
characterize within-field variability at a more reasonable cost and with reliability and timeliness. These instruments can produce
large data profiles and require calibration and prediction methods that can accommodate “big data.” We consider a functional
spatial approach to perform calibration, spatial prediction, and design in this big data context. Specifically, using hierarchical
Bayesian methodology we develop a signal/feature extraction approach for visible and near-infrared (VNIR) spectroscopic
data that facilitates prediction of cation exchange capacity (CEC) over space. This methodology is also used to develop optimal
spatial sampling locations to minimize the mean squared prediction error corresponding to a predicted spatial surface of this
CEC response variable.

Keywords: Adaptive design, Bayesian, DRS, Functional data, Optimal spatial design, Principal components, Stochastic search
variable selection, VNIR.

1. INTRODUCTION analysis of collected samples. Better and more timely
soil information is needed to be able to respond to
complex agricultural and environmental issues, both
today and into the future. In recent years, the use of soil
sensing technology has increased greatly in research
and to a lesser extent in agricultural production. Soil

sensors have improved the efficiency of obtaining soil

Knowledge of the characteristics of soils is
important in many contexts, including development of
economically and environmentally sustainable
agricultural production systems and for understanding
the potential of soils to remediate environmental

problems through processes such as carbon
sequestration. Historically, this knowledge has been
gained through laborious field soil surveys along with
careful chemical, physical, and biological laboratory
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information, which is particularly important where
spatially dense data are needed — characterizing soil
properties for precision agriculture, digital soil
mapping, and spatio-temporal modeling (Viscarra
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Rossel et al. 2011). Among soil sensing technologies,
optical diffuse reflectance spectroscopy (DRS) in the
visible and near-infrared (VNIR) wavelength ranges
(~400-2500 nm) stands out for its ability to be
simultaneously calibrated to a range of soil properties
(Sudduth et al. 1997, Viscarra Rossel et al. 2006,
Stenberg et al. 2010). To be consistent with the DRS
literature, we use the term calibration to describe the
process of estimating spectroscopic models.

1.1 Calibration Issues with VNIR Sensing

The key to obtaining useful soil information with
VNIR spectroscopy is a valid and robust calibration
methodology. In contrast to longer-wavelength (e.g.,
mid-infrared) spectra where specific peaks may be
assigned to a particular constituent, VNIR soil spectra
are largely nonspecific due to overlapping effects of the
different soil constituents. The lack of specificity is
compounded by scatter effects due to soil structure and
mineralogy. Thus, multivariate analysis techniques are
required to relate reflectance data at multiple
wavelengths to the soil constituents of interest
(Stenberg et al. 2010). Since its first application to
VNIR soil data by Sudduth and Hummel (1991), partial
least squares (PLS) regression has become the de facto
standard, and has been used in the majority of recent
studies. Other methods used to a lesser extent include
stepwise multiple linear regression (SMLR; Dalal and
Henry 1986, Lee et al. 2009), neural networks (Daniel
et al. 2003, Fidencio et al. 2002), multivariate adaptive
regression splines (MARS; Shepherd and Walsh 2002),
and boosted regression trees (Brown et al. 2006). In
studies where multiple methods have been compared,
no single approach has emerged as best in all cases.
Thus, further research on VNIR calibration
methodology development is warranted, particularly
such methodology that can accommodate “big data”
covariates.

Although most VNIR soil sensing to date has been
carried out in the lab, field prototype systems were
developed by Shonk et al. (1991) and Sudduth and
Hummel (1993). Since then, other mobile systems have
been developed by Shibusawa et al. (2001), Mouazen
et al. (2005), Stenberg et al. (2007) and Christy (2008),
who described a commercially available mobile VNIR
system. These field-ready sensors all collected data at
a single depth at the soil surface while moving across
a field. As mobile systems have made it easier to collect

data with high spatial resolution, issues of calibration
(model estimation) under spatial dependence have
become paramount. Although most studies have
developed calibrations using samples obtained from a
broad area, ranging from continental (Shepherd and
Walsh 2002), to regional (Chang et al. 2001, Sudduth
and Hummel 1996, Lee et al. 2009), to statewide
(Sudduth and Hummel 1991), some have reported field-
specific calibrations (Viscarra Rossel et al. 2006, Ge
et al. 2007, Christy 2008, Lee ef al. 2010, Sudduth et
al. 2010). If only a few within-field sampling sites are
employed in a field, it may be valid to assume little or
no spatial dependence. However, a denser sampling
scheme (e.g., grid sampling) may result in significant
spatial autocorrelation. Not including these effects in
the model violates the usual assumption of statistical
independence of the calibration model residuals, and
can render the model suboptimal (Ge et al. 2007).
Current methodologies for incorporating spatial
dependence in VNIR DRS analysis are generally multi-
step and ignore various sources of uncertainty; thus,
opportunities exist for developing an integrated spatial
analysis framework through hierarchical statistical
modeling (Cressie and Wikle 2011).

