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SUMMARY

In situations where the experimental or sampling units in a study can be more easily ranked than quantified, McIntyre
(1952) proposed that the ranked set sampling (RSS) provides the unbiased estimator of population mean with smaller variance
compared to the simple random sampling (SRS) of the same sample size. Mclntyre’s concept of RSS is completely non-
parametric in nature and assumed that the set size used in the experiment is small. When set size is very large, there arises a
case in which it is very difficult to assign proper individual rank to all the units by visual inspection or other rough-gauging
methods. This means that for large set size, there may be more than one order statistics corresponding to each rank orders. In
this paper we have generalized the ranked set sampling theory for large set size using the idea of Probability Proportion to
Rank Size Matrix (PPRSM). An estimator of population mean has been proposed. Properties of the proposed estimator in the
lines of Yanagawa and Shirahata (1976) have been discussed.

Keywords: Probability proportion to rank size matrix, Order statistic, Ranked set sample, Rank size matrix, Relative precision,

Unbiased estimators.

1. INTRODUCTION

Ranked Set Sampling (RSS) is useful especially
when visual inspection, or other rough gauging methods
can order elements of each set readily, whereas the
exact measurement of an element is costly in time or
effort. Ranked set sampling was actually applied in the
pastoral Research Laboratory, CSIRO, at Armidale,
N.S.W., Australia; when a plate with four holes was
randomly set on a field, pasture in each hole was
visually compared, a hole was selected and its pasture
was repeated in, and its dried weight was measured. The
method has also been applied to estimate rice crop
yields in Okinawa, Japan, where squares of rice field
were visually compared before selecting for
measurement. Takahasi and Wakimoto (1968) derived
the theory of RSS and proposed independently the same

estimator X of population mean u, as suggested by
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Mclintyre (1952). Yanagawa and Shirahata (1976)
proposed ranked set sampling theory with a selective
probability matrix to estimate the population mean.
Their estimator was a generalization of McIntyre and
Takahasi and Wakimoto’s estimator. Yanagawa and
Chen (1980) considered the ranked set sampling theory
with half-selective probability matrix. The estimator,
termed as MG estimator, was constructed with half of
the selective probability matrix. Chen (1983) introduced
an estimator of the population mean by using the idea
of selective probability vector and used the optimization
algorithm of linear programming to find the optimal
solution of the selective probability vector under the
condition of unbiasedness.

The basic concept behind RSS with equal
allocation can be briefly described as follows: Suppose
(X}, Xy, ... X)) is a simple random sample from F(x)
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with a mean 1 and a finite variance ¢®. Then a standard
n

unbiased estimator of [ is X -1 X; with var X =
n

@?|n. In contrast to simple random éalmpling (SRS), RSS
starts with taking a simple random sample of size k
from the population and the k£ sampling units are ranked
on the basis of personal judgment or a concomitant
variable, say X, without actual measurement. Then the
unit with rank 1 is identified and taken for the
measurement and the remaining units of the sample are
discarded. Next, another simple random sample of size
k is drawn and the units of the sample are ranked by
judgment, the unit with rank 2 is taken for the
measurement and the remaining units are discarded.
This process is continued until a simple random sample
of size k is taken and ranked and the unit with rank &
is taken for the measurement. This whole process is
referred to as a cycle. The cycle then repeats m times
to get a ranked set sample of size n = km from the
population of size N = k*m.

When set size is very large, there may arise the
situation where it is very difficult to assign proper
individual rank to all the units by visual inspection or
other rough-gauging methods. This means that for large
set size, there may be more than one order statistics
corresponding to each rank orders. Following the idea
of Yanagawa and Shirahata (1976), this paper
generalizes the ranked set sampling theory for large set
size using the Probability Proportion to Rank Size
Matrix (PPRSM).

In Section 2, we describe the procedures given by
Yanagawa and Shirahata (1976), Yanagawa and Chen
(1980) and Chen (1983) in brief. In Section 3, we
introduce the idea and construction of Probability
Proportion to Rank Size Matrix (PPRSM) and proposed
an estimator of population mean . In Section 4, the
properties of the proposed estimator have been
discussed. Section 5 demonstrates the proposed design
with the help of empirical study on two real data sets.
The findings of the paper are concluded in Section 6.

2. A BRIEF DESCRIPTION OF VARIOUS
PROCEDURES USING SELECTIVE
PROBABILITY MATRIX/ VECTOR UNDER
RSS

In this Section we shall describe in brief the
procedures given by Yanagawa and Shirahata (YS-

procedure (1976), Yanagawa and Chen (MG-procedure
(1980) and Chen (Chen-procedure (1983)) which are
as follows:

2.1 YS-Procedure

Select randomly mn elements from the population
and split them into n sets each of which consists of
M elements; rank the elements in each set according
to the order of magnitude of the characteristic to be
estimated; choose the j smallest element from the i
set with probability P and measure the selected
element for i=1,2, .., n, andj=1, 2, ..., m, where

m
Z p; =1 for all i; estimate the population mean U by

=1 ) .
theans of the arithmetic mean of the measured values.

m
The nxm matrix P with elements Py such that Z p; =1,

i=1,2, .., nis called the Selective ProbabilijtylMatrix
(SPM). The estimator which is given by specifying that
the SPM be equal to an identically matrix when m = n
is called Mclntyre, Takahasi and Wakimoto’s (MTW)
estimator.

Let X, denote the measured value of the j smallest
element from the i set with probability p,, for i = L,

m

2,...n,and j =1, 2, ..., m, where Z p; =1 forall i.
=1

Then the estimate (Xyg) of the population mean under

Y S-procedure is given by
_ 10
Xys==—» Xj

2.2 MG-Procedure

Select n = 2/ sets of elements each of size m from
the population randomly, and arrange them in order of
magnitude among the m elements in each set by visual
inspection or other rough-gauging methods. Let 7, 7,
..., I, be independent random variables such that 7, takes
value j with probability P fori=1,2, ..,/ andj=1,

m
2, ..., m, where Z p; =1 for all i. If I, = i,, then select
=
the i{h smallest element from the first set and the (m —
i, + 1) smallest element from the n™ set, and measure

them. If 7, = i,, then select the i;h smallest element and
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the (m — i, + 1)" smallest element respectively from
the second and the (7 — 1) set, and measure them, and
so on. Estimate the population mean 1 by the arithmetic
mean of the measured values. This estimator is
equivalent to the MTW-estimator when m = n, p;=1
andpl.j =0 forizj, fori=1,2,..,Landj=1,2, ...,
m. Note that the SPM in the MG-procedure is given by

m
! x m matrix P = (pl.j.) such that Z pj =1fori=1,2,
ol =
Let Xl] denote the j” smallest order statistic of a
random sample of size m selected from the i set, and
if 1, L, ..., =(i, iy, ..., i) is selected. Therefore the

estimator (Xyg) of population mean under this
procedure is given by

|
Xme =%Jz:1(xj:ij + Xn-j+1m-, +1)_

2.3 Chen’s-Procedure

In this procedure, we select elements from the
population and split them into » sets each of size m;
rank the elements in each set according to the order of
magnitude of the characteristic to be estimated. Choose
one element from the i ordered set, (O, 0y, ... 0,),

i= 1’ 27 w1, Say(o.l.k17 02k2 LI

from the first set choose Oy, from the second set

Oy, ) This means that

choose Oy, and finally choose Oy from the n” set.

Suppose (O, O, drawn with

Onkn) is
m
Pigky...k, = B
kykp' k=1
the probability of drawing 0 . Measure the value

probability Py, k. such that

of the characteristic of element Qy . of the i

setfori=1,2,..,nand k=1, 2 ...., m. Estimate
the population mean U by means of the arithmetic
mean of the measured values. The

probability vector P :{ Pk, ... k. |1s k,<m,..1l<k, < rr}

m
with >
Probability Vector (SPV). This estimator is equivalent
to the MTW-estimator if m = n and Pkk,..k, = 1 if k,=
i for all i, Phk,.k, =0 if k, #iforalli.

Piko..ky is called the Selective

Let X;.; denote the measured value of the

characteristic of element Q.; of the i group, then the

estimator (Xc) of the population mean under this

n
procedure is given by Xc 1 Z X -
3. PROBABILITY PROPORTION TO
RANK SIZE MATRIX (PPRSM)

Suppose a sample of size nm is drawn from the
infinite population having mean u and finite variance.
Split them into # sets, each of size m. Rank the elements
in each set according to the order of magnitude of the
characteristic to be estimated by visual inspection or
some other rough-gauging methods. For large m, many
units in each set may get the same rank because it is
quite difficult to distinguish them by the rough-gauging
methods, even the measure values are same. For
example, suppose we want to estimate the average
height of the trees in an area which were planted under
a scheme of Government/ other Agencies over a period
of two years. It is clear that all the trees which were
planted at the commencement of the scheme will have
more or less same height. Moreover, those which were
planted at the end of the second year will also have
similar heights but different from the earlier ones.

Suppose m; (i = 1, 2, ..., n, | < m, < m) is the
number of order statistics in the i’ set and n; i=1,2,
n,j=1,2,..m,0<n_ <m)is the number of units
having the j order statistic in the i set. We can easily
arrange these n;’s in the form of a matrix of order n x
m we call it as Rank Size Matrix (RSM). Thus RSM,
R = (n, )

My My . My rhmg
b1 Moo ... nzj e anD
0 : : 0
_ g O
R=ry n, .. ny .. nnQg ()
U : : o
il 0
@nl N2 nnj nnmgnxm
m
Zn”—m,OSnU.Sm,l—l,L nj=1,2,..m

Let p, denote the probability proportional to the
number of elements n; in the (i, j)” cell of R, i.e.
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n..
P;= ﬁ The matrix of pl.j’s becomes the Probability
Proportion to Rank Size Matrix (PPRSM), P = (pl.j)
This can be written as

nxm’

(P P2 - Py plmg
%321 Pz o P2j Pomp;
Gl : : 0
p=0 O 2
P1 B2 - B PmO 2)
ER : ;O
0 0
BPr1 P2 - Pnj p”mg]xm

IR . -
pl.j—E,Jle” Lo£p,£1,i=1,2,..nandj=1,

2, ...m

The procedure for the construction of the
estimator to be proposed is as follows:

(i) Select an order statistics from the i row with
probability set (9, p,, ... Bm)s1<m,<m,i=1,
2, ... 1.

(i1) Measure the characteristic of the selected unit and
denote it by X.. Here X, can be considered as a
random variable and denote its cumulative
distribution function (cdf) by F(X).

The proposed estimator is,

Zl Xi 3)

when n, = 1, for all i & j, and n = km for an
integer k, this unbalanced ranked set sampling
becomes balanced ranked set sampling. Further if
n = km for an integer k and X; is selected for
measurement with probability p,. for each i, the

X =

S|

estimator X equals the McIntyre and Takahasi
and Wakimoto’s (MTW) estimator.

4. PROPERTIES OF THE PROPOSED
ESTIMATOR

It is clear from the above construction that the
CDF of X is given by

m
PX,<x)= ) RiFm (¥ 4
=

where

-10_ .
dFp =M é’j“_l 00 F (N oF ()

is the pdf of the j order statistic in the i set, j = 1, 2,
.m,i=1,2,..nand 1 <m, < m. The following
Theorem 1 gives the unbiasedness condition of the
proposed estimator. In Theorem 2, the variance of the
proposed estimator has been obtained. Theorem 3
shows the utility of our proposed estimator with respect
to estimator under simple random sampling. In Theorem
4, we find the optimal RSM or corresponding PPRSM.

Theorem 1. The estimator of the population mean u
given in (3) is an unbiased estimator if and only if the
Rank Size Matrix (RSM) R satisfies,

n
2"

n’m

, 1= 2, ..m %)

>

m
1

|
Proof: Let us denote by p and [y, j,the means of F

and Fp, j respectively. In general we have

Mm 1S Hm 2 SHmm, 151 2, .0 (6)

and
1 &4
H=— . 1'“m-j (7N
m =5
Thus ;
_ Mmoo 0O
)
1 n 1 n m
= —z E(Xi):_zz PijHm.j: therefore
n= N==
_ 188 1 o<
E(X)_Uzