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SUMMARY

Consider a regression problem in which there are many more explanatory variables than data points, i.e., p >> n. Essentially,
without reducing the number of variables inference is impossible. So, we group the p explanatory variables into blocks by
clustering, evaluate statistics on the blocks and then regress the response on these statistics under a penalized error criterion to
obtain estimates of the regression coefficients. We examine the performance of this approach for a variety of choices of #, p,
classes of statistics, clustering algorithms, penalty terms, and data types. When # is not large, the discrimination over number
of statistics is weak, but computations suggest regressing on approximately [#/K] statistics where K is the number of blocks
formed by a clustering algorithm. Small deviations from this are observed when the blocks of variables are of very different
sizes. Larger deviations are observed when the penalty term is an L? norm with high enough ¢.

Keywords: Large p small n, LASSO, Ridge, Bridge, Clustering, Variance-bias tradeoff, Summary statistics.

1. THE BASIC PROBLEM IN THE USUAL
SETTINGS

Suppose ¥ = Y" = (Y, ..., ¥ ) is an n x | data
vector, X = (X, ..., X)" is an n x p design matrix in
which each X is a vector of p explanatory variables,
and B=(B,, ... B p)' is the parameter vector. Suppose
all the variables are standardized i.e., transformed to
have mean zero and variance one so that it will be
enough to look at the dependence structure and relative
contributions of the X’s. Let us write the model

Y=XB+e (M

in which € = (€, ..., € )" is the error term and the
constant term usually appearing in a regression model
has been subsumed by the rescaling. We want
E(e) =0, and Var(e) to be diagonal. Regardless of the
distribution of €, we have

Bors =arg mﬁinE‘,(yi ~-xXp)?=(xx)"xy, @
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as the least squares estimator of 3, provided the inverse
exists. If |X'X] is small, the inverse is large in the sense
that some of its eigenvalues must be large. When
p>n, Xisn x p, i.e., short and fat. For Short Fat Data
(SFD) |XX] = 0 so its inverse fails to exist.

The central issue here is that the mean function
for Y, EY, is in a space of dimension p while only n <p
data points are available. That is, the SFD or ‘large p,
small n” problem would disappear if we had more data.
However, even though one can imagine arbitrarily large
n’s, in practice they do not exist.

Alternatively, we can try to do effective dimension
reduction by regressing ¥ on functions of the X;’s. The
idea is that if we evaluate a comparatively small number
of suitably chosen functions on each X, i.e., features,
and then do penalized regression on those features we
will have retained all the information in the data about
the response Y . The question is what kind of statistics
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to use to achieve optimal dimension reduction.
Obviously, good statistics on which to regress should
encapsulate the information in the explanatory variables
relevant to the response.

In many cases, this is done by careful physical
modeling, i.e., using domain specific knowlege to
restrict the class of models that have to be considered.
Recent examples include Stenning et al. (2013) for solar
image data and McKay (2004) for musical scores.
However, feature selection based on modeling is very
time-intensive and may require information not
available to a researcher. So, here, we address generic
feature selection, done in the absence of modeling
information. We look at five classes of features, but
only three are independent of the response and could
therefore be used in practice. The other two are for
comparison purposes to assess how well the first three
seem to perform.

One can readily imagine that when p is large
enough relative to n, dimension reduction to a
‘reasonable’ p' statistics may not give p’ < n. This may
be the case when the explanatory variables are known
to segregate into a number of disjoint classes and the
number of these classes is still greater than 7. In these
cases, it may be reasonable to use a single statistic
within each class, but not to permit statistics to depend
on variables from more than one class. Thus, even after
reducing to regression on statistics one still has SFD.
Not as fat as before, but the new ‘X’X” remains singular.

A second way to correct for p >> n is to change
the optimality criterion. Since X'X appears in the
solution under squared error, let us add a penalty term
to shrink the solution towards non-singularity. One
general class is

arg min Y L (v, ;. )+ ALy (f), 3)
fe 7

where F'is a class of functions, and L, and L, are two
loss functions. The first, L, expresses the sense in
which we want the function f{(x) to be close to the
response y. The second, L,, ensures that the
‘complexity’ of fis not so large that we overfit the data.
Since we don’t want L, to swamp the information in
the data we use a hyperparameter A to control the
tradeoff between how well f summarizes the data and
how complicated f may be. Usually, A is chosen
adaptively and sometimes it is called a decay parameter.

Various instances of (3) are of great interest. The
polynomial subclass is

n p
argmin (v =X +AX| 4| @)
i=1 i=1

where ¢ and r usually are integers. When (4, ¢) =
(0, 2), (4) corresponds to (1) and yields (2). If the x,’s
are replaced by functions of the explanatory variables,
then we are doing ‘feature selection’ i.e., regression on
statistics formed from the explanatory variables. Indeed,
an estimator arising from (4) is Bayesian: The argument
of the min in (4) can be regarded as the log-likelihood
of the product of an n-fold normal density with mean
vector (x',B, ..., x",B) and a prior proportional to
o/2lAI so that finding the quantity in (4) is equivalent
to choosing the mode of a posterior.

The main contribution of this paper is to observe
that clustering over variables, summarizing the clusters
by statistics, and then feeding the statistics into a
shrinkage method may be an effective way to do
dimension reduction. More formally, if one must reduce
the number of explanatory variables by constructing
features in the absence of sufficient modeling
information (as is often the case) then one may be led
to a two step procedure. The first step is to choose a
number of clusters, K, by use of a clustering procedure,
or by use of physical modeling when this is possible.
In either case, the second step is to summarize each
cluster separately by a small number of generic
statistics. If one does this then the best number of
statistics to use per cluster is roughly [#/K], the smallest
integer larger than »/K. Since n + K > K[n/K] = n, the
total number of statistics roughly equals the number of
data points. These statistics can then be fed into any
penalized method such as (3) or (4) to give coefficients
and predictors. Essentially this means that even when
p >>n one can pragmatically reduce to a p' = n meaning
that elaborate schemes for permitting p’ > n provide
little gain.

In this procedure the variability due to the
clustering is neglected in practice, although it is built
into our simulations which use repeated calculations of
the generalized cross-validation error over repeated
generation of the data. However, the focus is not only
on variability, bias matters too. In essence, the optimal
number of statistics [#/K] represents a bias-variance
tradeoff: More statistics means less bias but more
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variability, fewer statistics means more bias but less
variability. Thus, our ‘[#/K] rule’ stems from seeking
an optimal variance-bias tradeoff rather than asymptotic
optimality because » is small and it is unrealistic to
think » will increase without bound.

In the first part of the next section we list several
standard families of models and verify that they are of
the form of (3) or (4). Equipped with these examples,
we discuss the relationship of SFD and generic feature
selection. In Section 3, we describe our contribution:
It amounts to an investigation of how four modeling
factors (penalty, choice of statistics, data type and
clustering algorithm) affect regression on generic
statistics with SFD. In Section 4, we present the results
of this 4 by 4 array that suggest the ‘[#/K] rule’. In
Section 5, we show two limitations of the [#/K] rule
and, in Section 6, we give our general conclusions.

2. MODEL CLASSES AND SUMMARY
STATISTICS

The four classes we briefly review here are OLS,
Ridge, Bridge, and LASSO. There are many other
model classes that use penalization such as CART
(Breiman et al. 1984), SCAD (Fan and Li 2001), elastic
net (Zou and Hastie 2005) and so forth. These are
usually designed for model identification (CART is the
exception) and often have the oracle property to ensure
asymptotically good model identification. However,
penalized methods with the oracle property do not in
general perform as well as other methods do for data
summarization and prediction which are the goals here.
(SCAD is the one exception to this because its penalty
is so small it compares with, say, model averaging
methods.) Predictive comparisons among these
approaches is not common, but see Austin ez al. (2013)
and Clarke and Severinski (2011) for special cases. At
the end of this section we discuss the summary statistics
used in our computations.

2.1 Ordinary Least Squares

Recall the ordinary least squares regression
problem defined by (1.1) and (1.2). We obtain BOLS
by minimizing the residual sum of squares
" (y;—xIB)* over B. The estimator foig is
unbiased for 8 but has a large variance when X is nearly

collinear. Also, Byyg is not unique when X is less than
full rank.

With SED where n < p we need to replace actual
inverses with generalized inverses of some sort to get
uniqueness. For an # X m matrix 4 the procedure begins
by trying to solve AX = y when ye Range(4). One
definition of a generalized inverse for 4 is a matrix B
for which ABA = A. This reduces to the usual definition
of matrix inverse when 4 is invertible. If BAB =B, i.e.,
A is a generalized inverse for B, and both 4B and BA
are orthogonal projections, then B is unique. This is
called the Moore-Penrose generalized inverse.

Using the Moore-Penrose inverse gives unique
solutions. Indeed, the central results in the theory of
linear models — properties of parameter estimates and
fitted values, Chi-squared distributions for sums of
squares — continue to hold using Moore-Penrose
inverses. The cost is substantially inflated variances.

2.2 Ridge Regression

Hoerl and Kennard (1970) introduced ridge
regression, RR, which modifies OLS by introducing a
penalty term A to shrink the f’s toward zero. The RR
estimator,

B\Ridge =argngn{2| Vi _xiTﬁl2 +ﬂ'2|ﬁ] |2}
i=1 J

=(X"X+A1,)"'x"y,

is biased, but the variance is smaller than that of the
OLS estimator. Therefore, one can often achieve better
estimation in terms of MSE, and better prediction. It is
seen that RR adds A times the identity matrix to the
objective function to force non-singularity.

2.3 LASSO

Tibshirani (1996) introduced the LASSO — Least
Absolute Shrinkage and Selection Operator — which
uses a factor A times the absolute value of 3 as a penalty
term. The LASSO estimator is defined to be

BLASSO =argmﬂin {2| Vi —xfﬁlz +/12| Bi |}-
i=1 j

The LASSO emerges from a more general treatment
called Least Angle Regression, when an extra
correlation restriction is enforced on the algorithm, see
Efron et al. (2004, Exp. 3.1).
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The LASSO combines shrinkage and selection on
the regression function. The penalty term itself is often
recognized as corresponding to putting a prior on 3 and
‘shrinking’ the parameter to a point, usually taken to
be zero. The selection arises because there are many
cases where optimizing in the LASSO leads to setting
some of the ,Bj’s to be zero.

2.4 Bridge Regression

Frank and Friedman (1993) defined bridge
regression. It is (1.6) with g = 2. That is, the penalty
on the sum of squares is A times 2| B;|" for some
r > 0. We write

BBridge :argmﬁin{2| Vi _xiTﬁ |2 +ﬂ'2|ﬁ] |r}
i=1 j

It is seen that RR is » =2, LASSO is » = 1, and
AIC is nearly equivalent to “r = 0” in the normal error
case.

2.5 Choice of Summary Statistics

One topic not usually addressed is how to choose
functions of the explanatory variables generically so as
to achieve more parsimonious models. This is
sometimes done in the context of basis expansions e.g.,
wavelets, but comparisons from one basis to another are
infrequent. Usually, the basis is chosen on the grounds
of some sort of physical modeling that may or may not
be helpful. Indeed, choosing functions based on
modeling assumptions is well-established but in cases
where model information is scant, unreliable, or
subjective one has little choice but to proceed
generically. For instance, in SFD problems, there may
not be extra information available on the X;’s to narrow
the class of statistics it is worth searching but one can
reduce the number of explanatory variables by requiring
the sample variance of a component of X, is large
enough to be provide meaningful discrimination.

Here, we suppose the individual variables in the
X’s segregate into M classes C|, C,, ..., C,. Let class
C, have p, variables and let M, be the n x p, matrix of
predictors in class C,. Write M, for the i-th row of the
submatrix M,, and let S(M,) denote a function of the
i-th row of the k-th class of variables in X.. Our task is
to choose functions of the form S in sensible ways to
serve as summary statistics of X; p, 11, Xip,_ +p, ON
which to regress.

If we choose a single S, for each C, the regularized
risk from (4) is

n M q M
z(yi—zyksumk)} S Inl
i=1 k=1 k=1

Using the classes C, permits the p,’s to be reduced
to a smaller number of statistics.

There are many natural choices for sequences of
statistics to study. Percentiles and moments are the
obvious ones to use first. Principal components, PC’s,
provides another way to choose a sequence of statistics
generically. Alternatively, as we discuss below, statistics
such as partial least squares, PLS’s, or sliced inverse
regression, SIR’s, can be used. These last two are
qualitatively different from moments, percentiles and
PC’s because of their dependence on the outcomes

Vs ooos Ve

In some cases it is realistic to assume classes C,
are known. Hawkins ez al. (2001) have a setting in
which the classes can be specified pre-experimentally.
However, in general, it is unclear how many statistics
one wants to choose for each class C, whence our
‘[n/K] rule’.

3. THE SIMULATION SETTING

The justification of the ‘[#/K] rule’ rests on the
computational investigation of a large matrix of cases
representing the predictive performance of commonly
occurring regularized risks. The problem can be
visualized as a one way table crossed with another one
way table crossed with a two way table. The first one
way table is what the researcher cannot control: The
actual properties of the data. The second one way table
represents the pre-processing the researcher must do:
This is how the explanatory variables are clustered into
classes. The two-way table represents how the
researcher models: The optimality criterion and the
choice of statistics to summarize the data. We go
through these factors in turn.

3.1 Data Type

The factor ‘data type’ is not under the control of
the researcher. So, we used a large variety of standard
data types to see how each technique performed on it.
First we considered independent normal data with equal
sized blocks. Then we used unequal sized blocks. Then
we used correlated normal data with equal and unequal
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block sizes. More generally, we turned to ARMA(a, b)
data with a, b = 0, 1, 2. For greater realism, we then
used non-normal independently generated data. The
non-normality was mostly from the heavier tails
although the shape of the distributions we used was not
always symmetric. Finally, to investigate non-normal
dependent data we generated correlated normal data but
applied transformations to it so the distribution of the
data going into the analysis would no longer be normal.

3.2 Clustering Algorithm

The factor ‘clustering method’, reflects how the
researcher must preprocess the data so it will be
amenable to summarization. We chose 6 levels i.e., 6
kinds of clustering, to partition the explanatory
variables into disjoint classes C|, ..., C}; the elements
within each C; are expected to be more highly
dependent than elements from different C’j’s. For the
first ‘level’ we assume the clusters to be known. The
other five levels were K-means, three agglomerative
procedures differing in the dissimilarity used, and one
divisive.

The K-means algorithm is based on a distance
between explanatory p-vectors X, here taken to be the
Euclidean metric denoted by ||-||. We did this for a range
done of K; the clustering with the smallest error is used
as ‘true’. We did this with the R function kmeans(),
taking the clustering with the minimum error over 10
tries as the globally optimal clustering.

Three of the hierarchical methods were
agglomerative. These clustering algorithms use
dissimilarities d.. Dissimilarities generalize the concept
of distance: For entries of vectors we have values
d(x, , x, ) giving d,, = D(x, x,) = 2d;(x Xy ;)
on vectors. Agglomerative hierarchical algorithms begin
with » singleton clusters and combine two clusters at
each step depending on the dissimilarity. The distance
between clusters is expressed in terms of dissimilarity
and here we use three forms: Single linkage uses
d\ (G H) = Mingg sey d; ¢ for clusters G, and H.
Complete linkage, or furthest neighbor, is d.\(G, H) =
Max;eq, ey d;,v- Group average d, (G H) takes the
mean of the d, ,’s over clusters G and H. These were
implemented by agnes() in R, see Struyf ef al. (1996).
Of these three methods, complete linkage seemed to
work better than single or group for our purpose,
although the differences are small.

The sixth hierarchical clustering method was
divisive. This approach begins by treating the whole
data set as a single cluster and recursively divides it at
each iteration. This procedure was implemented by
diana() in R. For details, see Struyf et al. (1996).

3.3 The Optimality Criterion

The researcher gets to choose the optimality
criterion to be employed. Here we consider 3 levels for
this factor, i.e., 3 different forms of regularized risk.
These are RR, LASSO, and bridge. RR is computed in
closed form because the choice of A gives non-
singularity. That is, we can use fits directly from
XX+ /llp)‘lX '

The version of LASSO we use here is a modified
Least Angle Regression, LARS, see Efron et al. (2004).
As described in Section 2, LASSO is a quadratic
programming problem. However, using LARS one can
obtain solutions readily for all values of A by a variant
of forward stepwise regression. As A varies from 0 to
oo, the LARS procedure can be used to generate the
LASSO solutions.