Interaction of the calibration dataset and
methodology can have a significant effect on the
accuracy of soil property estimates. Specifically, choice
of a calibration dataset (i.e., training dataset) requires
consideration of the trade-off between the accuracy
required and the resources available to develop the
calibration. If the highest accuracy is needed and
resources are not a limitation, then individual field
calibration with a significant number of lab-measured
calibration samples will likely provide the best results.
In this case, the main consideration is where to obtain
calibration samples for highest accuracy, and various
methods have been proposed (Lesch 2005, Minasny and
McBratney 2006, Christy 2008). On the other hand,
resource or practicality issues may impose limitations
on within-field calibration sampling, requiring
approaches ranging from a global or “factory”
calibration to various methods that combine pre-existing
calibration data with limited within-field sampling
(Brown 2007, Sankey et al. 2008, Lee et al. 2010). This
suggests the need to determine an optimum framework
for combining local and pre-existing calibration data
along with how to optimally select local calibration
sites.
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1.2 Functional Data Analysis

One promising framework for achieving robust
multisite soil characterization using high-dimensional
“big data” spectral covariate data from VNIR DRS and
auxiliary sensors is hierarchical geospatial functional
data analysis (FDA; Ramsay and Silverman 2005). The
basic premise of FDA is that one considers infinite
dimensional observations in the form of curves (e.g.,
diffuse reflectance spectra) with some intrinsic ordering
of observations (e.g., time ordering for curves and
spatial ordering for images). Including functional
predictors in a setting where the responses are spatially-
dependent can complicate FDA. Indeed, spatial
functional analysis is a developing area of research in
spatial statistics and FDA (see the reviews in Delicado
et al. 2010, Ruiz-Medina 2012a, and Kokoszka 2012).
Most geostatistical FDA developments have been in the
context of cokriging approaches (e.g., Goulard and
Voltz 1993, Monestiez and Nerini 2008, Giraldo et al.
2010, 2012) as well as the general theory of spatial
autoregressive and moving average Hilbertian processes
(Ruiz-Medina 2011, Ruiz-Medina and Montes 2011,
Ruiz-Medina 2012b, Ruiz-Medina and Espejo 2013).
In the spirit of traditional FDA, Gromenko et al. (2012)
and Gromenko and Kokoszka (2013) consider a
functional principal component approach for estimating
mean functions. With the exception of
Baladanayuthapani ez al. (2008), almost all of the work
in spatial FDA has been from a classical perspective.
Recently, Yang et al. (2014) consider a fully
hierarchical Bayesian approach for the analysis of
spatially-dependent functional responses with spatially-
dependent multi-dimensional functional predictors that
relies on stochastic search variable selection (SSVS)
methods to accommodate modeling in the presence of
very high-dimensional covariates.

Our prediction methodology below could be
considered a special case of Yang et al. (2014), with
the significant addition of an optimal spatial design
approach. Specifically, in this work we develop
hierarchical spatial statistical models for environmental
outcomes conditional on functional predictors; i.e.,
spectral measurements. Conditional on a set of spectral
and non-spectral (e.g., topography, soil apparent
electrical conductivity (ECa)) predictors, our
methodology provides estimates and measures of
uncertainty of various soil properties and allow for
digital soil mapping. Further, by using the Bayesian

SSVS implementation, this methodology also extracts
signals/features from the high-dimensional spectral
measurements that are important predictors of specific
environmental outcomes. Importantly, our approach can
be applied to the problem of choosing optimal sampling
locations for taking measurements in future studies,
thus improving the efficiency of future data collection
(e.g., Wikle and Royle 1999, 2005; Hooten et al. 2009,
Holan and Wikle 2012, Hooten ef al. 2012).

Section 2 describes the hierarchical model and
methodology for signal extraction and spatial prediction
given high-dimensional spectroscopic signals. In
addition, this section outlines the optimal spatial design
methodology derived from this model. Section 3 then
contains a real-world data example related to the
prediction of spatially referenced cation exchange
capacity given spectral measurements of soil
conductivity and elevation, as well as the selection of
optimal sampling locations. We then conclude with a
brief discussion in Section 4.

