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SUMMARY

Large patient-level longitudinal databases play a crucial role in providing the evidence base for identifying pathways to
optimal health outcomes, either informing effective prevention strategies or optimal clinical interventions. However, there are
inherent complex challenges for valid statistical analyses of such data for robust assessment of risk factors and health outcomes.
The longitudinal data often have a non-trivial amount of missing data with complex missing patterns. Many of the risk factors
are also measured with errors. These crucial issues are often ignored in standard analyses, which often lead to biased estimates
and misleading clinical or epidemiological inferences. These issues are addressed in this study, along with an empirical assessment
of how different imputation techniques for missing data could affect the clinical inferences.

A simulated longitudinal data on systolic blood pressure (SBP) conditional upon the long-term macrovascular events
(MVE) were generated following the risk factors’ distributions observed in the BP arm of ADVANCE clinical trial. Missing
data on longitudinal SBP measures were created following a random missing pattern. The effects of the dynamic changes in
SBP over time on the risk of MVE were evaluated using complete as well as multiply imputed missing data sets. The
performances of multiple imputations by Multivariate Normal Imputation and Fully Conditional Specification were compared
with the analysis of complete data in relation to the consistency of clinical inferences.

The trajectories of longitudinal measures of BP appeared to be significantly different while compared between two sets
of multiply imputed data and the original complete data. Although the clinical inferences in relation to the assessment of the
effects of higher levels of BP over time on the risk of MVE were not contradictory between complete and imputed data sets,
the multiple imputations of missing data could potentially mislead the true trajectory of SBP over time. This exploratory study
clearly suggests the need for further methodological assessments of imputation techniques for missing data while dealing with
large patient-level longitudinal data.
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1. INTRODUCTION

The recent widespread implementation of
electronic recording and nationwide linkage of patients’
data from primary care practices and other sources in
the developed countries has provided an enormous
opportunity for clinical, epidemiological and health
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policy research. Many large longitudinal databases are
currently available, some of which are multi-national,
to provide a repository of information on long-term
health outcomes and their antecedent factors. These
databases create unique opportunities to increase
understanding of the causes and mechanisms behind
disease onset, disease progression, and mortality. Using
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these databases, it is possible to plot the trajectory of
disease related risk factors which can be non-linear,
their possible interactions over time, and their effects
on disease outcomes and mortality.

Unlike cross-sectional or one-off data collections,
longitudinal studies are important for policy analysis
not only because they document change over time but
also because they enable the influence of policies and
practice to be isolated from confounding influences
such as social background and context. The potential
to use such large databases for cohort studies for
medical research is great and could unlock important
clinical and health policy related answers for a number
of conditions such as cardio vascular disease, asthma,
diabetes, obesity and osteoporosis. The availability of
longitudinal primary care data for millions of patients
will also facilitate the investigation of trajectories of
risk factors, and particularly modifiable risks, which can
lead to improved outcomes. The emphasis on
preventative medicine could also have enormous
financial benefits with cheaper targeted early treatment
avoiding more costly interventions in later life.
Currently, these large primary care databases are used
for a variety of purposes including clinical research
planning, drug utilisation, studies of treatment patterns,
clinical epidemiology, drug safety, health outcomes,
pharmacoeconomics and health service planning.

Longitudinal primary care, long-term clinical trials
and survey-based databases, where data collection takes
place for various purposes including particular clinical
investigations, have characteristics that require novel
data quality management and analysis techniques.
Longitudinal data have inherent problems of a large
proportion of random and non-random missing and
erroneous risk factor data (Delaney ef al. 2008,
Greenland and Finkle 1995). Furthermore, patients
moving between practices (places) cannot be followed
in the anonymised patient databases leading to curtailed
observation time periods which may be detrimental to
long term survival analyses. A high level of attrition
threatens the validity of standard analyses and
generalisability. An analysis which does not address
these fundamental problems will generate misleading
results. Another complex problem is the inappropriate
alignment of medication and hospitalisation data, and
contradictory information on prescription and other
medication related data.