To implement the third level, bridge regression as
in Section 2.1.4, we used the Fortran code and
description of Fu (1998). Following this treatment, for
given A >0 and 7> | we compute 3 and use

PQA) = r(X(X'X + AW )'X) —n,

as the effective number of parameters, in which W~ is
the generalized inverse of W = diag (2| B*" /r) and
n, is the number of entries B ; for which B ;=0 for
r = 1. Note that all generalized inverse procedures give
the same results on diagonal matrices and that n,
represents the number of zero entries on the diagonal
of W. It is seen that /3 solves

(X X +%diag(lﬁj I"z))ﬂ =X}. (5)

3.4 Choice of Statistics

The second factor under the researcher’s control
is the choice of statistics. We used 5 levels. These levels
consist of 2 subclasses with 3 and 2 levels respectively.
The first class consisted of modified moments,
percentiles, and PC’s. The second class consisted of
partial least squares (PLS) and sliced inverse
regressions (SIR) statistics. Unlike the first subclass,
these depend on the values of Y for their construction.
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Our statistics based on moments separate positive
and negative parts for odd exponents; this is not needed
for even exponents. Thus, for a data vector
X=X, .., Xp) the first moment is represented by two
statistics which we regress on together:
X" =3P Xl x> and X~ =32 Xl x o). The second
moment is 7, X7 . The third is again separated into

two positive and negative parts, like the first moment.

The percentiles we use are standard. The first
percentile statistic is the median of (X, ..., Xp),
calculated with linear interpolation. The second set of
percentile statistics consists of 3 statistics, the median
and the two quartiles. The third set of percentile statis
tics adds the 4 percentiles midway between all of the
quartiles giving 7 percentiles at 12.5k for k=1, ..., 7,
and so forth. In jumping from one to three to seven
percentiles, and so forth, the idea was to explore
whether tail behavior was helpful by forcing the
statistics to respond to different regions of the
distribution. However, the 33" and 67" percentiles, the
quartiles, the quintiles, and so forth could have used
instead, possibly leading to clearer support for the
[#/K] rule at the cost of them not being nested.

The PC’s of a matrix X arise from writing
X = UDV" so that

XX =V DV,

where D is diag(d,, ..., dp) with d] > 0 in decreasing
order. This is the usual diagonalization for a symmetric
matrix giving non-negative real eigenvalues. Write
V=, .. Vp). Then, Z. =XVJ. forj=1, .., pisaset
of directions that can {)e assumed orthogonal with
Var(Zj) = d? In. So, the first PC is Z, and it is the linear
combination of explanatory variables having the largest
variance. Likewise, the second PC is Z, and has the
second largest variance, and so forth. One can regress
on the the first Zj.’s as a way to ensure the most
important contributions to the variability in the data
have been modeled. Regression on all the PC’s devolves
to the original regression.

Partial least squares, PLS, is a different way to
construct a sequence of statistics on which to regress.
Recall that Y and the Xj’s are standardized. Begin by
regressing Y on each of the p explanatory variables.
This gives p expressions say él,j =<xj,y>xj for
J =1, .., p. The first PLS direction is Z, = 25?:1(13171-.
Next, regress ¥ on Z, to get, say, 7, and orthogonalize
the p explanatory variables with respect to Z,, i.e.,

subtract the portion of each explanatory variable

X. that is in the direction of Z,. Redo the
J . .
procedure for the orthogonalized explanatory variables,

X;new) _ Xﬁnld) _|:<Zla X;."ld)>/<Zl,Zl>]Zl For allj to

generate (IS,H- and 7, for u =2, 3, ... to obtain Z,...,
see Hastie et al. (2001) Section 3.4 for further details.
Regression on all the PLS directions devolves to the
original regression.

Sliced Inverse Regression, SIR, is a technique
from Li (1991) motivated by partitioning the range of
Y, doing inverse regression on each region, pooling over
the results and doing a pincipal components analysis
on the weightd covariance matrix. The resulting
statistics can be used for regressions.

3.5 Assessing Performance

In general, in these settings, we are concerned
primarily with prediction since the true models are
inaccessible. This leads us to use cross-validation, CV,
as a performance criterion. The natural choice is leave-
one-out CV because it is approximately unbiased for
prediction error. However, the variance of leave-one-
out CV may be high since any two of the training sets
have n — 2 data points in common. Rather than using
fivefold or other forms of CV, we actually used
Generalized CV, GCV, for its computational
convenience.

Suppose there exists a matrix S so that the fitted
values y=(3,...,y,) for the outcome y can be

expressed as y = Sy. Then, writing #(S) for the trace
of S,

n 2
L yi—f(x)
oev nlg‘[l—tr(S)/n] ’ ©)
which can be computed for ridge. GCV is easier to
compute than CV because #(S) needs to be found only
once. When a regression method is not linear, .e., there
is no matrix S, a GCV can still be given. For LASSO,
the form of the GCV is given by Fu (1998). For bridge,
consistent with (5) the GCV error is taken as

RSS

Gev—— 85
n(l— p(A)/n)? 0

in which RSS =3, (y, — X f3)*. For our work below

we chose » = 1.5, 2.5 and 3 and we let A vary over
(.001, 1000).
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For the two different classes of statistics —
dependent on Y or not — we used two different forms
of the GCV. For the first, we used all the data to
generate the statistics and then used leave-one-out GCV
to find the best number of statistics per cluster. Thus,
results for moments, percentiles, and PC’s are an
assessment of goodness of fit, averaged over 200
iterations. For the second class — PLS and SIR — we
left out one data point, found the statistics, and then did
GCV, averaging over 200 iterations. So, this criterion
is more predictive and a ‘purer’ form of GCV than for
the first class. This seemed appropriate since goodness
of fit seems less relevant for statistics that are more
complex. Since our focus is on finding the best number
of statistics from a class of statistics rather than
comparing from one class to another, these different
(but very similar) criteria will not affect our
conclusions.

4. RESULTS

For each data type we fix a clustering algorithm,
an optimality criterion and then look at the GCV for
each choice of statistic.

Since the experimenter cannot choose the type of
data to be analyzed, we have separated subsections
based on 4 data types: Normal with correlation (or
independent), independent non-Normal, Normal with
serial correlation (ARMA), and dependent non-normal.
To present our findings, nested within each of these
subsections we have subsubsections, one for each of the
three penalties we used: LASSO, Ridge, and Bridge.
Within each of the subsubsections we have nested a two
way array based on class of statistic and clustering
technique. There are 5 classes of statistics (moments,
percentiles, PC’s, PLS’s and SIR’s) and six clustering
techniques (k-means, agglomerative with 3 link
functions, and divisive). Although the clustering must
be done before the optimality criterion can be
implemented or the statistics calculated, we have put
the use of the clustering procedure last in our
presentation (when we comment on it at all) because it
rarely affected the [#/K] rule in the main cases we
studied.

Subject to the slightly different forms of the GCV
for moments, percentiles, and PC’s versus PLS’s and
SIR’s, it is reasonable to compare different generic
choices of statistics within subsubsections because the
data type and penalty are common while the clustering

technique appears not to matter. Choices of decay
parameter are also reasonable to compare but we have
not done this; we have defaulted to the automatic
selection of decay parameters in the packages we have
used. We tested several choices of interval in which to
situate the decay parameter but then settled on
[.001, 1000].

The common structure among all the results below
is a linear regression model with p regressors and »
observations. The regression matrix X consists of K
blocks, X, ..., X;, and block X, contains p, variables

and so is n x p, with =K p, = p. Our results are for

n =10, p =400, K = 4 and p, = 100 for all &, and
N = 200 iterations unless specified otherwise. We
present the computed results below commenting only
briey on the patterns they exhibit.

4.1 Normal Data

Here we chose € ~ N(0, 1), and supposed the
blocks of the regression matrix contained variables
drawn from N(0, X), where Z has 1 on the diagonal and
p on all the off-diagonal terms. The ,Bj’s were also
drawn from a N(0, 1).

4.1.1 LASSO

As noted, LASSO fits are computed by using the
LARS package by Hastie and Efron, which uses the
LARS algorithm by Efron et al. (2003). This package
chooses the decay parameter A by finding the minimum
leave-one-out cross validated mean square prediction
error.

Moments: Recall we have 2 statistics for each odd
order and one for each even order. Table 4.1 shows the
GCV error as a function of the correlation and number
of moments used in the regression. Here and below an
asterisk, *, denotes the minimum in a row. In some
cases, we use a dagger, {, to indicate the minimum in
a row and an asterisk to indicate the second largest
value in that row. This notation means that we believe
the apparent minimum is an artefact of the computing
rather than accurately approximating the value of the
quantity desired. Also, we often omit columns that
merely confirm recognizable patterns. For instance, in
Table 4.1, we omit the columns for 6-th and higher
moments. On the other hand, for comparison purposes,
we sometimes include a column at the right labeled “all’
which gives the GCV for the stated penalty using all
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the data. In Table 4.1, for instance, LASSO is applied
to the 400 variables and not all moments are used.