2. METHODOLOGY

Over the last three decades or more, researchers
have estimated soil properties using visible and near-
infrared (VNIR) diffuse reflectance spectroscopy
(DRS), with varying degrees of success. More
importantly, many of the previous modeling attempts
using VNIR and DRS have neglected to provide
measures of uncertainty associated with particular
estimates. Critically, in order to reduce sampling costs
while simultaneously improving the quality of the
estimates an adaptive/dynamic design strategy is needed
to choose optimal sampling locations.

The details of the methodology are described in
the following subsections. We use standard hierarchical
statistical model notation; for two random variables X
and Y, we denote the distribution of X and conditional
distribution of X given ¥ as [X] and [X]Y], respectively.
Then, heuristically, for hierarchical geospatial
functional data models, like the ones considered here,
the idea is to approach the problem by breaking it into
several stages (Berliner 1996, Wikle et al. 1998, Wikle
2003, Cressie and Wikle 2011):

o Stage 1. Data Model: [data | process, parameters)
o Stage 2. Process Model: [process | parameters)|

o Stage 3. Parameter Model: [parameters].
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The first stage is concerned with the observational
process or “data model,” which specifies the
distribution of the data given the true values (process
of interest) and parameters that describe the data model.
The second stage then describes the process of true
values, conditional on other parameters. Finally, the last
stage accounts for the uncertainty in the parameters.
Ultimately, our main interest is in the distribution of the
process of true values and the parameters updated by
the data. We obtain this so-called “posterior”
distribution via Bayes’ rule:

[process, parameters | data]
o< [data | process, parameters|

[process | parameters] x |parameters].

The Bayesian hierarchical approach serves as the
basis for a flexible framework consisting of
fundamental methodology that can be adapted to handle
many core substantive applied spatial problems of
interest, such as those encountered here (e.g., Holan et
al. 2008, 2009, 2010; Wikle and Berliner 2005; Wikle
and Hooten 2010, Wikle 2010a). Importantly, the
Bayesian hierarchical framework allows one to include
multiple data sources conditional upon the true process
of interest, thus, typically simplifying the data-model
dependence structure. Perhaps more importantly, one
then uses the spatial dependence in the process stage
to borrow strength across spatial areas, thereby reducing
variability in the true process estimates and in
predictions. In many instances, exogenous information
and additional dependence structure can also be added
into the models for parameters associated with these
higher stages (i.e., data and process), providing a more
flexible, yet probabilistically coherent, way to combine
information.

2.1 Hierarchical Geospatial Spectroscopic
Functional Models

Consider the case of one field for which we have
observations. Specifically, assume there are m
observations of a spatial process (soil property),
denoted by {Y,:i=1, ..., m} and define a latent spatial
vector, u = (i, ...,1,), where u is from a Gaussian
spatial process and the index 7 is associated with a
spatial location within the given field (assumed to be
in some subset of two-dimensional Euclidean space).
In general, the locations corresponding to the latent
vector u may not coincide with the observation
locations (i.e., the observation and prediction locations

need not be the same). Nevertheless, we will assume
that the observations and latent spatial process have the
same point-level support. Further, let s(w) denote a
location-specific mean centered spectroscopic curve for
location i and wavelength ®. Then

Yl.:J‘Si(a))b(a))da)+X;5+ﬁi+§i’ (1)

where the regression parameter 5(-) is assumed smooth
and square integrable and x, is a p-dimensional vector
of non-spectral covariates observed at location i having
p * 1 vector of parameters, 6.

Equation (1) can be viewed as an infinite
dimensional regression, at location 7, with a separate
predictor for every wavelength, m, in the continuous
band. Now, if {¢,(w)} represents a complete
orthonormal basis then s; and b(-) have the unique

representations s (w) = Zj;lék@ (w) and b(w) =

2::1 B (w). Substituting the above expansions into
(1) yields

Yi— Izgiké’)k(a))Zﬂkqﬁk(a))da)+xi’§+ﬁi +&
k=1 k=1

Zé:ikﬁk +X0 +1i; + &
k=1

K
Y EiB+ xS+ +¢
k=1

= EB+X5+u +e¢;, ?2)
where s () and x'; are assumed known for i =1, ..., m.

Note that the truncation error 2 e+ 5B can be

accounted for through flexible specification of the error
distributions; i.e., by appropriately modifying the error

distributions for u; and £, (notationally we denote this

modification by removing the “~ > symbol). See Wikle
(2010b) for a detailed discussion. We remark that, in
practice, similar to Holan ef al. (2010, 2012), Wikle and

Holan (2011) and Yang ef al. (2014), Y * A&, will

undergo further dimension reduction through stochastic
search variable selection (SSVS) as described below
(George and McCulloch 1993, 1997).

In matrix form, (2) can be equivalently expressed
as

Y=E8+X5+u+¢ 3)
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where Y has dimension m x 1 and E= (&, ..., £ )" and
X = (x, ..., X,))" have dimension m x K and m x p,
respectively. In this context, the matrix Z is known
since s, = (s(@)), ..., sl.(a)q))’ = ®¢, with @ = (0(w,),
s (@ q)) ', where the signal s, is measured at g discrete
wavelengths and @ and &, have dimensions ¢ x K and
K x 1, respectively. Thus, it follows that £ = @'s; and,
therefore, E = S® where § = (s', ..., ', )" has dimension
m x ¢. In terms of a general hierarchical framework,
our geospatial functional model can be specified as

Data Model: [Y|5 6, u, 2]

=NE f+ X5 +u,c) 4)
Process Model: [u|0,] = N(0, Z(0,)) ®))
Parameter model: [f, J, 02,0,], 6)

where g2 corresponds to an independent, small-scale

(nugget) spatial effect and/or measurement error process
€, and @ is a vector of parameters associated with the
latent spatial process u.

It is important to note that no forms for the
orthonormal expansions were specified. In fact, there
are many choices for these expansions among the class
of orthogonal (or biorthogonal) bases (e.g., Fourier,
splines, wavelets, empirical orthogonal functions
(EOFs; i.e., functional principal components), among
others). The choice is somewhat subjective, but there
can be advantages and disadvantages depending on the
specific application. Additionally, the residual error
term, €, is typically assumed to have covariance matrix

o2l. However, a more general covariance matrix X_

could be specified to help account for differences
between the complete basis expansion and its low-
dimensional representation. See Wikle (2010b) for a
comprehensive discussion.

The model given by (4)-(6) can be equivalently
expressed by combining the data and process stages into
one stage (i.e., by integrating out the random latent
process, u, leading to more complicated marginal
dependence). Specifically,

Data Model: [Y|8, 6, 02,6,]
=NE B+X8 26)+ a21) (7)

Parameter model: [B, 6, 02,6,]. (3

Also, note that it is usually the case that the
parameter distributions in (8) are considered to be

independent, [5,8,02,0,1=[B1[51[621(6,]. Clearly,
other choices are available and one should verify that
posterior inference is not overly sensitive to the choice
of parameter distributions. Such sensitivity analyses are
important when conducting Bayesian analysis and are
undertaken as part of our model development. The
connection between the model given by the fully
hierarchical form (4)-(6) and the marginal form (7)-(8)
is exactly the same as in the traditional linear mixed
model setting. When inference is concerned with £and
4, it may be more convenient to proceed with the so-
called marginal form (i.e., “spatial functional regression
analysis”).

In most traditional geostatistical settings, interest
resides in predictions of the spatial process at
unobserved locations. To facilitate “big data” spatial
prediction, we consider an additional basis function
expansion. For this purpose, let &, = y/v,, where .
and v, both have dimension r x 1. This further basis
function decomposition allows us to estimate &, at any
spatial location 7 given that we know v,. Additionally,
we write the m x K matrix £ = ¥V, where ¥ =
(v, .. w) and V. =[v,, v, ..., v] Note that if the
spatial basis functions ¥ are known, then v, can be
obtained by V= #'Z = ¥'S @. Alternatively, letting

7k = (Vik» - Vo) We could impose spatial structure by

specifying 7, ~N(0,2(6;)) or y, =¥y, with

v, ~ N0, £ ). We take the former approach here.

Thus, if we are interested in the process Y, at n
locations, say Y, by taking the spatial basis function
approach, we can use the model

Y=Y PSOB+X5+i+&,
Where y’:‘/an = (Wl"" Wn)/’ Xn><p = (Xl’ eeey Xn )/’ ﬁnxl
(u,, ..., u), &=(,..,€,) and x, is assumed known for

i=1, ..., n. Migration to the case where X, is not known
for all i = 1, ..., n is relatively straightforward given a
mechanism for dealing with unobserved spectroscopic
(functional) predictors (e.g., Yang et al. 2014).

Furthermore, let ¥ ¥'S®=M, ., then
Y=MpB+X5+ii+ €. 9)
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Finally, in order to generate predictions of the
spatial process at unobserved locations we must specify
the prior distributions of B, 8,1 and € in (9). For this
purpose, we assume S ~ SSVS prior (as described
below), &6 ~ N(0, X(65)) (or an SSVS

prior), @ ~ N(0,%(6,))and &~ N(0, c21) .

