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SUMMARY

When part of the regressors can act on both the response and some of the other explanatory variables, the already
challenging problem of selecting variables in a p > n context becomes more difficult. A recent methodology for variable selection
in this context links the concept of g-values from multiple testing to the weighted Lasso. In this paper, we show that different
informative measures of significance to g-values, such as partial correlation coefficients or Benjamini-Hochberg adjusted
p-values, give similarly promising performance as when using g-values.
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1. INTRODUCTION

A common issue in modeling biological and social
phenomena is variable selection, where data in such
fields often involve more predictor variables than
observations. A new difficulty to this already
challenging task is selecting predictor variables in a
structured way so that an existing hierarchy among the
model variables is obeyed. For example, some
predictors may be known to act on both the response
and other candidate predictors; thus, one must select
which candidate variables affect the response after
accounting for those predictors known to affect the
response. Recently, Garcia et al. (2013a) proposed a
novel method for handling such structured variable
selection problems. Their method involves extracting
g-values in multiple hypothesis testing (Storey 2003)
and using them as weights in the weighted Lasso
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(Zou 2006) to appropriately direct the selection
procedure. In this paper, we take a closer look at their
proposed method and, through various simulation
studies, we determine if weights other than the g-values
could improve the procedure.

Structured variable selection is needed, for
example, in modeling risk factors of childhood obesity.
An emerging hypothesis in childhood obesity is that
obesity is not only linked to excess caloric intake and
inadequate physical activity (Hill and Peters 1998,
Anderson et al. 1998, Heindel and vom Saal 2009), but
also to exposure to endocrine disrupting chemicals
which can alter hormones that control weight gain
(Baillie-Hamilton 2002, Grun and Blumberg 2006, La
Merrill and Birnbaum 2011). There is evidence to
suggest that diet is correlated with potential weight gain
and with endocrine disrupting chemicals. Thus, a key
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interest is selecting which endocrine disrupting
chemicals affect weight gain (response variable) after
accounting for those predictors (e.g., diet) known to
affect weight gain.

Structured variable selection is also needed when
modeling the relationship between the gut microbiome
and features related to body weight regulation. Previous
biological experiments warrant that diet is known to
regulate body weight (Bray et al. 2012) and may alter
some microbial groups (Abnous et al. 2009 and Li et
al. 2009). A biological interest is determining which
microbes have an effect on body weight regulation after
accounting for diet. With such information, scientists
can potentially develop targeted therapies to better
regulate body weight by altering specific microbes.
However, obtaining this information is difficult. One
must account for the intricate relationship among
microbes, diet, and phenotypes of body weight
regulation, and perform the variable selection using data
where the number of microbes measured far exceeds
the sample size.

Performing structured variable selection is a
challenge which extends beyond what earlier selection
procedures can handle. These methods include the
Lasso (Tibshirani 1996) and its extensions (Yuan and
Lin 2006, Zou 2006, Meinshausen and Biihlmann
2010), least angle regression (Efron ef al. 2004), and
selection by controlling the false discovery rates
(Benjamini and Hochberg 1995, Storey 2003). To
remedy this gap in the literature, Garcia et al. (2013a)
developed a method that modifies the weights in the
weighted Lasso (Zou 2006) such that certain variables
are ensured to be in the final model, and that important
candidate variables are selected over less important
ones. Their method provides a proper multivariate
analysis by collectively considering all relevant
information in the model variables, and ultimately
results in selections with acceptable false positive rates
and low false discovery rates. This contrasts from
individually assessing which predictors are related to
the response through simple measures of correlations
or partial correlations.

Our aim in this paper is to explore how the weights
in the method of Garcia et al. (2013a) could be further
improved and generalized. The rest of the paper is
organized as follows. Section 2 provides a brief
overview of the Garcia et al. (2013a) method, along
with additional weights that may lead to improved

performance. Section 3 evaluates the different weights
through various simulation studies. In Section 4, we
apply the weighted Lasso with the different proposed
weights to a microbiome study. Section 5 concludes the
paper. Technical arguments and additional numerical
results are provided in the Appendix.