Table 4.1. Correlated Normal; LASSO; Moments; Known

Clusters
#Moments 1 2 3 4 5 all
p=0 43.249141.727 |41.205%(41.743(42.062|44.258
p=0.1 45351 44.359%|44.844 (44.821(45.132|45.151
p=0.3 | 38.637(34.132%|35.733 |35.278]36.317(40.386
p=0.5 | 35.824(33.211 |[33.162%]33.375|34.406(35.716
p=0.7 | 31.432(26.370%[26.662 |27.899|28.441(27.894
p=09 [ 22.850(16.4458(18.950 |19.780|21.597(18.229

It is seen here and in our further examples that
within a row, the GCV score is lowest when the number
of moments used per block is close to [#/K], the first
integer greater than or equal to n/K=10/4=2.5, i.e. 3,
where 7 is the sample size, here 10, and K is the number
of blocks, here 4. So, the total number of statistics is
near 7.
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Fig. 1. Above: Graph of the rows in Table 4.1. The numbers on
the lines correspond to the row i.e., the value of p. Below: Graph
of Table 4.3 (see below) showing how the number of clusters
(indicated by the numbers on the lines) affects the location of the
minimum.

The above panel of Fig. 1 shows that for all
choices of non-negative correlation, the values in a row
form a U-shaped curve as a function of the number of
moments. The unique minima occur for 2 or 3
moments, i.e., 3 or 4 statistics tends to give the smallest
GCV errors.

A similar case is shown in Table 4.2.
Table 4.2. Same as Table 4.1 but n =6, p = 300, K =3

#Moments 1 2 3 4 5

58.351% | 59.163| 59.619( 59.863 | 60.366

p=0

Here, n/K = 6/3 = 2 and two first moment statistics
are optimal.

Similar results are obtained if we do not use the
knowledge that the data come from K = 4 independent
classes of explanatory variables and we are forced to
cluster the data into classes; we chose a range
K=2 34,5, 6 clusters and used moment based
statistics within each block. For clustering to be
meaningful, the correlation cannot be zero; we chose
o = 0.3. Results for the K-means and hierarchical
clustering are in Tables 4.3 and 4.4. Again, the starred
entries tend to be the ones for which the number of
statistics is close to [n/k]. That is, the asterisks are
roughly rising from left to right.

Table 4.3. Normal with p = 0.3; LASSO, Moments;

K-means

#Moment | 1 2 3 4 5

K=2 39.970 |39.498 |37.751 [37.408*(37.888
K=3 37.546 |36.678*%|36.742 [37.229 |[37.802
K=4 38.614 |36.492 |36.410*%(36.623 (36.874
K=5 34.299*137.445 |37.235 [37.775 [38.010
K=6 35.350*|37.841 |37.648 [38.398 |39.185

Table 4.4. Normal with p = 0.3; LASSO; Moments;
Hierarchical

#Moment 1 2 3 4 5

K=2 43.296 (41.897 |40.317*140.381 [40.586
K=3 38.025 |37.675 [36.752*(37.085 |36.861
K=4 36.684*37.158 |37.512 [37.875 |38.110
K=5 35.596*140.193 139.806 [40.220 |40.196
K=6 36.033*%138.386 |38.968 [39.523 |38.932
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The above panel of Fig. 1 shows that for the GCV
scores in Table 4.3 the optimal number of statistics (as
indicated by the location of the minima in each row of
Table 4.3 or its corresponding line in Fig. 1) increases
as the number of clusters decreases. That is, within each
row, a U-shaped curve of the errors as a function of the
number of statistics is seen — even if the left arm of the
U is trivial for five or six clusters since the number of
statistics cannot be less than one. That is, as we choose
more clusters, the optimal number of statistics per
cluster decreases, preventing the total number of
regressors from increasing much. This observation held
for the other clustering algorithms we used, so we omit
those results.

Percentiles: Next, we use percentiles in place of
moment based statistics. We choose the sequence of
percentiles corresponding to probabilities j/2¥, where
j=1,..,(%=1),fork=1,2,3,4,5.to calculate them
effectively we used the R command quantile()
(Type 7) that uses interpolation to give any quantile for
any number of data points. The next 4 tables are parallel
Tables 4.1 — 4.4. It is seen that the optimal number of
statistics per block remains near [n#/K]: In Tables 4.5
and 4.6, 3 statistics are seen to be optimal and
n/K =2.5, except in high dependence settings. That is,
the results for percentiles are qualitatively the same as
for moment based statistics. Like Tables 4.3 and 4.4,
Tables 4.7 and 4.8 show the effect of using 2 of the
clustering algorithms is minimal. That is, as the number
of clusters increases, the optimal number of statistics
per cluster decreases, again staying close to [#/K].

Table 4.5. Correlated Normal; LASSO; Percentiles;
Known Clusters

#Percentiles| 1 3 7 15 31 all
p=0 44216 37.259* [41.459 [40.512 |41.667 [43.225
p=0.1 41.394 1 37.816* [38.794 [38.653 [39.292 |40.083
p=03 38.321]32.530* [35.388 [35.577 |35.109 |39.441
p=05 35.929 | 29.0542%|29.754 [29.384 [30.469 |40.851
p=0.7 23.650120.700 [20.665 [20.550 |20.347*]28.125
p=09 10971 8.9469 | 8.781* 9.1723| 8.993 |17.504

Table 4.6. Same as Table 4.5 but n =6, p = 300, K =3

#Percentiles 1 3 7 15 31

p=0 59.622 [58.635*160.468(61.359 162.398

Table 4.7. Normal with p = 0.3; LASSO, Percentiles;

K-means
#Percentiles 1 3 7 15 31
K=2 41.095(36.550 |35.588%(35.619 136.045
K=3 39.703 [35.121 |34.963*(35.230 (35.120
K=4 37.624134.083 [34.079*|34.106 |34.233
K=5 36.750(33.581*133.844 [33.766 (34.680
K=6 36.532(34.103%34.409 [35.198 [35.308

Table 4.8. Normal with p = .3; LASSO, Percentiles;

Hierarchical
#Percentiles 1 3 7 15 31
K=2 43.221(40.141 |38.005*]39.438|39.735
K=3 41.448 [36.665 |36.637*|37.494137.700
K=4 39.410(35.737*%)|36.140 |36.538|37.585
K=5 37.609 |35.234*136.226 [35.577(36.914
K=6 36.072 |34.620*|36.069 [36.340(36.600

42

GCV

38
Il

No. of PC's

Fig. 2. Above: Graph of the rows in Table 4.8. The numbers on
the lines correspond to the row i.e., the value of p. Below: Graph
of Table 4.11 (see below) showing how the number of clusters
(indicated by the numbers on the lines) affects the location of the
minimum.
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The only difference between Tables 4.7 and 4.8 is
the clustering procedure and since they are similar —
only differing for K = 4 — it is enough to show a plot
of Table 4.8. In Fig. 2, the left panel shows that for
K=4,5, 6 the minimum is quite strong at three while
for K =2, 3 the minimum is quite strong at seven. Note
that since only the binary percentiles were calculated
rather than evenly spacing the percentiles over one to
100, the results for percentiles are consistent with the
other results even though they do not directly lead to
the [n/K] rule.

Principal Components: In this case there are a
maximum of n = 10 eigenvectors; regressing on all of
them is equivalent even though they to using the
original explanatory variables.

Tables 4.9 and 4.10 are qualitatively similar to
Tables 4.1 and 4.5 and Tables 4.2 and 4.6, respectively.
Again, [n/K] = 3 for Table 4.9 and [n/K] = 2 for Table
4.10, consistent with the starred values. Indeed, it
appears in Table 4.9 that PC’s may be more stable
because three PC’s per block is the optimal choice for
all the correlations we used. Note that we used nine
PC’s: We could have used 10 PC’s but this would have
been degenerate since » = 10. Moreover, the minima
occurred strictly between one and nine.

Note that we have daggered two entries in Table
4.9: These are for p = 0.7, 0.9. We suspect, but are
unable to establish formally, that the PC algorithm we
used broke down. In many computations not shown
here we got anomalous results when correlation was
high and the number of statistics was at an extreme,
either small or large. When we redid Table 4.9 using
other values of n (with known clusters), we again found

Table 4.9. Correlated Normal; LASSO; PC’s; Known

Clusters

#PC 1 2 3 4 5 9

p=0 45.095 [41.994|41.075%|41.955142.868 |44.774
p=0.1]43.515 [40.393]39.082%(40.344 |141.497 |43.148
p=0.3]38.203 |38.785]35.925%|37.59039.278 141.891
p=0.5]32.728 |34.967|32.595%|34.962|37.479 |40.697
p=0.7 | 24.966 1|31.705| 27.689*| 30.678 | 33.308 | 38.066
0=09 [ 12.157 7|24.884 | 18.424%|23.004 | 26.008 |32.320

Table 4.10. Same as Table 4.9 but n =6, p =300, K =3

#PC’s| 1 2 3 4 5 all

p=0158.67655911*|58.331|161.197(61.303 | 64.641

that the optimal number of statistics per cluster was
[#/K]; this is seen in Table 4.10, parallel to Tables 4.2
and 4.6.

As in the last two subsubsections, we examine the
effects of clustering. All the algorithms gave
qualitatively similar results that matched the earlier
cases. For completeness, we show one table using the
K-means algorithm. Again, Table 4.11 shows the
optimal number of statistics per cluster decreases as the
number of clusters increases. It is easy to see that
[7/K] is 10/2 = 5, 10/3 = 3.33, 10/4 = 2.5, 10/5 = 2,
and 10/6 = 1.66 as K= 2, ..., 6 in rough agreement with
where the asterisks in Table 4.11 appear, validating the
optimal number of statistics being approximately [#/K].

Table 4.11. Normal with p = 0.3; LASSO, PC’s; K-means

#PC’s 1 2 3 4 5 9

K=2 |41.161]38.308 |37.210 [37.919 [34.038*|40.333

K=3 139.408]37.278 133.961%(36.262 [38.249 |42.620

K=4 137.701]37.307 |136.320%(38.227 [40.440 |42.585
K=5 136.519]34.148%|37.474 (39.715 [40.462 |42.306
K=6 | 36.047]35.652*%138.938 (40.207 [41.732 |41.902

The rows of Table 4.11 are plotted as lines on the
above panel of Fig. 2. For K =5, 6 the minima occurs
at two PC’s as seen in Table 4.11. When K = 3, 4 three
PC’s achieve the minimum and when K = 2, five PC’s
achieve the minimum.

Partial Least Squares: When we use partial least
squares, PLS’s, as our statistics the results are similar
to the earlier cases, however there is some evidence that
the LASSO optimization breaks down as correlation
increases. We attribute this to the higher variability of
PLS’s due to the dependence of PLS’s on the 1’s as well
as the X’s.

In Table 4.12, 4 entries are daggered. It seems clear
that when p is small the algorithm works well and when
p is large it breaks down. However, on the mid-range,
p = 0.3, 0.5, whether to use a dagger or not is a
judgement call. We have used a Principle of Insufficient
reason interpolation argument: There is no reason
performance of one PLS should be suddenly better than
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two PLS’s so we presume it isn’t. Possibly because of
the heightened variability of the PLS’s, [#/K] = [10/4]
= [2.5] = 3, while two statistics is optimal in GCV. On
the other hand, #n/K = 2.5 whereas the smallest nonzero
integer difference is one.

Table 4.12. Correlated Normal; LASSO; PLS’s; Known

Clusters
#PLS 1 2 3 4 5
p=0 41.404 |40.555*% [ 41.152 | 41.448 [41.691
p=0.1| 39.904 |38.651* | 39.106 | 39.578 | 39.743

39.759
43.792
38.619
41.128

39.873139.943
43.966 | 43.992
38.726 | 38.758
41.212 [41.211

p=0.3(38.5187%139.073*
p=0.5]38.721 1 |42.230*
p=0.7]129.756 T | 37.794*

p=009]15.748 ¥ [40.681*

As before, we investigated performance when the
classes of explanatory variable were not known by the
procedure. Despite the higher instability seen in Table
4.12, the results when a clustering algorithm was used
were qualitatively the same as in the earlier cases: The
number of statistics per cluster decreased as the number
of clusters increased, at about the same rate. We omit
the corresponding tables.

Sliced Inverse Regression: When we used SIR to form
summary statistics, the results were somewhat different
than for the other choices of statistics. In particular, the
results from SIR are much less consistent with the
[#/K] rule than the results from PLS are, which in turn
are less consistent than for the other three classes of
statistics, although not by much. For instance, Table
4.12 shows that the row GCV scores for PLS only have
a U-shape for p < 0.1 (although another computational
procedure might extend this range to higher values of
0), and Table 4.13 shows the row GCV scores for SIR

Table 4.13. Correlated Normal; LASSO; SIR; Known

Clusters

#SIR 3 4 5 6 7 8

p=0 46.556%|46.851|47.326 1 47.562 [47.638 [47.790
p=0.1 | 44.323 [44.47145.086 | 44.158*|44.677 |44.826
p =03 | 45.137*%[45.964 | 46.353 | 46.667 [46.865 [46.507
p=0.5 | 47.854 [47.125146.823 | 45.691 |44.299*%(44.796
p=0.7 | 56.178 [54.079149.925149.890 |47.407 [46.938*
p=0.9 | 47.390 [40.16434.764 134.042 |33.386 [32.816*

don’t seem to have a pattern at all. Moreover, the
U-shape seems to disappear in Table 4.13: The values
in a row seem at apart from random fluctuations. Note
that columns for one or two statistics have been omited
so all the asterisks can be seen and we used a maximum
of eight SIR statistics because we reserved one data
point for the leave-one-out GCV and noted that using
nine SIR statistics would be degenerate.

When the effect of K-means is included, Table
4.14 shows that the optimal number of summary
statistics is as high as possible. Results from the use of
other clustering algorithms were qualitatively the same.
(Columns for one or two statistics have been omited
so the asterisks can be seen.) Thus, when clusters are
known, SIR does not suggest a convincing optimal
number of statistics and, when clusters are unknown,
SIR defaults to as many as possible; neither is
informative. These phenomena may arise because SIR
is such a data dependent procedure and sample size is
so small. Indeed, we only have 9 data points since we
are doing leave-one-out with n = 10. Consequently, we
only have 3 slices with 3 data points each. Using a small
amount of data in a relatively complicated, data
dependent procedure is likely to be unstable or trivial
meaning that no dimension reduction via feature
selection is possible. Thus, the performance of SIR
reflects the small sample size differently when
clustering is used or not.

Table 4.14. Normal with p = 0.3; LASSO, SIR; K-means

#SIR 3 4 5 6 7 8

K=2 46.358 | 48.121[46.310 | 45.781 | 45.726 | 45.508*
K=3 46.927 | 46.651|46.388 146.600 | 46.398 | 46.125*
K=4 46.461 | 46.448146.720 146.315 | 46.195 | 45.660*
K=5 46.225 | 46.686 | 46.633 146.504 | 45.882 | 45.689*
K=6 46.948 | 47.134 | 47.366 |146.861 | 46.998 | 46.320*

4.1.2 Ridge

Unlike LASSO, RR does not do variable selection.
That is, where LASSO has a tendency to shrink the
coefficients of some terms to zero, ridge shrinks
coefficients so they approach zero, but rarely get there.

In this subsection we obtain the GCV errors of
ridge regression for the same statistics as in the last
subsection. We omit further consideration of the various
clustering algorithms since, as seen in the earlier
subsections, they do not appear to make a substantial



156 |

B. Clarke et al. / Journal of the Indian Society of Agricultural Statistics 68(2) 2014 145-162

difference. (Indeed, the effect of clustering on SIR in
the last subsection was merely to change the way the
data summarization breaks down.)

As with LASSO, the GCV scores tend to decrease
as p increases. However, within rows, the patterns are
harder to discern. Often there is a well-defined, if
shallow, U-shape as the number of summary statistics
per block increases. Sometimes the U-shape is
degenerate in the sense that one arm is missing: The
minimum occurs at an extreme rather than on the mid-
range. This is strongest for moments, percentiles, and
PC’s and weaker for PLS and SIR because they depend
on the Is.

We computed the Ridge fits in the closed form,
(XX + AL)™" X'y selecting the decay parameter 4 by
CV over (0.001, 10,000). The optimal A can be at the
boundary (0.001 or 10,000), which suggests that the
true optimum will often be effectively zero (no
shrinkage) or effectively infinity (shrink everything to
zero). We suggest 0.001 and 10,000 are adequate values
since the CV did not decrease dramatically when we
tested A’s outside that range.

Moments: The results from our simulations using
moments with ridge are qualitatively the same as with
LASSO. Table 4.15 shows that when » =10 and K = 4
choosing 2 or 3 statistics per cluster is optimal so
[#/K] statistics is still a approximately optimal.