It is important to note that the above models can
be readily extended to include a third spatial dimension
— depth. In this case, instead of observing a DRS curve
at each spatial location, a DRS image is observed (see
Fig. 1 for an example image). The DRS image
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Fig. 1. This image consists of approximately 120 individual
spectra sampled every 1 cm on a 120-cm core. Color scale
represents variation in decimal reflectance.

predictors can then be modeled similar to the DRS
curves, once the image has been vectorized (e.g., see
Holan et al. 2010, 2012 and Yang et al. 2014).
Additionally, the above models can be readily extended
to include multiple sites and/or multivariate responses.
In each of these cases the hierarchical statistical
approach proposed here facilitates the additional model
complexity; see Cressie and Wikle (2011) for a
comprehensive discussion.

2.1.1 Stochastic Search Variable Selection (SSVS)

In general, Bayesian SSVS algorithms provide an
effective means of model selection when interest lies
in considering a large number of potential submodels
(e.g., see George 2000, OHara and Sillanpda 2009, for
a detailed overview). More specifically, as popularized
by George and McCulloch (1993, 1997), SSVS
provides a quick and efficient way of

performing variable selection within the hierarchical
Bayesian framework. For example, assume we have
a basic multiple regression problem with

Z;| B, 0% ~ N(x;8,0%), where Bis an n-dimensional
vector and ng is quite large. One standard

implementation then assumes the following prior
specification for the elements of £

j=leang  (10)

where {yj} are specified at the next level of the
hierarchy to have independent Bernoulli distributions
with probability parameters {7 }. In this case, 7z, can be
viewed as the prior probabi{ity that f(j) should be
included in the model. Furthermore, note that y. = 1
indicates that the j-th variable is included in the model.
Typically, C» Tp and 7, are fixed hyperparameters.
George and McCulloch (1993, 1997) provide various
alternatives for the specification of these
hyperparameters. They suggest that one would like T
to be small so that, when y, = 0, it is reasonable to
specify an effective prior for (j) that is near zero. In
addition, one typically wants ¢ to be large (greater
than 1) so that, if ¥, = 1, then our prior would favor a
non-zero [3j).

To facilitate further dimension reduction of (2) we
allow the possibility of both the spectral and non-
spectral regression parameters to have SSVS priors. In
doing so, heuristically, the hierarchical geospatial
spectroscopic model can be viewed as spatial regression
model in which the regression produces an extremely
low-dimensional “filtered” representation of the infinite
dimensional spectral and finite dimensional non-
spectral predictors. Regardless of the specific
orthogonal basis functions chosen, this approach has the
distinct advantage that, similar to partial least squares,
it will facilitate dimension reduction by choosing the
basis components (most salient spectroscopic
components) and non-spectral predictors that best
predict the response; see Holan ef al. (2010, 2012),
Wikle and Holan (2011), and Yang ef al. (2014) for a
detailed overview on using SSVS to choose effective
basis expansions and variable selection.

2.2 Adaptive Design for Spatial Spectroscopic
Sampling

The types of environmental processes of general
interest here include variability over space and possibly
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time, and given the opportunity to sample over different
spatial locations through time, or to sample in space
adaptively, it is possible to improve the design
efficiency. There has been substantive work in the
statistics literature devoted to the issue of obtaining
spatial designs for environmental processes (Le and
Zidek 2006, Wikle and Royle 1999, 2005, Hooten et
al. 2009, Holan and Wikle 2012, Hooten et al. 2012).
For a comprehensive overview of optimal spatial
designs see Miiller (2007), Mateu and Miiller (2012)
and the references therein. As demonstrated in Wikle
and Royle (1999), one can gain significant improvement
in efficiencies by allowing the design to change at each
sampling time. This is typically referred to as adaptive
(or dynamic) design, which is not to be confused with
adaptive sampling (e.g., Thompson and Seber 1996),
although the notions are similar. The primary difference
is that the former is model based, whereas the latter
occurs in a traditional sample survey framework, but
with sample unit selection modified as observations are
made.

In general, the design problem is to decide where
spectroscopic samples should be taken at time 7 + 1
based on observations through time . In particular, let
Y denote a spatial or spatio-temporal process such as
cation exchange capacity (CEC) and suppose that the
process, spectroscopic measurements and exogenous
variables are sampled at a set of n locations (the
“design”) denoted as D = (d,, ..., d) where d, € R
Fand ‘Fis the agricultural field of interest. The design
objective is to locate m << n sampling locations in an
optimal fashion, meaning the design minimizes some
variance criterion. Common criteria include the average
prediction variance, maximum prediction variance,
minimum root mean-square prediction error (RMSPE),
or the variance of regression parameter estimates.