Although primary care data are extensively used
by clinical researchers and health policy makers,
contradictory findings have been reported in various

crucial clinical studies using the same database. For
example, various studies have used the same patient
cohort from the United Kingdom General Practice
Research Database (GPRD) to evaluate the same side
effects of specific drugs, often with opposite
conclusions. Examples include third generation pills
and venous thromboembolism (De Vries et al. 2011);
proton pump inhibitors and fracture (De Vries et al.
2011); and oral bisphosphonates and gastrointestinal
cancers (Green ef al. 2010). These contradictions led
to several law suits, in which judges requested
reanalysis and urged the statistical community to
develop better analytical methods to deal with these
complex data (De Vries 2010). In the gastrointestinal
cancer study (Green ef al. 2010), more than 30% of data
were missing on key risk factors including smoking
status and body mass index (BMI). The researchers
used longitudinal risk factors in their analyses without
appropriate imputation of missing data and without
recognising the issue of erroneous measurements in risk
factors. Another study imputed for the risk factors, and
reported completely opposite findings (New comb et al.
2010).

Although standard statistical techniques and
software are available for the analysis of longitudinal
data, the methodological challenges threaten the validity
of findings from a simple application of existing
methods. Recent controversies necessitate the urgent
need for novel generalisation of existing statistical
methods or development of new methodologies to
appropriately analyse large longitudinal databases to
provide valid and robust information. Firstly, these
databases often have the problems of a non-trivial
amount of missing data with complex missing patterns.
Multivariate analyses are usually and necessarily
applied to a ‘complete data set’, i.e. one which excludes
any records with any missing data on covariates or risk
factors. This can significantly reduce the power and
substantially affect validity of findings. Correction for
bias involves an understanding of the complex missing
patterns, and incorporation of this in models to produce
valid effect estimates. Secondly, many anthropometric,
clinical and biochemical risk factors and predictors are
measured with error (Tang and Tu 2013, Wulfsohn and
Tsiatis 1997, Nahm ef al. 2008) This crucial issue is
ignored in standard analyses, which are well-known to
then result in biased estimates and highly likely to
generate completely misleading risk estimates based on
survival analysis. Thirdly, attrition in longitudinal
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studies leads to loss of information about health
outcomes, usually on a biased set of individuals
(Gustavson et al. 2012). Fourthly, these three factors
will be expected to co-exist at an individual level.
Finally, while some methods (e.g. multiple imputations
of missing data) have been identified to deal with
specific approaches to analysis (Barzi and Woodward
2004, Burton and Altman 2004, Durrant 2005, Engels
and Diehr 2003), these have not been generalised to
include more general models such as survival models
with measurement errors in time-varying covariates,
irregularly measured covariates, and non-linearity in
trajectories.

In this paper we evaluate various aspects of
missing longitudinal risk factor data and the statistical
challenges to evaluate the dynamic effects of such risk
factor data on long-term health risk. We introduce this
in the context of our ongoing extensive clinical studies
using large longitudinal patient-level follow-up data to
evaluate the dynamics of blood pressure over time and
its effects on vascular risks in patients with type 2
diabetes (T2DM). The methodological, clinical and
epidemiological aspects discussed in this study are a
part of this research programme.

2. CLINICAL CONTEXT

Diabetes is a serious chronic disease that is
growing rapidly and that now affects more than 10%
of adults in developed countries (Fox et al. 2007, Wild
et al. 2004). Diabetes is associated with a reduced
lifespan, mainly because of micro- and macrovascular
complications of the disease (Fox et al. 2007, Stamler
et al. 1993). Hypertension is a common comorbidity of
diabetes, affecting a significant proportion of patients.
The estimated prevalence of hypertension in adults with
diabetes is 20—-60%, which is 1.5-3 times higher than
that in age-matched individuals without diabetes (Lloyd
-Jones et al. 2010).

Guidelines for treatment of hypertension in
patients with T2DM recommend to maintain systolic/
diastolic blood pressure below 140/80 mmHg
(American Diabetes Association 2013). Anti-
hypertensive medications along with life style
modifications are advised in patients with blood
pressure above 140/80 mmHg. Exploratory analyses of
data from the Action in Diabetes and Vascular Disease:
Preterax and Diamicron MR Controlled Evaluation
(ADVANCE) trial reported that additional systolic/