Table 4.15. Correlated Normal; Ridge; Moments; Known

Clusters
#Moments 1 2 3 4 5
p=0 46.322 146.069%| 49.884 | 49.915(51.884
p=0.1 43.573*% [46.319 | 45.646 | 48.244150.077
p=03 42212 |41.807*( 42.788| 42.117 |44.253
p=0.5 131.484*|35.972 | 34.507| 38.824|36.869
p=0.7 130.161*|42.460 | 36.557| 45.776 |44.018
p=0.9 120.935%|35.789 | 34.991| 42.996 (42.595

Percentiles: In this case, the results are quite different
from what was found with LASSO. In fact, this appears
to be a degenerate case because the expression for the
ridge fits is (X"X+AL )' X"y meaning that when the X’s
and errors are generated using a mean zero normal

distribution the medians all approach zero. Thus, Table
4.16 shows that one statistic per cluster works best
(except when correlation increases). Three statistics per
cluster does only slightly worse; we conjecture that
using the 33 and 67t or the first and third quartile i.e.,
two statistics parallel to the means of the positive and
negative values, would give a smaller GCV error than
one or three statistics. If this were borne out, the [#/K]
rule would be confirmed.

When the correlation is high enough, another
tradeoff is seen between number of statistics and the
GCYV error. Highly correlated data may be easier to
predict, hence smaller GCV errors, but accumulating
it reflects less information in the sense that the sampling
distribution for a statistic based on correlated data will
not concentrate as fast with increasing » as in the
independent case. So, more statistics are better and the
[#/K] rule breaks down.

Table 4.16. Correlated Normal; Ridge; Percentiles;
Known Clusters

#Percentiles 1 3 7 15 31

p=0 48.088* | 49.056 | 50.805 | 51.789 | 51.973
p=0.1 44.284* | 45.296 | 46.176 | 46.090 | 46.600
p=03 39.438% | 42.475 | 43.694 | 43.839 | 44.004
p=05 28.846* | 30.857 | 31.551 | 31.993 | 32.251
p=0.7 29.431 | 26.393*| 27.372 | 27.574 | 27.766
p=09 19.315 | 16.025 | 15.443* 16.305 | 16.325

Principal Components: In contrast to using LASSO
with PC’s, ridge with PC’s achieves the lowest GCV
scores when the number of statistics per cluster is
maximum, as seen from Table 4.17. This seems to
contradict the [n/K] rule.

However, as with PLS and LASSO, within each
row, the largest decrease in GCV occurs when passing
from 2 to 3 statistics per cluster — and this is in
agreement with [#/K]| = [10/4] = [2.5] = 3. We suggest
that with the rounded contours of ridge, which shrinks
coefficients but rarely sends them to zero, the largest
drop may be more meaningful than the smaller, later
reductions which may merely be modeling the noise in
the data. (In Table 4.17, 1 indicates the last big
decrease in GCV.)
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Table 4.17. Correlated Normal; Ridge; PC’s; Known

Clusters

#PC 1 2 3 4 5
p=0 35.559 | 23.521 | 6.046F | 6.107 | 6.086
p=0.1 | 32861 | 21913 | 6.8227F [ 6.694 | 6.691
p=03 | 30.002 | 20.808 | 8.9817 | 8.828 | 8.645
p=05 | 24744 | 15961 | 53707 | 5.077 | 4.986
p=0.7 | 16.179 | 10.885 | 5351 | 5.130 | 5.037
p=09 7914 5.338 | 3.712F | 3.617*| 3.654
#PC 6 7 8 9 all
p=0 6.039 5.975 | 5.909 5.878 |[5.874*%
p=0.1 6.609 6.551 | 6.581 6.510% [ 6:542
p=03 8.428 8.357 | 8.208 8.203* | 8.207
p=05 4.856 4.819 | 4.811 4.807 |4.780*
p=0.7 5.033 5.050 | 5.021 5.016 [4.996*
p=09 3.624 3.625 | 3.638 3.661 | 3.69

Partial Least Squares: Ridge regression with PLS
behaves similarly to the earlier cases. Table 4.18 shows
that two statistics per cluster is optimal when p is small
and the largest decrease in GCV is acheived when three
statistics per cluster is used as indicated by 1 ; the
dependence on the Y’s seems to make the GCV scores
relatively at for higher correlations. Finding
two or three statistics optimal is consistent with
[#/K] = [10/4] = [2.5] = 3. (Here, {1 indicates
computational problems.)

Table 4.18. Correlated Normal; Ridge; PLS’s; Known

Clusters
#PLS 1 2 3 4 5 6 7
p=0 |53.165 50.940% F|s1.816  |51.837 |51.840 |51.840 | 51.840
p=0.1] 49882 48.639% T|49.167  |49.158 [49.158 [49.150  [49.159

p=03]54792 49.402 48.782T 48.751 [48.750 | 48.749* | 48.750

p=0.5|54.056 48210 46.874T 46.852%[46.856 | 46.856 46.856

0p=07]56.630 TT| 64540 [61.737F |61.713 [61.711 |61.71088%] 61.711

0p=09]36274 TT| 99.114  [06.324* T]96.719 [96.743 | 96.743 | 96.743

Sliced Inverse Regression: The rows in Table 4.19
represent p = 0, 0.1, 0.3, 0.5, 0.7, 0.9. In contrast to
LASSO, the results are closer to the [#/K] rule for
p < 0.3. Indeed, the optimality of one statistic for
p = 0.1 is only by a very small margin. For higher
correlation, p > 0.5, as with LASSO, the optimal
number of statistics defaults essentially to the
maximum. The high data dependence coupled with the
low number of data points per slice means that for high
o we are forced to use all the SIR’s, i.e., there is so
much less information all the data is needed. Despite
this, the pattern is not strong because the SIR statistics
are so variable. Indeed, neither the rows nor columns
exhibit strong U-shapes typical of tradeofTs.

Table 4.19. Correlated Normal; Ridge; SIR; Known

Clusters
1 2 3 4 5 6 7 8
49.004 |48.026%|48.542 | 48.992 (49.356 (49.368(49.455 | 49.757
46.148%|46.163 |46.623 | 46.959 (47.303 [47.778|47.595 | 47.949
44.686 |43.109%143.985|45.068 |44.772144.947144.818 | 44.763

41.692 140.654 140.394140.468 |140.733140.467(39.841* | 39.917

45479 |45.792 |46.391 | 44.183143.989143.227(42.946 | 41.690*

44.750 |44.460 |44.593|38.037|34.775133.042(31.162 | 30.500*

4.1.3 Bridge

Bridge fits are computed using the brdgrun
package, see Fu (1998). The shrinkage parameter 7,
defining the penalty, is fixed at 1.5, 2.5 and 3 and A is
chosen by GCV. Since we are looking primarily at the
penalty, and computing time is very high for bridge, we
have omitted consideration of correlated normal data.
We only used p = 0.

Overall, the results for Bridge do not exhibit a
strong pattern because we don’t have enough samples.
Sometimes there is the expected U-shape, but it is often
at (except for PC’s) and the minimum occurs at
different places. The power y does not seem to have a
consistent effect either, except possibly for moments.

Moments: Table 4.20 shows that as the exponent in the
penalty term increases, the optimal number of statistics
per cluster seems to decrease from 5 with y= 1.5 to 2
when y = 2.5. Under ridge, which corresponds to
y =2, we saw 3 statistics were optimal when p = 0.
Thus, the cost of statistics to regress on increases with



158 B. Clarke et al. / Journal of the Indian Society of Agricultural Statistics 68(2) 2014 145-162

Table 4.20. Independent Normal; Bridge; Moments;
Known Clusters

#Moments| 1 2 3 4 5

y=15 42.273 | 41.472 |41.048*(43.003 |43.187
y=2.5 42.883 | 42.760%143.302 (45.177]48.135
y=3 44.202% | 44.280 |45.287 (47.348149.922

the exponent making fewer desirable. This table
suggests the [# = K] rule holds only for values of y close
enough to two.

Percentiles: Table 4.21 shows that 1 percentile is
optimal for all 3 choices of y. Thus, percentiles behave
differently from moments; however the behavior here
is similar to what we saw under ridge for percentiles
in Table 4.16. Under LASSO, which corresponds to
y=1, 3 percentiles were optimal in the p = 0 case. This
makes sense because LASSO puts a smaller penalty on
the size of the ,Bj.’s possibly making it worthwhile to
regress on more statistics. Again, the [#/K] rule does
not appear to hold.

Table 4.21. Independent Normal; Bridge; Percentiles;
Known Clusters

#Percentiles | 1 3 7 15 31

y=15 37.912* 1 38.018 |38.893 [39.717 [ 39.658
y=25 38.027* 1 39.009 |40.194 (41.338 | 43.393
y=3 38.865* | 40.148 |41.585 [43.210 [ 44.786

Principal Components: Here, Bridge replicates what
we found under ridge but differs from the corresponding
case under LASSO which found 3 statistics optimal.
Table 4.22 shows stability for the various values of 7.
However, although not shown, the values also reveal
that the last large decrease occurs from 3 to 4 statistics
per cluster suggesting four statistics whereas
[#/K] = [10/4] = 3 meaning the [#/K] rule is weakly
validated.