The adaptive design problem we consider is
challenging. The principal difficulty is that model-based
approaches for spatio-temporal spectroscopic
(functional) data are relatively complicated and, for
design applications, must be specified in such a way
as to allow for prediction of the spectroscopic
covariates at unobserved locations. Any model lacking
this facet will be inadequate for constructing designs.

For the application presented here, we consider the
purely spatial case corresponding to (3) and note that
the spatio-temporal case follows easily given a specified
model; see Wikle and Royle (1999), Wikle and Royle
(2005), Cressie and Wikle (2011), Holan and Wikle

(2012), and the references therein for comprehensive
details. The goal in the purely spatial case is to choose
an optimal design of size m < n sampling locations
based on the current observations and to use them at
the next sampling occasion (assuming close temporal
proximity in sampling occasions). For this purpose we
define the n x m incidence matrix, H, that maps the
observations to the candidate subset sampling locations.
In order to choose an optimal design we then consider
the following model

Y =Hu+e€,e~ N(0, 621),
=Ef+X6+u,u~ N(0,Z(6,)).

Assuming that the parameters f3,8,02 and 6, are
known, the posterior distribution of £Y is given by

HY ~ N(Ef + Xé) + R[Y - H(ES + XJ)],
(I-RH) X(6)).

where R = 2(6)H’ (621 + HZ(6)H')"". In practice,
one plugs in estimates of the required parameters to
evaluate this distribution, where those estimates are
obtained from the posterior distribution for the model
implementation given in Section 2.1.

The optimal design could be chosen as the one that
reduces the prediction variance associated with the
locations (corresponding to the rows of “H”) that
minimize the trace of the prediction variance
(I-RH)Z(8). Or, in the case where one is seeking to
compare to a validation sample (as in our example), one
could select the locations that lead to the best
predictions at the validation locations and use a RMSPE
criterion. In either case, to find these locations, we need
an efficient way to go through “all” possible
combinations of locations. In practice, this is
problematic due to the enormous number of possibilities
to consider. To carry out this minimization we propose
a simple exchange algorithm. The basic idea is that the
criterion is evaluated successively for different designs,
and the design is updated by exchanging bad sampling
locations for better sampling locations. Such algorithms
are widely used in practice and many variations on the
basic theme exist (Cook and Nachtsheim 1980,
Atkinson and Federov 1988, Nychka er al. 1997).
Although these algorithms are somewhat greedy and
tend to find local optima, for relatively small problems,
like the ones considered here, experience indicates that
they do find the global optimum, or a design very close
to the optimum. For larger problems, the solutions tend
to be arbitrarily close to the global optimum depending
on how long the algorithm is allowed to run.
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3. EXAMPLE: MODELING SOIL CATION
EXCHANGE CAPACITY

To illustrate the effectiveness of our methodology,
in terms of prediction and optimal spatial design, we
present an example using the methodology described
above. Data were collected on a 35 hectare (ha)
research field located near Centralia, Missouri on a
nominal 30-m grid. See Sudduth ez al. (2010) for
comprehensive discussion surrounding the study site,
soil sampling and spectral data acquisition.

3.1 Illustration of SSVS and Spatial Prediction

We considered the response variable cation
exchange capacity (CEC), with covariates consisting of
reflectance spectra shown in Fig. 2, soil ECa measured
by a Geonics EM38 sensor operated in vertical dipole
mode (Sudduth et al. 2005), and elevation (height above

Signals: Calibration Locations
T T T

Signal

I I I I I I I I
0 200 400 600 800 1000 1200 1400 1600 1800

Wavelength Band

Fig. 2. Spectroscopic signals for the 285 training data locations.

sea level (m)). We used 285 locations for calibration
(model estimation) and 69 locations for validation
(prediction). The signals were projected onto a
functional principal component basis set. Specifically,
we considered the first 20 principal components
(accounting for over 99.9% of the variance in the
signals) as potential covariates.

In terms of modeling choices, the nugget variance,

o2, was fixed at 1 mEq/100 g; this value comes from

independent repeated measurements that were
specifically taken to determine the error associated with
soil sampling and laboratory analysis. Further, the
spatial process u was assumed to have an exponential

covariance structure with g2 specified as an inverse
gamma distribution with a prior mean of 0.9 and
variance 10, and 6, was specified to have a discrete
uniform prior with bounds from 0.01 to 2.0 (in this
study, distances range from 0 to 8§76 meters). Note, the
results presented here are not sensitive to these choices
of prior distributions.