2. MAIN RESULTS

2.1 Motivation for Modified Weighted Lasso

Let the sample size be n, y = (v, ... )7 be the
response variable, and v j =1, .., mdenote the n x 1
covariates that are linearly related to y. The covariates
are divided into two groups: those that need to be
included in the model (i.e., designed covariates), and
those that are subject to selection. For ease in
presentation, we refer collectively to all covariates as
v’s, whereas we denote the designed covariates as z’s
and covariates subject to selection as x’s. Specifically,
we let the number of designed covariates be m,, and
denote them as Vv,:=2%,..., v, :=Z, . We also let the
number of covariates subject to selection be m,, and
denote them as Vv, ,;:=X;,...,V, ., ‘=X, . We have
that m = m, + m,. Without loss of generality, we assume
all variables are standardized to have mean zero and
sample variance one, so that the intercept is excluded
from the regression model. We also suppose that 7z, +
1 < n, but we allow for m, +m, =m> n.

For the m > n variable selection problem for the
linear model, a commonly used method is the weighted
Lasso (Zou 2006) which minimizes

2
1 m
0B = +AYwlB].
k=1

m
y- 2 Vi B
k=1

with respect to B=(B,, ..., B,)", the vector of regression
coefficients. Here, A > 0 is a regularization parameter,
w, >0, k=1, ..., m, are weights, and ||-|| denotes the
L,-norm. We denote the minimizer as g, which will

be a function of A and the weights w = Wy oo wm)T.

To gain insight into the minimizer ﬁ, let Ly
=y -2,V ;B;, k=1, ..., m, denote the partial residual
after removing the k" covariate. Through a careful
derivation involving subgradients (see Appendix A.1),
we have that if

VEr | < Aw, @)
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then f, = 0; otherwise,

B = Sign(Vgr(—k))(‘Vzr(—k)‘—iWk)/Vsz,
fork=1, ... m.

From (2), it is apparent that for a fixed A, variables
v, with large weights will generally not be included in
the model (i.e., /3’k = 0); whereas, those variables with
small weights will generally be included in the model
(i.e., B, # 0). Using this key property, Garcia ef al.
(2013a) extended the work of Charbonnier et al. (2010)
and Bergersen et al. (2011) by formulating a method
so that important variables were included in the model
before less important ones.

2.2 Selection of Weights

The method of Garcia ef al. (2013a) is based on
choosing weights so that the designed covariates z’s are
ensured to be in the model, and that variables subject
to selection, x’s, are selected according to their
significance in the model after accounting for the z’s.
Candidate weights for z and x are now described.

2.2.1 Weights for Designed Covariates

To ensure that the z’s are included in the model
requires that the inequality in (2) does not hold. One
way to guarantee this is to set w, = ... w,, = 0. In our
simulations we will setw, =10 onz,j =1, ..., my, to
explore to what extent such small weight values lead
to the exclusion of the z’s.

2.2.2 Weights for Covariates Subject to Selection

Garcia et al. (2013a) showed that weights for the
x’s should measure the significance of each x on y after
accounting for the designed covariates z’s. Weights that
ignore the effect of the z’s are actually inferior to unit
weights on the x’s; see the simulation study of Garcia
et al. (2013a). Appropriate weights can thus be based
on (i) measures of the partial correlation between
X, k=1, .., m, and y after accounting for z’s
(i€, 0x, ylz,. )» and (ii) measures of the effect of x,

in the linear regression of y on (zy,...,2,,,X;)
Specifically, we consider five different types of weights:

- Zmg

1. Inverted Absolute Partial Correlations: Wy, ; =

1/|ka,y\zl, z,,|ON X, k=1, ..., m, where

ey

z,, are the partial correlations between

.....

x, and y after controlling for z,...,z,,.
Influential x’s will thus have small weights, as
desired, since an influential x, has large absolute
partial correlation and hence small inverted
absolute partial correlation. Conversely, less
influential x’s will have large weights since their
inverted absolute partial correlation values will be
large.

. Inverted Absolute t-Statistics: Wy, +x =1/ |tk| onx,

k=1, .. mwhere t, = B /se(f;) are the
t-statistics obtained from the individual linear
regressions of y on (z,, ..., Z,,, X,), and ﬁ:are
the estimated coefficient associated with x,.
Influential x’s will thus have small weights, as
desired, since an influential x, has a large |7,| value
and hence a small 1/|¢] value. Conversely, a less
influential x, will have a large 1/|¢,| value.

. p-Values: Wy+x = DPr on x,, k=1, ..., m where

P, are the p-values obtained from the individual
linear regressions of y on (Zj, ..., Z,,,X;). A

statistically significant x, tends to have a small
p-value and a non-statistically significant x, has
a large p-value. Thus, weighing each x, with its
corresponding p-value will generally lead to
including statistically significant x’s in the final
model.