diastolic blood pressure lowering of 5.6/2.2 mmHg was
associated with 18% and 14% reduction in
cardiovascular death and all-cause mortality in patients
with T2DM (Ninomiya et al. 2010). However, the
analysis of the Action to Control Cardiovascular Risk
in Diabetes (ACCORD) trial data showed no beneficial
effect of tight blood pressure control in patients with
T2DM (The ACCORD Study Group 2010). The meta-
analysis conducted by McBrien et al. (2012) reported
no significant association of intensive blood pressure
lowering target with mortality in patients with T2DM.
A recent systemic review conducted by Lv ez al. (2012)
reported no clear benefit of intensive blood pressure
control on mortality. Also, a retrospective cohort study
on about 126,000 newly diagnosed patients with T2DM
reported that the systolic/diastolic blood pressure below
130/80 mmHg during one year of diagnosis of diabetes
was not associated with improved survival (Vamos et
al. 2012). However, information on the changes in
blood pressure over time and its possible effect on
mortality are very limited. Only a few studies have
examined the blood pressure trajectories in people with
diabetes. Post hoc analysis of UKPDS data reported
significant risk reduction in mortality by 9—16% for
every 10 mmHg decrement in systolic blood pressure
level (Stratton et al. 2006). This study explored the
“updated mean” of blood pressure observed over time,
and not the changes in blood pressure over time. The
VADT study has recently reported 54% increased risk
of cardiovascular events associated with the
longitudinal joint effects of high systolic and diastolic
blood pressure over a period of 7 years (The VADT
Study Group 2010).

3. MISSING DATA ISSUES

Various approaches have been used to deal with
missing data in large clinical databases (Barzi and
Woodward 2004, Burton and Altman 2004, Durrant
2005, Engles and Diehr 2003). These include complete
case analysis (including only patients with complete
records), exclusion of variables with incomplete data
from the analysis, and including patients with missing
information but creating a separate category for missing
values (EMA 2010). However, these approaches of
dealing with missing data lead to selection bias,
substantial reduction in the power of the study, and the
very high potential for misleading conclusions when
using these methods is well recognised (Greenland and
Finkle 1995). Whichever technique is used, there is a
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possibility that false associations may be shown.
Several statistical and machine learning methods have
been used to deal with the complex problem of missing
data (Engels and Diehr 2003, Richman et al. 2009,
Jerez et al. 2010, Farhangfar e al. 2008, Gheyas and
Smith 2010, Herring and Ibrahim 2001, Kenward and
Carpenter 2007, Little 1998, Little and Rubin 2001, Ma
et al. 2012, Marshall et al. 2010). The statistical
approaches for handling missing data include deletion,
mean substitution, simple regression, regression with an
error term, the hot-deck and cold-deck techniques, and
the expectation maximization (EM) algorithm.
However, most of these approaches of dealing with
missing data have the inherent problems of selection
bias, wrong or insufficient model specification, and
poor theoretical background on their statistical
properties — with the potential for drawing misleading
conclusions . (Vries 2010, Rubin 1987). A review of the
literature reveals that the efficacy of the proposed
methods depends strongly on the problem domain (e.g.,
number of cases, number of variables, missingness
patterns), and thus there is no clear indication that
favours one method over the others (Jerez ef al. 2010).

3.1 Multiple Imputation of Missing Data under
Complex Missing Patterns

There is a strong body of literature on the
methodological and application aspects of single as well
as multiple imputations (MI) of missing values,
covering both frequentist and Bayesian philosophy of
statistics (Engels and Diehr 2003, Farhanfar ez al. 2008,
Gheyas and Smith 2010, Herring and Ibrahim 2001,
Kenward and Carpenter 2007, Little 1998, Little and
Rubin 2001, Ma et al. 2012, Marshall ez al. 2010,
Daniels and Hogan 2008). MI of missing data is one
of the most advanced, widely applied and powerful
techniques for handling missing data (Sterne et al. 2009,
Klebanoff and Cole 2008), and several researchers have
applied MI for missing data to analyse longitudinal data
(Hippisley-Cox et al. 2007, Weiner et al. 2008). The
methodological descriptions of techniques for MI are
well presented in the existing literature, and are not
repeated in this article. The process of MI can be
summarised into steps, according to Rubin (2004) (Ma
et al. 2012, Rubin 1996): (1) replace each missing value
with a set of plausible values that represent the
uncertainty about the right value to impute; (2) analyse
the multiple imputed datasets using complete-data
methods; and (3) combine the results from the multiple

analyses, which allows uncertainty regarding the
imputation to be taken into account.

Despite the increasing use of MI, many aspects of
its implementation vary and few publications provide
sufficient details on the methods used, underlying
assumptions or the extent to which the results can be
regarded as more reliable than other approaches (Sterne
et al. 2009, Klebanoff and Cole 2008). The main
obstacle for appropriate implementation of MI in
longitudinal data is the limited information available on
the extent and mechanisms giving rise to missing data.
The data could be both missing at random (MAR) as
well as missing not at random (MNAR). The data are
MAR if the probability of the observed missing pattern,
given the observed and unobserved data, does not
depend on the values of the unobserved data. MNAR
occurs if missingness depends not only on the observed
data but also on the unobserved (missing) values. In
health care data, the MNAR could be because of the
health states of the patients and residential changes. For
example, mental health data are particularly prone to
MNAR - people who have been diagnosed as depressed
are less likely than others to report their mental status.
Clearly the mean mental status score for the available
data will be a biased estimate of the mean that we
would have obtained with complete data. One study
suggested that blood pressure data were not recorded
randomly in the GPRD as subjects with more blood
pressure readings tended to have higher recorded values
(Delaney et al. 2008).

The analysis of missing data under MNAR is a
very complex statistical challenge. The only way to
obtain an unbiased estimate of parameters of interest
is to model the missingness (Dunning and Freedman
2008). Although MI of missing data under MNAR
scenario can be theoretically dealt with, this is rarely
discussed in the literature and available MI software
almost uniformly assumes MAR (Nevalainen et al.
2009, White and Carlin 2010). The complications with
MNAR occur because of the need to extend the MAR
imputation model to include an informative model for
dropouts. Kenward et al. (2007) first addressed this
issue through simple sensitivity analyses (Kenward and
Carpenter 2007). They proposed first imputing the
missing data under MAR and obtaining parameter
estimates for each imputed data set. Then the overall
MNAR parameter estimate was a weighted average of
these parameter estimates, where the weights depend
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on the assumed degree of departure from MAR. Daniels
et al. (2008) discussed strategies for Bayesian
modelling and sensitivity analysis for drawing inference
from incomplete data under MNAR (Daniels and
Hogan 2008). In some settings (based on simulation
data), this approach gave results that closely agree with
joint modelling as the number of imputations increases.
However, these studies did not address the core issues
of developing a theoretical framework and application
protocols under MI setup.

3.2 Multiple Imputation by Multivariate Normal
Imputation and Fully Conditional Specification

There are a variety of MI models that have been
used. Multivariate Normal Imputation (MVNI) assumes
that all variables in the imputation model jointly follow
a multivariate normal distribution. Implementation uses
a Bayesian approach with a Markov chain Monte Carlo
(MCMC) algorithm to obtain imputed values from the
estimated multivariate normal distribution, allowing
appropriately for uncertainty in the estimated model
parameters (Schafer and Graham 2002).

The fully conditional approach to imputation
(FCS) is a more flexible method that does not rely on
the assumption of multivariate normality (Van Buuren
et al. 1999). Conditional distributions in the regression
models are specified for each variable with missing
values, conditional on all of the other variables in the
imputation model. However, it is possible for some of
the conditional distributions to be incompatible with
each other, potentially leading to unsound imputations
(Van Buuren 2007). Within this setup the predictive
mean matching method (PMM) can be used to impute
a value randomly from a set of observed values whose
predicted values are closest to the predicted value from
a specified regression model. This process is
straightforward when imputing a continuous random
variable. However, PMM approaches led to biased
results when applied to missing predictor models
(Allison 2000).

4. THE MEASUREMENT ERROR PROBLEM

Longitudinal data, especially the primary care
databases, have the inherent problem of erroneous
measurements. Measurement errors in the regression
covariates bias the estimates of regression slope
coefficients towards the null, and can make a true
association statistically non-significant (Chesher 1991).

Although there are many methods for measurement-
error correction, these methods remain rarely used in
analysing longitudinal data despite the ubiquity of
measurement error. Most clinical and epidemiological
studies, using generalised linear models to analyse the
longitudinal health care data, fail to address this crucial
issue.

4.1 Survival Analysis with Measurement Errors in
Risk Factors (Covariates)

Clinical and epidemiological studies with
longitudinal data seek to explore the effects of disease
risk factors on disease outcome(s). The application of
the Cox regression model in these studies is very
common. However, while fitting the Cox model with
time-independent or time-varying covariates, the
considerations for the adjustments of measurement
errors in risk factors are rare. Failure time regression
analyses subject to covariate measurement errors or
missing covariates has aroused much interest over the
past two decades. Several studies have demonstrated the
impact of measurement errors by deriving the induced
hazard function in the presence of covariate
measurement error and advocated several methods to
draw inferences (Zhou and Pepe 1995, Zhou and Wang
2000, Liao et al. 2011). The most popular approach in
this context is the ordinary regression calibration (ORC)
approach. Although ORC approach is approximately
valid and efficient for measurement error correction of
relative risk estimates from the Cox model with
time-independent risk factors when the disease is rare,
it is not adaptable for use with time-varying risk factors.
As researchers are more interested in exploring risks
associated with time-varying risk factors, it is very
important to develop an appropriate methodological
framework to conduct survival analysis with time-
varying covariates with measurement errors. There is
very limited methodological literature on this
challenging issue (Liao ef al. 2011). Clinical and
behavioural risk factor variables are both continuous
and semi-continuous. Correction for measurement
errors in semi-continuous data is a non-trivial statistical
problem. The need to explore the time-varying effects
of various risk factors on disease outcomes warrants
development of appropriate joint models for survival
time and longitudinally observed risk factors with
measurement errors. Validation and sensitivity analysis
of models with continuous and semi-continuous risk
factor data is very important, and will be a novel
contribution to the biostatistical literature.
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4.2 The Problem of Irregular Risk Factor
Measurements

In most longitudinal health care data, clinical and
biochemical measurements are not available at equally-
spaced periods of time for obvious reasons. The data
are recorded when a particular patient actually gets his/
her clinical assessment done or blood tested for specific
reasons. This creates a potential problem in terms of
aligning the data by a pre-specified timeline and then
conducting appropriate analysis. For example, the
glycated haemoglobin (HbAlc) measure in diabetes
patients reflects the accumulation of blood glucose over
a period of three months. However, HbAlc measures
of individual patients are unlikely to be available every
three months or so, introducing complexities in terms
of creating specific time-aligned data to explore the
trajectory of this crucial risk factor over time and to
assess the hazard associated with this factor in terms
of cardiovascular disease or mortality.

4.3 Survival Analysis with Irregularly Observed
Time-dependent Risk Factors

Most methods described in the literature for joint
modelling of irregularly measured longitudinal and
event time data are quite complex and do not belong
to the standard statistical tools (Griffin er al. 2006,
Pawitan and Self 1993). It is very important to account
for the differences in observation frequency between
individual patients, so that the time elapsed since last
observation is added to the model. It is highly likely
that the interaction effects of this time elapsed with
time-varying risk factors will have a strong and
significant effect on the hazard. Unfortunately clinical
and epidemiological studies dealing with this aspect are
rare. Such methodological generalisation in the context
of Cox regression model will be a novel contribution
to the biostatistical literature.

5. DATA

We have generated a simulated data set following
the distributions of cardiovascular risk factors and
macrovascular event rates as observed in the blood
pressure arm of the ADVANCE trial (Ninomiya et al.
2010). The risk factors included age and duration of
diabetes of patients along with their longitudinal SBP
measurements.

Simulation Protocol

Algorithms to generate time-to-event data have
been discussed in the literature (Burton et al. 2006,
Sylvestres and Abrahamowicz 2008). However, in most
cases, these algorithms cannot be used to generate
events conditional on time varying covariates because
this would require inverting the survival function. The
algorithm proposed by Sparling ef al. (2006) generates
time-to-event data with time varying covariates for
interval censored datasets only (Sparling et al. 2006).
This poses a great challenge since the methods to
analyse such datasets with time varying covariates are
not yet generalised and such methods are often
computationally intensive or of high dimension due to
many nuisance parameters. We have generalised the
existing methods to generate continuous time-to-event
data along with time-varying covariates to generate 6-
monthly blood pressure data conditional upon the
observed macrovascular events and the time to
macrovascular events.