Table 4.22. Independent Normal; Bridge; PC’s; Known

Clusters
#PC 6 7 8 9
y=15 17.204 16.110 15.578* | 16.018
y=25 16.758 15.385 14.938* [ 15.239
y=3 16.324 14.868 14.421* | 14.761

Partial Least Squares: It is tempting to suggest Table
4.23 implies that the number of PLS’s to be used should
increase with rather than decrease as in Table 4.20.
However, the flatness of the values in the rows means
the U-shape is weak. This is different from the
corresponding cases with ridge and LASSO where
stronger patterns were seen. However, it is possible that
the values of y here lead to a higher sensitivity to the
greater data dependence of the PLS’s than in the earlier
cases. (Note that in Table 4.23 the columns correspond
to the number of PLS’s used and the rows correspond
to y=1.5,2.5, 3.) Overall, there may be more instability
with PLS in the Bridge case even as the size of the
penalty leads to more statistics being optimal. That is,
the [#/K] rule may apply for moderate values of y only.

Table 4.23. Independent Normal; Bridge; PLS’s; Known
Clusters

1 2 3 4 5 6 7 8

45.104 | 44.661% | 44.794 |45.011]45.013 |45.014]45.014 |45.014
46.081 | 47.1416 | 45.573%|45.637145.632 | 45.633|45.633 |45.633

46.128 1 50.595 [ 46.039 |45.81445.793 [45.792145.792* [45.792*

Sliced Inverse Regression: Table 4.24 gives results for
SIR that are fairly consistent with the [#/K] rule; this
was not the case for ridge or LASSO. It seems that the
higher sensitivity to the data of SIR does not matter here
— the exact opposite from PLS above. On the other
hand, this may be similar to what was observed in
Table 4.19.

Table 4.24. Independent Normal; Bridge; SIR; Known

Clusters
#SIR 1 2 3 4 5
y=1.5140.711 | 39.857* | 41.101 [ 41.534 | 41.275
y=25 | 40.893 | 39.736* [ 41.433 | 42.209 | 42.346
y=3 41.034 | 39.773* [ 41.510 [ 42.324 | 42.569

4.2 Independent Non-normal Data

The results for the cases we tried using
independent non-normal data were qualitatively the
same as for independent normal data. To see an
example of this, consider some different design
matrices. Table 4.25 shows results using LASSO on
principle components, with X drawn from the
distributions listed.
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Table 4.25. Independent non-normal design matrix;
LASSO; PC’s; Known Clusters

#PC 1 2 3 4 5 all

Normal(0, 1) [43.661]42.034]40.362%(41.114]141.485(43.598
Double exp(1) [45.197|42.595[41.638*]42.57843.021 (44.620
Uniform(-53, 5)44.239139.591(38.671%|39.232(40.31844.739

Exp(1) 41.745139.50937.717*%|38.339|39.515 [41.065

The results for these independent non-normal
cases all have a U-shape in each row, and all the minima
occur near where we expect i.e., at [n/K| = [10/4] =
[2.5] = 3, independent of the distribution. This suggests
that the independence of the data is more important than
its distribution. This makes sense because often
dependence affects the informativity of data more than
the shape of the distribution does.

4.3 Serially Dependent Normal Data

Although somewhat atypical, we investigate how
the optimality criteria and statistic selection perform on
ARMA(p.q) data. Our motivation is that ARMA data
is one proxy for real data whose structure and properties
cannot be safely assumed to be of any form. We chose
values of p and ¢ to be small, 0, 1 and 2, with n = 10.
We present results for the LASSO criterion with PC’s
because it was the easiest to compute. However, other
statistics that we tried gave results not too different
from before. Results for ridge, too, were similar. We
did not investigate Bridge because the computing
demands were too high.

For AR(1) data, Table 4.26 was representative for
LASSO, AR data, statistics that do not depend on Y (i.e.,
moments, percentiles and PC’s), and various clustering

strategies. It is seen that the optimal number of statistics
is three, [n/K] = [10/4] = 3.

For MA terms data, the variability increases so that
for the settings we considered it is difficult to recognize
Table 4.26. AR(1), LASSO, PC’s, Known Clusters

#PC 1 2 3 4 5

p=0.1143.229 | 41.839 | 39.414* | 42.947 | 41.754
p=03|43.767 | 40.952 | 37.339* | 39.781 | 41.371
p=10.5140.194 | 39.385 | 37.971* | 38.509 | 39.985
p=0.7 42341 | 39.582 | 35.972* | 37.673 | 38.532
p=10.91]39.593 | 36.738 | 35.446* | 36.180 | 36.976

regularities in behavior as indicated by Table 4.27.
Again, [n=K] = 3 but, at best, three is only weakly
preferred.

Table 4.27. MA(1), LASSO, PC’s, Known Clusters

#PC 1 2 3 4 5 all

p=0.1142.405140.986 |39.489 [40.10239.324 [38.014*
p=0.31]47.00644.731 |43.901*(45.731 [ 46.553 |48.678
p=0.51]47.00440.238%42.018 [42.634 [ 44.070 |49.080
p=0.7]41.904140.476 |39.236 [39.173 [ 38.991*|44.209
p=109 | 41.82040.343 [39.729%|40.610| 41.024 [42.244

4.4 Dependent Non-normal Data

As a test of our methods and conclusions we
generated dependent non-normal data by
transformations of serially correlated normal data. In
general, apart from random variation, [#/K] identifies
the typically optimal number of statistics to use.
Specifically, we used three transformations on the
randomly generated X data so that the ARMA properties
were disrupted, namely, y = arctan(x), y = sin(x)x, and
vy = log(x — min(x)). For contrast to the last subsection,
Table 4.28 presents results for moments rather than for
PC’s. It is seen that five statistics per cluster is optimal,
a little higher than [#/K].

Table 4.28. Transform AR(1) by y = arctan(x); LASSO;
Moments; Known Clusters

#Moment | | 2 3 4 5

p=0.1 |[44.106 | 40.841 | 39.243* | 40.034 |40.137
p=03 [43.184 [ 39.469| 37.968 | 37.925*|38.565
p=05 [46.770 [ 41.611 | 39.681* | 41.174 |42.379
p=0.7 |[46.520 | 43.252| 42.266* | 42.684 |44.748
p=09 [43.462 [ 39.313| 37.677*| 38.489 [39.647

The results for transformed, non-normal correlated
data are consistent for all correlation structures and
transformations we tested. That is, the optimal number
of statistics per cluster was [#/K] or a little larger apart
from cases of extreme flatness in the rows. Sometimes
the identification was through actual minimality;
sometimes it was through looking at the last large
decrease — this latter being more typical of ridge.

We did not examine different optimality criteria
(Bridge), clustering algorithms, or ¥ dependent statistics
in this setting. However, based on computed results in
parallel cases, some included here and many not, we



160 B. Clarke et al. / Journal of the Indian Society of Agricultural Statistics 68(2) 2014 145-162

suggest that the results would not qualitatively differ
substantially from the earlier cases presented here.

5. TWO LIMITATIONS

Here we observe two limitations on the main point
so far. The first is that a more exact determination of
the optimal number of statistics than [#/K] seems hard
to justify. Indeed, in the first subsection we present 3
computations in which the number of statistics per
block is sensitive to the block sizes but less than might
be expected. Second, we address the minimality we
have been identifying: Even though the standard
deviations of the GCV scores is high the regularities
are hard to explain by chance.

5.1 Block Size and Number of Statistics

It is intuitive that summarizing more variables
should require more statistics than summarizing fewer
variables. However, we find that while one may want
an extra statistic or two for relatively large blocks of

cases except extreme dependence, p = 0.9, where (6,
2,2,2)and (3, 3, 3, 3) perform only slightly worse than
using all the data directly.

Similar results are found if one class is unusually
small compared to the other classes, with sizes, say,
(125, 125, 125, 25) giving 125/25 =5 and if the classes
consist of two large and two small classes, say (175,
175, 25, 25) with 175/25 = 7. That is, using a slightly
larger number of statistics per class, is better, but only
slightly so. More data might improve the discrimination
over numbers of statistics per cluster, but, in practice,
data sets with p/n > 400/10 = 40 are common.

5.2 Standard Deviations of GCV Scores

To conclude our presentation of results, Table 5.4
is a reprint of Table 4.9 but with the average standard
deviation, SD, of each entry shown in parentheses
below it. Clearly, the SD’s are large, typically over half
the means.