. Benjamini-Hochberg (BH) Adjusted p-Values:

_ BH _ BH
Witk = Pk ON X, k=1, ..., m,, where pZ are

the Benjamini-Hochberg (Benjamini and
Hochberg 1995) adjusted p-values obtained from
the individual linear regressions of y on
(Z), s Zyy,» X ). In comparison to p-values, the
BH adjusted p-value accounts for the multiplicity
of the m, tests compared from the m, linear
regressions. Still, the impact of BH adjusted
p-values is similar to that for p-values since a
statistically significant x, will have a small BH
adjusted p-value even after the adjustment, and a
statistically non-significant x, will have a large
BH adjusted p-value.

. q-Values: Wy 1 =qr on x,, k=1, ..., m,, where

q, are the g-values (Storey and Tibshirani 2003)
obtained from the individual linear regressions of
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y on (Z,...,Zy,,X;). Similarly to adjusted
p-values, g-values are a monotone transformation
of p-values designed to control the false discovery
rate (FDR): the number of false positives found
among rejected null hypotheses. As with p-values
and BH adjusted p-values, covariates with small
g-values are generally inuential to the model,
whereas covariates with large g-values are not. We
estimate q-values using/i(p(ml)) = F/D7€(p(ml))
and 4(pxy) = min{FDR(p)),4(p+1))} for
k=m —1,m -2, .., I.Ee\re, D1y - Pom) are
the ordered p-values and FDR(t) is the estimated
false discovery rate based on rejecting null
hypotheses with p-values <, 0 <7< 1; see Storey
and Tibshirani (2003) for the exact form of
17[37{(;) and the R package “qvalue” (Dabney et
al. 2011) for an implementation to compute
g-values.

The proposed method of Garcia ef al. (2013a) only
focused on g-values as weights for the x’s, but we
consider the additional weights listed above. In Section
3, we demonstrate the influence of these weights on the
performance of the weighted Lasso.

2.3 Implementation of Weighted Lasso

In practice, the weighted Lasso (i.e., minimizing
O(P) in (1)) is solved using a least angle regression
(LARS) algorithm (Efron et al. 2004) which provides
the entire sequence of model fits in the Lasso path,
along with estimated parameter coefficients. The best
descriptive model among all those in the Lasso path is
the one that minimizes the penalized loss function

M, (8, p)=SSE,«/6*-n+Sp". 3)

Here, §> 0, p* is the number of predictors in the
selected model, SSEP* is the residual sum of squares
for the selected model, and &2 is an appropriate
estimator of the model error variance. For example,
when n>p*, 6% can be the residual mean square when
using all available variables, and when n < p”, 62 can
be the sample variance of the response vector y (Hirose
et al. 2013). Finding the minimizer p° in (3) is
equivalent to minimizing SSE , + 56°p°, thus
estimating &> well is of little concern.

An important detail of (3) is the choice of § which
controls the penalty on the number of predictors, p*, in

the selected model. Large d values will inflate the effect
of p* so that minimizing the penalized loss function will
require having fewer predictors in the model.
Conversely, small § values will minimize the effect of
having many predictors in the model. Consequently,
different 6 values yield different model fits and
observed false discovery rates. Garcia et al. (2013a)
proposed a modified cross-validation procedure to
appropriately select §; in this paper, we set 6 = 1,
estimate 0 by var(y) and focus on the choice of weights
instead.

3. SIMULATION STUDIES

3.1 Simulation Design

We evaluated the performance of the different
weighting schemes on a simulation study similar to that
in Garcia et al. (2013a) and one that mimics the real
data in Section 4. We supposed there were two
treatment groups with 20 subjects in each, and
generated m, + 1 explanatory variables as follows. First,
we generated a binary treatment indicator z where for
each subject i = 1, ..., 40, z, = I(i > 20) — I(i < 20).
Then we generated X, = (X, - X40,)"» k=1, ..., m,,
such that the first 75% of x’s depend on the treatment
indicator z, and the remainder do not. Specifically, for
k=1, ..,0.75m,, we set x, =u, + zs,, where u, were
independent uniform (0, 1) random variables and s,
were independent uniform (0.25, 0.5). For k= 0.75m,
+ 1, ..., m, we generated x, as independent uniform
(0, 1) random variables, with no dependence on the
treatment z,. We generated the response vector as

my—1
Y = Boz + Bix; + BrX, + Bixs + 2 Bixi + By X, +E,
k=4
“)
where ¢ is normally distributed with mean 0 and

covariance 6°[. In summary, X, ..., X,y Were generated
according to four distinct categories:

Group 1. X, X,, X, depend on treatment and act on y
even after taking into account treatment;

Group 2. X, ..., Xo75m, depend on treatment and do
not act on y;

Group 3. X0.75m,+1,..., Xm -1 N€ither depend on treatment,
nor act ony;
Group 4. X, does not depend on treatment, but acts

ony.
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To evaluate the performance of the different
weights in the weighted Lasso, we considered two
different parameter settings. We set m, = 40, 0c=0.5
with #=(4.5,3,-3,-3,07,3)"and B=(2.5, 1.5, 1.5,
-1.5, 07, 1.5)7 where 07 is an (m, — 4) dimensional
vector of zeros. In both settings there are more
parameters than observations and 90% of the x’s are
redundant. We now present results when £ = (4.5, 3,
-3, =3, 07, 3)7, and defer results for § = (2.5, 1.5,
1.5, —1.5, 07, 1.5)7 to Appendix A.2 because these
results are similar except that the variable selection
percentages are lower.

Under each parameter setting, we generated 1000
independent data sets, and applied the weighted Lasso
with the proposed weights in Section 2. We report the
averaged percentages of time variables in each group
were selected, and the observed false discovery rate
(FDR). The ideal weighting scheme will largely select
variables in Groups 1 and 4, while not selecting
variables in Groups 2 and 3, and thus have small FDR.

3.2 Simulation Results

From Table 1, we observe that across all weighting
schemes, the weighted Lasso has a high rate of true
positives and an acceptable false positive rate. Most
interestingly, we observed that weights based on the
inverted absolute partial correlations and inverted
absolute t-statistics equally selected the same
percentage of variables in each group. This is because
close inspection of many simulation runs showed that
the correlation between these two weights was very
close to one and corresponding scatterplots showed an
almost perfect linear relationship between these two
weight vectors. Likewise, weights based on any of the
p-values (either with or without adjustment) led to
similar results in the variable selection. In fact, both the
BH-adjusted p-values and g-values led to exactly the
same percentages of selection for each group. This
suggests that the weighted Lasso is somewhat robust
against monotone transformations of the weights, since
g-values and BH adjusted p-values are monotone
transformations of p-values. We also note that for each
of the four variable groups, the average BH-adjusted
p-value is nearly 1.25 times the average g-value (see
Table 2). Likewise, the 25%, 50% and 75% quantiles
in each group for both the BH-adjusted p-values and
g-values have similar proportions.

Table 1. Results from 1000 simulations when g= (4.5, 3,
-3,-3, 07, 3)". Averaged percentages of time variables in
each group were selected and observed false discovery rate
(FDR). Ideal weighted Lasso will largely select variables in
Groups 1 and 4, and not select variables in Groups
2 and 3.

Average Variables Selection

-1
-1 BH
It

Weights p p q

px,y\z

Treatment | 100.00 [100.00 (100.00|100.00 | 100.00
Group 1 | 75.53 | 75.10 | 73.00| 73.03 | 73.03
Group 2 0.39 0.36 0271 0.29 0.29
Group 3 1.88 1.60 0.44] 0.50 0.50
Group 4 | 85.70 | 84.80 | 75.70( 77.80 | 77.80

FDR 0.08 0.07 0.04] 0.04 0.04

Table 2. Summary statistics of weights when g = (4.5, 3,
-3,-3, 07, 3)". Average weight (Mean), and 25%, 50%,
and 75% quantile of weights from each group. Ideal
weighting will have small weights in Groups 1 and 4, and
large weights in Groups 2 and 3.

Weights Group 1|Group 2 | Group 3 | Group 4

Mean| 2.55 | 43.97 | 4939 | 2.51
Oyrs| 201 | 560 | 619 | 251
Ops | 222 | 931 | 1025 | 251
Oprs| 293 | 1979 | 2165 | 251
Mean| 038 | 722 | 811 | 037

™ Opps| 028 | 091 | 1.00 | 037
Ops | 032 | 152 | 168 | 037
Oprs| 045 | 325 | 355 | 037

Mean| 0.03 | 050 | 050 | 0.03
P Qpas| 001 [ 027 | 030 [ 0.03
Ops | 001 | 050 | 050 [ 0.03
Oys5| 004 | 073 | 070 | 0.03

P Mean| 014 | 078 [ 078 [ 015
Opps| 006 | 071 | 072 | 0.15
Ops | 009 | 083 | 083 | 015
Opr5| 019 | 090 | 089 | 0.15