The spectroscopic covariate parameters were
assigned a SSVS prior as defined in (10) with 7= .01,
¢ =10 and 7 = .25. These were selected based on a
sensitivity analysis that considered all possible
combinations of 7= {0.01, 0.05, 0.1, 0.15, 0.2, 0.5},
c={0.1,0.5, 1, 5, 10, 20}, and 7 = {0.1, 0.25, 0.5}.
Note that the choice of 7= .25 allowed more shrinkage
to 0 and thus, more parsimony. Spatial predictions of
the &s are based on bi-harmonic splines in order to
obtain the curves at the validation locations. Finally, the
predictions at the validation locations are performed at
each iteration of the Markov chain Monte Carlo
(MCMC) procedure (after appropriate burn-in), thus
giving a “model averaged” prediction; see Holan et al.
(2010, 2012) for complete details. All full-conditional
distributions were of conjugate form and sampled via
Gibbs steps. The MCMC algorithm was run for 10,000
iterations after a 1,000 iteration burn-in. There was no
evidence of lack-of-convergence in the sample chains.

For the types of models considered in this
illustration it is informative to examine a plot of the
posterior probability of inclusion for the principal
component coefficients based on the SSVS prior
distribution (see Fig. 3). In this case, the 8 coefficients
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Fig. 3. Posterior probability of inclusion for the functional
principal component coefficients based on SSVS.



Chistopher K. Wikle ef al. / Journal of the Indian Society of Agricultural Statistics 68(2) 2014 203-216

211

associated with functional principal component 1, 2, 3,
5, 6, and 11 were always included in the model. The
coefficients associated with principal component 9 and
13 were included over 50% of the time, with the
remaining coefficients included less than 40% of the
time. This figure provides a visualization tool for
evaluating which basis coefficients are important for
predicting CEC.

As depicted in Fig. 4 the posterior distribution of
B(1) is unimodal, whereas the posterior distribution for
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Fig. 4. Histogram of the posterior distribution for relevant model
parameters. Top left: (1), Top right: (13), Bottom left: 0,
right: 0'3,

B(13) is bi-modal, which is a result of the SSVS prior
distribution. This is important since it demonstrates that
the Bayesian hierarchical modeling approach gives us
the flexibility to find bimodality in the parameters. In
terms of the other variables, Fig. 4 also displays the
posterior histogram of o7 and 6 . Note, as seen from
the posterior distribution of 6,, the posterior mean
estimate of 6, (0.028) is relatively small, indicating
weak spatial dependence after accounting for the
covariates, yet there is a reasonable spread in this
distribution. Note that we have not attempted to account
for potential spatial confounding in this analysis since
the goal is prediction (e.g., Reich et al. 2006).

Another informative plot is that of the posterior
prediction distributions for all of the 69 validation
locations (Fig. 5). This figure illustrates the posterior
prediction distributions for the 69 locations as blue box-
plots with the “true” values superimposed in red.
Importantly, this demonstrates the ability of the
hierarchical approach to capture (quantify) the
uncertainty in our estimates. This uncertainty
quantification is critical when using these
measurements for making economic and/or managerial
decisions and will be of immediate use to the end-user.
Note that most of the predictive distributions cover the
truth, with a few clear outliers.

Validation Locations: Posterior Distribution (blue); Observed (red)
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3.2 Illustration of Optimal Spatial Design

As an illustration of the spatial design
methodology, we again consider the Centralia dataset
used for the prediction analysis in Section 3.1.
Specifically, we demonstrate that, for given number of
locations, using our approach leads to designs with
significantly reduced root mean-square prediction error
versus what would be obtained utilizing the best design
from 10,000 random arrangements. For this illustration,
we utilized the estimated posterior mean for spatial
parameters, 62=1.16 and @, =0.028, from our
previous Bayesian analysis. Similarly, the measurement
error variance was again fixed at | mEq/100 g. For this
example, we used the functional principal components
that were always selected in the SSVS procedure (i.e.,
1,2,3,5, 6, 11). This accounted for over 99.6% of the
variation in the signals. For a given design, we
estimated the signal and non-signal parameters using
generalized least squares. Subsequently, we interpolated
the spectral coefficients at the validation sites (as
previously discussed) based on the design locations.