Table 5.4. Principle Components

variables, the benefits may be small.
#PC 1 2 3 4 5
In Table 5.1 we fixed the number of statistics at a ) 11994 | 41.075+] 210 "
total of 12 and used 400 explanatory variables p=0 (22'%?) (24-348) (23'(1)33) (23-123) (23'32(8;)
distributed over 4 classes for n = 10 samples. Since we i : i : i
are using LASSO and PC’s with known clusters and =01 43.515 | 40.393 | 39.082*| 40.344 | 41.497
correlated normal data our results are directly (23.177) | (23.475)((22.897) |(23.518)((23.552)
comparable to Table 4.9.where three statistics per =03 38203 | 38.785 | 35.925%| 37.590 | 39278
cluster were found optimal. We used N = 2000 “1(20.228) | (23.180)[(21.261) [(21.831){(22.353)
replications but even so the results are suggestive rather
than strong, p=05| 32728 | 34.967 | 32.595%| 34.962 | 37.479
. 18.779) | (22.973)|(20.692) | (21.859)|(22.774
Table 5.1. Principle Components unequal classes ( )¢ )|¢ )|( )|¢ )
(325, 25, 25, 25) o= 07| 24966 T| 31705 | 27.689% 30678 | 33.308
#PC 3.3,3.3)]6,2.2.2]0, 1,1, 1D all “1(15.041) | (23.246)[(19.098) [(20.296)((22.093)
p=0 |N=2000(39.958 | 39.852*( 43.219 |43.452 0.9 12.157 | 24.884 | 18.424*| 23.004 | 26.008
p=0.
p=0.1N=2000] 39.722 | 39.391*| 42.823 |43.778 (8.224) [ (25.333)|(14.792) |(18.682)|(21.090)
p=03|N=2000) 35.267*| 35.755 | 39.305 |39.060 The large SD’s are the result of # being small. So,
p=0.5|N=2000|30.013*| 30.362 | 33.675 |32.383 the reason that our entry to entry comparisons within a
B - i row in the tables in Section 4 is meaningful stems from
p=0.7| N=2000| 22.489%| 22.667 | 25.405 |23.677 the fact the findings are consistent. That is, the
p=0.9|N=2000| 12.713 | 12.977 | 15.220 [12.196* variability in the individual entries is very large so the
validity of the conclusions stems from the fact that the

In Table 5.1, one class is much larger than the
other three, which are equal. Although 325/25 = 13 the
choice of (9, 1, 1, 1) as the number of statistics drawn
from each block is not seen to be optimal. In fact, (6,
2,2,2)and (3, 3, 3, 3) are seen to be optimal in all

roughly the same number of statistics per cluster,
[#/K], is seen to be optimal over a very wide range of
scenarios. If one were to set H: ‘[n/K] is far from the
optimal number of statistics to choose’ any reasonable
hypothesis test (frequentist or Bayes) would be rejected.
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6. DISCUSSION

In a large p small n context, we have investigated
the roles of clustering, optimality criteria, choice of
statistics and data type. As a generality, we found that
for each case there was an optimal number of statistics
to choose. This was seen by evaluating GCV errors for
a range of different numbers of statistics per block of
variables, and in some cases, by different allocations
of statistics to blocks. The GCV errors often generated
a U-shaped curve if they were plotted as a function of
number of statistics per block. We found that the
penalty term was the most important choice to be made
while the clustering algorithm made little difference.
The data type mattered somewhat mostly in terms of
correlation or other notions of dependence and the
choice of statistics mattered somewhat, especially
whether the statistics depended on the response or not.

For Ridge Regression and the LASSO, using
moments, percentiles, or PC’s, we found that choosing
[#/K] statistics per block, or maybe one more, generally
worked well. That is, the benefits from using different
numbers of statistics (still totalling n or a little more)
for the clusters seemed to be small. The same was
usually true for PLS’s and SIR’s but often little or
discrimination was possible leading to degenerate
results. For Bridge regression, the results were not clear
at all; we suggest that a simple heuristic will be hard
to obtain because the penalty terms are so often large,
e.g., ¥ =2.5. Indeed, higher penalty terms usually led
to a smaller number of statistics as optimal. This is an
intuitive result broadly consistent with, say, the
Representer theorem that finds at most n terms
necessary when there are n data apoints.

Thus, aside from Bridge regression, our results
suggest that moments, percentiles, and PC’s were
generally equally good as summary statistics while
PLS’s and SIR’s were often good but exhibited more
variability. Indeed, our results strongly suggest that in
p >> n settings, using feature selection gives smaller
GCV errors than using all the data ‘as is’. In the Bridge
case, the [#/K] rule sometimes held, but the pattern was
not clear. Otherwise put, typically, generic feature
selection followed by a shrinkage method typically gave
better predictive performance than using all the data.

Let s denote the number of statistics per block.
Then, the U-shaped curves represent the result of a bias
curve and of a variance curve. As s increases from 1,
the total number of statistics increases, so bias decreases
while variance may increase. If we start with a high

value of s , then we may have low bias but excessive
variance. The optimal s, indicated by asterisks in our
tables, here represents an optimal tradeoff between
variance and bias in terms of the number of statistics
chosen chosen from a class. Unsurprisingly, the optimal
variance bias tradeoff is often achieved when the
number of statistics is related to the block size, however
the improvement is over using the same number of
statistics per block was small in the cases we examined.

We have commented in Section 5.2 that the small
size of n was insufficient to make discrimination over
sets of statistics reliable even though the [#/K] rule was
supported. So, this opens the question of how large n
should be relative to p for good predictive properties.
First, over many simulations choosing [#/K] statistics
per cluster worked reasonably well when n/p = 40 and
better when n/p was smaller where p was the number
of variables. The usual heuristic is that one wants 10
data points per parameter for estimation however here
the optimal number of parameters is around
K[n/K] = n given that one has already clustered the data,
chosen a class of summary statistics and intends to use
a shrinkage criterion. Loosely, the issue for how large
n/p should be for good performance comes down to
how small the GCV and its standard error is. Thus, a
further simulation study could increase »n slowly for
fixed p until the GCV and its standard error were
suficiently small in practice that an indiviudal use on a
single data set would be likely to have a GCV that was
satisfactorily small, assuming that the model class was
large enough that bias was not excessive. Note that
while this would be informative, in many data sets # is
fixed, cannot be increased, and the goal is to reduce p.
Here we have shown that reducing p to » actually gives
the best performance in many cases using shrinkage
methods.

We comment that we have not done a complete
bias-variance decomposition for the GCV since the
effect of clustering has been neglected. Obviously,
summarizing data by statistics from clusterings may
introduce further bias as well as variability. However,
one may regard the bias and variance from clustering
to have been implicitly represented in the GCV scores.
Alternatively, one may regard the apparent ‘bias’ of
using a particular set of summary statistics as having
both pure bias and variance conditional on the bias.
That is, the pure bias part of the GCV is the minimal
bias that could be achieved on average by a set of
statistics of the specified form while the variance
conditional on the bias may be regarded as the variance
of finding those statistics implicit in the use of
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clustering. That is, the two stages of data summarization
and using the summary statistics in a shrinkage criterion
are conceptually disjoint even though here they have
been combined in one overall GCV score.

Another feature of our work here is the complete
neglect of the interpretability of data summarization. It
is our philosophical stance that asking for
interpretability in complex short fat data problems
restricts the search for good predictors so much that
interpretability per se is more harm than help: It
prematurely restricts the models so much that poor
prediction is nearly assured. Indeed, optimal predictive
solutions such as model averaging and kernel methods
routinely give ‘models’ that are uninterpretable. The
optimality of such methods over interpretable methods
shows that asking for interpretability is often
predictively harmful.

Overall, the take home lesson seems to be that, if
there are n data points and no sufficient statistic (even
in a heuristic sense) is available, then there are » pieces
of information that can be regarded as n values of a
statistic that may come from any one of a large number
of classes. While one might argue that some
measurements are more informative than other
measurements, on average, no matter how the
explanatory variables are summarized it is difficult for
much more than or much less than » statistics to be
genuinely useful in the sense of giving better results
predictively than just using all the data. Moreover, as
long as the statistics do not depend on Y and the penalty
is not too different from absolute or squared error, it
may not matter much which statistics are used for
predictive purposes. That is, for predictive purposes,
detailed modeling may not be much more useful than
generic feature selection. One can argue that generic
feature extraction may give unstable solutions, however,
interpretable feature selection can also be unstable, and
both are just efforts to deal with model uncertainty. In
cases where interpretable feature selection is infeasible
or unreliable, it is probably better to use generic feature
selection and uncertain answers (and admit the
uncertainty) than not to get answers at all.
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