Mean| 0.11 | 063 | 064 | 0.12
g Ops| 005 | 058 | 059 [ 0.2
Ops| 007 | 068 | 068 [ 0.2
Oprs| 015 | 074 | 073 | 012
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To better visualize the similarities between the
different weighting schemes, we generated boxplots of
the weights for each group (see Fig. 1). To standardize
the weights to similar units of measurement, we divided
each of the five sets of weights by their corresponding
overall median. Both figures immediately show the

Inverted Absolute Partial Correlations

striking similarities between the weights based on
inverted absolute partial correlations and inverted
absolute t-statistics. It also shows striking similarities
between the p-values and its adjusted versions. In each
case, the variability and spread within each group is
practically the same. Though the weights are

Inverted Absolute t-Statistics
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Fig. 1. Boxplots of weights in each group for different weighting types when = (4.5, 3, -3, -3, 07, 3)”. All weights have been
standardized by the median over all groups.
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fundamentally different, their similar features within
each group (i.e., variability and spread) is what drives
the similar variable selection.

Overall, we observed that weights based on
p-values without any adjustment led to the most
reasonable results. It selected variables in Groups 1 and
4 most frequently, and variables in Groups 2 and 3 least
frequently, and hence, had a low false discovery rate.
This suggests that when using the weighted Lasso for
variable selection, no transformation of the p-value
based weights is necessary. This greatly contrasts from
using adjusted p-values to select significant variables
where transformation is needed to account for the
compounded error in multiple hypothesis testing.

We performed a second simulation study, where
in addition to generating variables as previously
described, we generated a variable x| that was
correlated with x, after adjusting for z, i.e., corr (x;, X|)
= 0.8, and such that x| does not act on y. In this case
then, the response variable becomes y + ,Bmﬁzxf and
By +2 =0. The additional covariate now corresponds
to Group 5, defined as

Group 5: x, is correlated with x; after adjusting for

treatment, but does not act on y.

Under this setup, we now consider parameter
values as B= (4.5, 3, -3, -3, 07,3, 0)" and B= (2.5,
1.5, =1.5, =1.5, 07, 1.5, 0)” where 07 is an
(m, — 4)-dimensional vector of zeros. (Results for the
latter 3 are displayed in Appendix A.2). Here, the ideal
weighted Lasso will choose variables in Groups 1 and
4, while not selecting variables in Groups 2, 3, and 5.

From Table 3, we see that the weighted Lasso with
weights based on the (adjusted) p-values had a slight
edge over weights based on inverted absolute partial
correlations or inverted absolute t-statistics. In this case,
the weighted Lasso with weights based on the
(adjusted) p-values incorrectly chose variables in Group
5 half as often as did the weighted Lasso with weights
based on inverted absolute partial correlations or
t-statistics. A possible reason for this is that for the
weighted Lasso with (adjusted) p-values as weights, the
average weight in Group 5 was at least 3.2 times larger
than the average weight in Group 1 (see Table 4). In
comparison, for the other two weighting schemes, the
average weight in Group 5 was at most 2.7 times larger

Table 3. Simulation results from 1000 simulations when
p=(45,3,-3,-3, 0", 3, O)T. Averaged percentages of
time variables in each group were selected and observed
false discovery rate (FDR). Ideal weighted Lasso will
largely select variables in Groups 1 and 4, and not select
variables in remaining groups.

Average Variables Selection

Weights | Ox, ylz B ! p | q
Treatment | 100.00 | 100.00 |100.00| 100.00 | 100.00
Group 1 | 71.93 71.93 | 69.93| 70.17 | 70.17
Group2 | 0.46 043 028| 029 029
Group 3 | 2.00 1.64| 048] 057 0.57
Group 4 | 84.30 83.70 | 74.30| 75.70 | 75.70
Group 5 | 8.50 8.10| 4.60| 480| 4.80
FDR | 0.11 0.10| 0.05| 0.06| 0.06

Table 4. Summary statistics of weights when (4.5, 3, -3,
-3,0', 3, O)T. Average weight (Mean), and 25%, 50%, and
75% quantile of weights from each group. Ideal weighting
will have small weights in Groups 1 and 4, and large
weights in Groups 2 and 3.