215 T
—#— Optimal Design

- & - Best Random Design out of 10,000

195

I
150 200 250

I
50 100

Number of Design Locations

Fig. 6. RMSPE for the optimal design (blue solid line) and
“best” design out of 10,000 random designs (red dashed line) as
a function of the number of design locations.
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Note, for this illustration, the nonspectral covariates
were assumed known at the validation sites but not the
spectral curves. Next, we estimated the mean, E£+ XJ.
Using Kriging formulae (Cressie and Wikle 2011) we
obtained estimates of the mean and variance-covariance
matrix of x |Y, as described above. Based on the
RMSPE design criterion we then found an optimal
spatial design as function of the number of sites. Fig.
6 shows the RMSPE for the optimal design and the best
design out of 10,000 random designs for 10 to 225
design locations. For comparison, note that the RMSPE
for the validation locations based on using all of the
sample locations from the posterior prediction was 2.02.
It is interesting to note that using all the sampling
locations results in an overfit, as the optimal spatial
designs for fewer sample locations all produced smaller
RMSPE values. Fig. 6 shows that the minimum RMSPE
(1.819) occurred for 100 sampling locations, if they
were chosen based on the optimal design algorithm, but
there was not much difference in RMSPE in any of the
optimal designs for sizes from 60-140 locations. In
addition, the RMSPE was significantly smaller for all
network sizes than the corresponding “best” design
based on 10,000 random designs of the same size.
Finally, Fig. 7 shows the optimal sampling network of
size 100 (red circles) superimposed on all of the
possible network locations.

It is important to emphasize that our approach is
extremely flexible on several grounds. First, in the case
were we have no prior spectroscopic data to include in
the model, our formulation could be modified to choose
optimal starting points for spectroscopic sampling based
on other environmental covariates, including digital
elevation maps (DEMs) or remote sensing images.
Additionally, our approach is easily adapted to the case
of spatiotemporal design in which subsequent designs
are determined from the dynamics governing the
evolution of the environmental outcome of interest
conditional on the previously imposed designs. Finally,
when including spectroscopic predictors, our designs
are conditional on the estimates f. These parameters
are given an SSVS prior distribution and thus the
resulting design includes information on which
principal component features are important for spatial
prediction.

4. DISCUSSION

Sustainable agriculture requires a site-specific
approach to address crop management problems and

environmental degradation processes that are spatially
and temporally variable. These issues lead to production
losses (water stress, low fertility, pest problems), soil
degradation (erosion, soil organic carbon losses,
compaction), and water quality degradation (sediment,
nutrients, agrochemicals) — often at the sub-field scale
(Kitchen et al. 2005, Lerch et al. 2005). Unfortunately,
landscape processes and properties can change at a finer
spatial resolution than can be practically analyzed with
lab methods due to time and cost of sampling and
analysis (Sudduth et al. 1997). Thus, it is increasingly
important to augment lab methods with field-sensor
methods such as VNIR that can accurately characterize
within-field variability at a more reasonable cost and
with reliability and timeliness.

The body of work on VNIR soil analysis, as
reviewed by Malley ef al. (2004), Viscarra Rossel et
al. (2006) and Stenberg et al. (2010) includes a
multiplicity of separate solutions for the suite of
problems with calibration of VNIR sensors. Some of
these problems are data preprocessing and smoothing
(Igne et al. 2010), data reduction and wavelength
selection (Sudduth and Hummel 1991, Lee ef al. 2009),
local and global calibration (within and between
regions) (Brown et al. 2005, Lee et al. 2010), spatio-
temporal autocorrelation in calibration data (Ge et al.
2007, Sudduth ef al. 2010), and the final step of
interpolating the predicted data.

The hierarchical statistical methodology presented
here can provide solutions for all of these problems in
a single framework (Wikle et al. 1998). To quantify
uncertainty, it is of principal importance to properly
handle and propagate error (uncertainty) between all of
these previously independent steps. Also, accounting for
these uncertainties and the spatial dependency allow for
the possibility of developing efficient monitoring
designs for critical parameters such as soil organic
carbon, soil nutrients, and soil moisture. In particular,
the adaptive/dynamic design capabilities of the method
will also enable more accurate calibration and
interpretation of spectral data at a reduced cost. This
is achieved through stochastic selection of functional
principal components for spatial prediction and the
corresponding spatial locations for sampling (to
optimize sampling costs and prediction accuracy).
Further, these hierarchical statistical models readily
extend to multiple predicted variables and can
incorporate additional inexpensive and rapidly collected
geospatial covariate information to simultaneously
improve VNIR calibration and spatial predictions.
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We expect that the methods and approaches
presented here will be of interest to a wide range of
users. They could be directly used by sensor developers
and researchers who may imbed them in commercial
or experimental data analysis systems. This could in
turn enable use by educators, consultants, and producers
as part of an overall sensing and analysis system.
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