The continuous time-to-event data for 1000 trials
of 20000 patients per simulation were generated based
on the event rate, the hazard ratio of treatment and the
hazard ratio of individual risk factors, closely matching
the data from ADVANCE trial (Ninomiya et al. 2010).
The event rate for the macrovascular disease was 9.3
% (1860 out of 20000 patients). The events were
simulated using exponential distribution. The hazard
ratio (HR) for the intensive treatment group versus the
standard treatment group was 0.92 for the
macrovascular disease. The seven mean 6-monthly
longitudinal measures (including data at randomisation)
of SBP (mmHg) for standard and intensive treatment
arms of the trial were (142, 136, 135, 136, 135, 136,
135) and (145, 137, 133, 134, 134, 135, 134)
respectively. The correlation matrices for these
variables were generated based on our previous
experiences in the same field of study.

Missing Data Creation

In the simulated datasets, we randomly deleted
some of the blood pressure measures longitudinally to
create an artificial longitudinal dataset with random
missing patterns. The baseline data was kept none-
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Table 1. The missing proportions and basic statistics of longitudinal SBP (mmHg) for complete and imputed data
Imputed data
SBP Proportion of missing (%) Original data
FCS MVNI
At diagnosis# 0 142.13 (141.85, 142.41) - -
At 6 month” 5.61 135.60 (135.32, 135.88) | 137.64 (137.33, 137.95) | 139.25 (138.97, 139.52)
At 12 month” 5.52 134.69 (134.42, 134.97) | 136.69 (136.39, 137.00) | 138.44 (138.17, 138.71)
At 18 month” 6.01 135.99 (135.70, 136.29) [ 138.05 (137.72, 138.38) | 139.61 (139.31, 139.90)
At 24 month” 5.79 135.39 (135.10, 135.67) | 137.44 (137.12, 137.76) | 139.02 (138.75, 139.31)
At 30 month” 5.49 136.17 (135.89, 136.46) | 138.28 (137.96, 138.60) | 139.77 (139.49, 140.06)
At 36 month” 6.07 134.87 (134.57, 135.16) | 136.77 (136.44, 137.10) | 138.49 (138.20, 138.78)
# Mean (95% CI)

150
1

—=e&—— Original
——®—- FCS

e MVNI

SBP (mmHg)
145

140
1

135

o
-
N

T
Baseline

Time of Follow up (in months)

Fig. 1. Trajectories of SBP for the study period from original and

imputed datasets (LR, PMM)

missing. We created two sets of multiply imputed data
following MVNI and FCS approaches. In both cases 25
multiple imputations under fixed seed number were
conducted. The consistency of imputations in terms of
the longitudinal distributions of SBP for imputed data
and complete data for both approaches were checked.

6. DATA ANALYSIS RESULTS

The primary aims were: (1) to explore the
trajectories of SBP with complete data and the imputed
data by MVNI and FCS, and (2) to evaluate if the
inference related to the association of SBP with the risk
of MVE differ between complete and imputed data sets.

Table 2. Hazard ratios and 95% CI associated with continuous and categorised measures of SBP for complete and imputed
data. The Akaike Information Cretia (AIC) and the Bayesian Information Criteria (BIC) estimates provides information for

comparison of model fits.

Original data

Imputed data

MVNI FCS

SBP (5 mmHg)
130 < SBP<140
140 < SBP<150
SBP = 150

120 < SBP<130
AIC

BIC

1.034 (1.027, 1.037)

Reference
1.09 (1.04, 1.17)
1.18 (1.12, 1.24)
0.94 (0.88, 1.01)
17142.83
17191.20

1.032 (1.021, 1.034) 1.028 (1.025, 1.032)

1.11 (1.05, 1.16) 1.09 (1.03, 1.16)
123 (1.18, 1.28)
0.93 (0.87, 1.01)
17089.94

1.23 (1.17, 1.30)
0.99 (0.92, 1.06)
17087.47

17138.31 17135.84
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The proportions of missing SBP data ranged
between 5.6% to 6.1% over 36 months (Table 1). The
avaerage level of SBP at the time of randomisation was
142.13 (141.85, 142.41) mmHg. A comparison of the
mean (95% CI) of SBP for the complete and imputed
datasets are presented in Table 1 and Fig. 1. Clearly,
the distributions of SBP were significantly higher
longitudinally for both imputation methods, compared
to the complete data. This clearly suggests that both
methods of imputations failed to capture the true
longitudinal distributions of the observed SBP.

The association of different levels of SBP with the
macrovascular risk was evaluated using Cox regression
model with timevarying risk factors in all the three
datasets, (complete, and imputed data sets from MVNI
and FCS methods). The SBP was considered as a
continuous measure, and the effect of 5SmmHg higher
SBP over 36 months on the risk of MVE was evaluated
(Table 2). For all of the three datasets, a 5 mmHg higher
SBP trjectory would increase the risk of vascular event
by 3% significantly.

The SBP data was also categorized to draw
inferences on the effects of higher and lower levels of
SBP on vascular risks. Compared to SBP range of 130-
140 mmHg (reference), the risks associated with higher
levels of SBP of 140-150 mmHg and >150 mmHg, and
lower level of SBP ranging between 120 to 130 mmHg
were evaluated. The point estimate of HRs from the
imputed data are 5% higher than the 18% observed
increased risk in the analysis with complete data.
However, the confidence intervals of the risk estimates
are overlaping suggesting no statistically significant
difference (Table 2).

7. DISCUSSION

Our empirical analysis clearly suggests that both
standard methods of multiple imputation, under the
assumption of “missing at random”, fail to capture the
true distribution of the longitudinal measures of risk
factors. The distributions of SBP at each time point
were approximately normal, and the proportions of
missing data were also within 6% only.

Although the inferences related to the effect of
high blood pressure level over time on the risk of
vascular event was not statistically significantly
different for three data sets, a 5% higher risk estimate
(HR = 1.23) was observed in the imputed data sets for

patients with SBP > 150 mmHg (reference SBP:
130-140 mmHg), compared to those in the complete
data. However, clinically, a 5% higher risk estimate
over a follow-up period of only 3 to 5 years would be
considered as an alarming increased risk. Also, the
trajectories of SBP for the imputed data sets were on
average 2 to 3 mmHg higher throughout the follow-up,
compared to the complete data. In an observational
study evaluating the efficacy of antihypertensive
medications in relation to tight blood pressure control,
such differences could be clinically misleading.

Although MVNI assumes normality of the
distributions of study variable, the FCS is more relaxed
in terms of distributional assumptions. Under MAR,
bias in analyses based on MI may be as big as or bigger
than the bias in analyses of complete cases.
Unfortunately, it is impossible to determine from the
data how large a problem this may be. Currently there
is no study available, to the best of our knowledge,
which addresses this complex issue. This necessitates
a thorough evaluation of the patterns of missingness at
least in the key data, and the evaluation of the extent
of biases generated by the implementation of existing
MI methods to impute for the missing data. This should
be followed by novel generalisations of existing MI
procedures to deal with missing data under both MAR
and MNAR setup.

Another important aspect is the comparison of
performances of multiple imputation techniques with
other imputation techniques, especially with the
established hot-deck and cold-deck methods. Although
there are several advantages of the hot-deck or cold-
deck method over other statistical approaches for
missing data imputations, these methods have not been
applied extensively in clinical longitudinal data
analysis. In contrast to many parametric statistical
approaches, this approach does not rely on model fitting
for the variable to be imputed, and hence is potentially
less sensitive to model misspecification. The hot-deck
imputation can be useful to deal with logically
inconsistent data also. For example, in a clinical trial
evaluating the efficacy of an anti-hypertensive
medication, the diastolic blood pressure of a patient at
a particular visit is reported as 200 mmHg; or a 50-year
old father reported to have a 45-year old son in a
longitudinal survey study — the edit-imputation
techniques with the hot-deck method can be used to
correct the inconsistent or contradictory values by
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deleting these values and imputing these values. Thus,
the hot-deck approach can be used simultaneously to
take care of measurement error and imputation of
missing data. Future studies will include comparisons
of MI and machine learning techniques, while
evaluating the statistical properties of parameter
estimates from the hot-deck approaches.

Longitudinal studies suffer from the problems of
attrition, missing data, and irregular and erroneous
measurements. The available standard statistical tools
are not suitable to address these complex issues
simultaneously while exploring the trajectories of key
risk data and their association with events or outcomes.
Current longitudinal studies often ignore these issues,
with the potential of producing misleading results and
the subsequent implementation of poorly evidence-
based practices. Future research in this line should
concentrate on how the current methodologies can be
generalised to improve the accuracy and reliability of
the analysis of outcomes in longitudinal studies.
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