Weights Group 1 | Group 2 | Group 3| Group 4 | Group 5
Mean | 3.20 | 41.75]71.45| 2.44 | 8.13

-1
Pxyla|  Qpos | 202 | 5.62| 6.17 | 244 | 8.13

Ops | 223 | 9461006 | 2.44 | 8.3
Ouzs | 3:89 | 20.16 [ 20.68 | 2.44 | 8.13

Mean | 049 | 6.85|11.74 | 036 | 131

-1
7 Qpps | 029 | 091 1.00 | 036 | 1.31
Ous | 033 | 1.55| 164 036 | 131
Opzs | 060 | 331] 339 036 | 131

Mean| 0.03 [ 0.50[ 0.50 [ 0.03 | 0.18
P Oups| 001 | 027] 030 0.03| 0.18
Ous | 001 | 050 049 0.03| 0.18
Oprs| 004 | 074] 070 | 0.03 | 0.18

Mean| 0.13 [ 0.77[ 0.77 | 0.12 | 0.44
PP 0y, | 006 | 070 071 0.12 | 0.44
Ops | 009 | 083 082 0.12 | 0.44
Opqs| 019 | 090| 089 | 0.12 | 044

Mean | 0.11 | 0.63 [ 0.62 ] 0.10 | 0.36
q Opps| 0.05| 057| 0.57] 0.10 | 036
Ous | 007 | 067 066 0.10 [ 0.36

Ouss| 015 073| 0.72] 0.10 | 036
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than the average weight in Group 1. In a sense then,
with inverted absolute partial correlations or t-statistics
as weights, the weighted Lasso had trouble determining
whether Group 5 should be included or not.
Consequently the weighted Lasso with weights based
on inverted absolute partial correlations or t-statistics
had larger FDR than the other weights based on
(adjusted) p-values.

As with our first simulation study without Group
5, we see similar behavior between weights based on

Inverted Absolute Partial Correlations

o
—

o0

4 1

%E
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Group 1 Group 2 Group 3 Group 4 Group 5

partial correlations or t-statistics, and between weights
based on (adjusted) p-values (see Fig. 2). In both cases,
the variability and spread within each group are again
similar. In terms of low false discovery rates and overall
performance, the weighted Lasso with p-values as
weights performs well in this more challenging situation
of Group 5 being included. The results of our simulation
study suggest that the work in the weighted Lasso of
Garcia et al. (2013a) can be simplified: one only needs
to compute individual p-values, without the additional
task of making adjustments.

Inverted Absolute t-Statistics
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Fig. 2. Boxplots of weights in each group for different weighting types when = (4.5, 3, -3, -3, 07, 3, 0)”. All weights have been
standardized by the median over all groups.
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4. ANALYSIS OF MICROBIAL DATA

Recent studies have indicated a link between body
weight regulation and diets rich in dairy (Zemel 2003
and 2005). Other studies demonstrated that diet content
highly influences gut microbiome diversity (Abnous et
al. 2009, Li et al. 2009), and, in turn, these gut microbes
impact bodyweight regulation components like host
energy homeostasis, fat storage, and insulin insensitivity
(Musso et al. 2011). Motivated by these findings,
biologists seek to determine those microbial genera
which affect phenotypes related to bodyweight
regulation, while incorporating the fact that diet impacts
these phenotypes.

To answer this question, a biological study was
performed where twenty male, genetically similar mice
were randomly assigned to one of two diets. Each diet
group contained ten mice and differed as follows: an
isolated soy protein diet and a non-fat dry milk. The
latter diet is known to result in weight gain, while the
former promotes reduced weight gain (Thomas et al.
2012). After 12 weeks of feeding, feces from each
mouse were collected and analyzed for microbial
communities via pyrosequencing. For each mouse, the
data available consists of the percentages from 37
different microbes present in the feces, diet and
information for plasma insulin concentration in pg
insulin/ml plasma. The key interest is to determine
which microbes have a relationship with insulin after
accounting for diet.

Applying the weighted Lasso under the five
proposed weights in Section 2 led to Alistipes and
Moryella always being selected. Some of the weights
did select additional microbes, but having Alistipes and
Moryella selected by all methods suggests that these
two microbes have an important impact on insulin. Its
biological implications, however, are still not well
understood since inter-kingdom signalling and cross-
talk between microbes is still a new field (Pacheco and
Sperandio 2009). Further biological experiments are
needed to truly understand their impact. Still, our
method’s results are essential in defraying laboratory
costs and conserving resources. Future designed
experiments can focus entirely on Alistipes and
Moryella, rather than the remaining 35 irrelevant
microbes.

5. CONCLUSION

We conclude that in the p > n context, when part
of the regressors can act on both the response and some
of the other explanatory variables, using structural

information to construct feature weights in the weighted
Lasso greatly aids the variable selection. We have
shown that the results from Garcia et al. (2013a) extend
from using g-values to any other informative measure
of significance, such as p-values and adjusted p-values,
or partial correlation coefficients and test statistic
values. Each such measure of significance has its own
merits. By construction, using test statistic values and
partial correlation coefficients has the advantage that
no distributional assumptions are necessary to construct
the weights. In our simulation, using p-values slightly
outperformed the other four weights considered.
Finally, using BH adjusted p-values and g-values has
the advantage that such weights link well to alternative
procedures to the weighted Lasso, for example any
multiple testing method. In this article we focused on
using measures of significance based weights for a
structural regression problem. In the future, it will be
worthwhile investigating how such weights aid in
hierarchical selection problems, for example as in
Garcia et al. (2013b), where features are classified into
groups, subgroups and single components.
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Appendix: Sketch of Technical Arguments

A.1 Minimizer of Weighted Lasso

A necessary and sufficient condition for B to be
the minimizer of Q() is that the subdifferential 9 O(f)

at f= ﬁ is zero (see Bertsekas (1995, p. 736)). Thus,
the subgradient of O(f) with respect to 8, must satisfy:

OZ_Vil’(_k) +V£Vkﬂ’\k +/1wkuk, (Al)
where
/f)k ) Bk #0
U = By

€ {l/lk :|l/lk|S1}, Bk =0.

Eliminating the k" covariate from the model, i.e.,

having B, =0, is equivalent to (A.1) satisfying:

0= _Vir(_k) + ﬂWkuk,

where |u,| < 1. Simplifying, we have that u,

= v{r(_k)/(/iwk). But because [u,| < 1, it follows that

B, =0 when ‘V{r(_k)‘ / |/1wk| <1, or equivalently,

‘V{r(_k)‘ < |A,Wk|

Because A > 0 and w, > 0, the absolute values on
the right hand side can be dropped, and thus the result
in (2) holds.

On the other hand, when f, #0, the subgradient
equation (A.1) is equivalent to

PN

Bi

T T o,
0= —Vkl‘(_k) + Vi Vkﬁk +ﬂWk T
k

T T Awg ) 5
=—=ViLp) +(Vk Vi +T],Bk-

k

which implies that

T
N Vkr(_k)
B =

V]{Vk +A,Wk /‘Bk| ’

Taking absolute values of both sides yields

T
‘Vkr<_k)‘

T
‘VkW—M‘ _
ngk +/1Wk /‘ﬂk|

Vzvk +ﬂWk /‘ﬂk‘

|Bk|=‘

where the second equality follows from the fact that

viv, + A, /‘ﬂAk| >0 given that A> 0 and w, > 0. Thus,

‘Bk|(V1€Vk + Awy /‘Bk|) = ‘Vir(—k)

from which we obtain

b

5 T
|:Bk‘ = (Vi v =AW vy

It is important to note that because [, #0,

condition (2) does not hold; hence, Vgr(_k)‘ > Awg, and

so the numerator in |,/3’k‘ above is positive. Finally,

using this form of |ﬁk‘ we obtain

T T
B, = Vil-r) _ Vil-x)
k = ~ 1T
T T
ViV +ﬂwk/‘ﬁk| ngk +‘ /IWkaVk

T

Vi l‘(_k)‘ - ﬂWk
T

Vkr<_k)

- T T T
ViV ‘Vkr(_k)‘/(‘vkr(_k)‘—ﬂwk)

T T
Vkr(_k) (‘Vkl‘(_k)‘ —/IWk)

T T
ViV ‘Vkr(_k)‘

T
Vilno (|7 T
= T ‘Vkr<_k)‘—/1wk ViVis
‘VkW—M‘

which is exactly the form in (3).

A.2 Additional Numerical Results

Results from simulation study when g = (2.5, 1.5,
-1.5,-1.5, 07, 1.5)7 in simulation study 1 and = (2.5,
1.5,-1.5,-1.5, 07, 1.5, 0)” in simulation study 2. The
results follow analogously to those in Section 3, except
that the variable selection percentages are lower. This
is due to the fact that the signal to noise ratio is much
lower than for the results presented in Section 3. Still,
however, we still observe that the weighted Lasso with
p-values as weights generally leads to the most
reasonable results in terms of low false discovery rates.
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Table A.1. Simulation results from 1000 simulations when
p=(2.5,15, -1.5,-1.5, 0, 1.5)T. Averaged percentages of
time variables in each group were selected and observed
false discovery rate (FDR). Ideal weighted Lasso will
largely select variables in Groups 1 and 4, and not select
variables in remaining groups.

Table A.3. Simulation results from 1000 simulations when
p=(2.5,15,-1.5-1.5, 0, 1.5)T. Averaged percentages of
time variables in each group were selected and observed
false discovery rate (FDR). Ideal weighted Lasso will
argely select variables in Groups 1 and 4, and not select
variables in remaining groups.

Average Variables Selection
-1
Weights | |Ox ylz ] p P q
Treatment [ 100.00 100.00 | 100.00 | 100.00 {100.00
Group 1 40.57 | 41.33 | 46.80 | 43.53| 43.53
Group 2 0.51 0.50 0.57 047 047
Group 3 2.19 1.96 | 0.78 097| 097
Group 4 60.20 | 59.40 [ 52.00 | 51.50| 51.50
FDR 0.16 0.14| 0.10| 0.10( 0.10

Table A.2. Summary statistics of weights when f= (2.5,

1.5,-1.5,-1.5, 07, 1.5)". Average weight (Mean), and 25%,

50%, and 75% quantile of weights from each group. Ideal

weighting will have small weights in Groups 1 and 4, and
large weights in Groups 2 and 3.

Weights Group 1 |Group 2 |Group 3 |Group 4
Mean 475 1146.11 | 70.32 3.44

-1
px,y\z Q0.25 2.40 5.58 6.19 3.44

Ous | 273 | 942 1018 | 3.44
Ouss | 609 | 19.88 | 21.45 | 3.44

Mean | 075 | 24.01 [ 1155 [ 0.53

U Ours | 036 | 090 | 1.00 | 053
Ous | 042 | 154 166 053

Ouss | 097 | 326| 3.52| 053

Mean | 0.07 | 050 | 050 | 0.07

p Oups | 002 | 027] 030 007
Ous | 003 | 050 050 0.07

Ouss | 010 | 073 | 071 007

Mean | 028 | 0.79 | 079 | 029

P Oprs | 017 | 072 073 | 029
Ous | 024 | o084 083 029

Ouss | 037 | 090| 090 | 029

Mean | 023 | 065 | 065 | 024

q Oups | 014 | 059 0.60 | 024
Ous | 020 | 069 069 | 024

Ouss | 030 | 074| 074 | 024

Average Variables Selection

weights | |oxyul | 17| 2 | 2| 4
Treatment [ 100.00 [100.00 |99.90 |[100.00 [100.00
Group 1 37.60 | 38.37 | 4553 42.20| 42.20
Group 2 0.67 0.65 0.65 0.62| 0.62
Group 3 2.03 1.90 | 0.94 1.03] 1.03
Group 4 57.10 | 57.10 | 51.40 | 51.50( 51.50
Group 5 7.30 680 | 4.80| 5.70( 5.70

FDR 0.20 0.19 | 0.14| 0.15 0.15

Table A.4. Summary statistics of weights when = (2.5,
1.5,-1.5,-1.5,07, 1.5, O)T. Average weight (Mean), and
25%, 50%, and 75% quantile of weights from each group.
Ideal weighting will have small weights in Groups 1 and 4,
and large weights in Groups 2 and 3.

Weights Group 1 | Group 2 | Group 3 |Group 4 | Group 5

Mean | 3.69 | 52.89 [ 51.01 | 3.62 | 38.64
' 00y | 242| 560| 612 3.62 [38.64
Ous | 276 | 9.53] 9.99| 3.62 [38.64
Qs | 449 | 20.65|20.22 | 3.62 |38.64

px, ylz

Mean| 0.57 | 8.68] 838] 0.56 | 6.33
17" Oyps | 036 0.90| 0.99| 0.56 | 633
0,5 | 042 156[ 1.63] 0.56 | 6.33
Opas | 071] 3.39] 332 0.56 | 633

Mean| 0.07 | 0.50[ 0.50] 0.07 [ 0.25
P Ops | 002 027 030 0.07| 0.25
O, | 0.04] 051[ 050] 0.07| 025
Opas | 010 | 0.74] 0.69| 0.07| 0.25

Mean| 028 | 0.78] 0.78] 026 | 0.55
PP 0,6 | 017 071| 0.72] 026 | 055
0,5 | 024 084] 0.83] 026 | 0.55
Opss | 037 0.91] 0.89| 0.26| 0.55

Mean| 023 | 0.64] 0.64] 021 045
g Ops | 014 059 0.59( 021 0.45
Ops | 020] 0.69] 0.68] 021 | 045
Opss | 030 | 0.75] 0.73 | 021 | 0.45
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Fig. A.1. Boxplots of weights in each group for different weighting types when #= (2.5, 1.5, —1.5, —1.5, 07, 1.5)". All weights have been

standardized by the median over all groups.
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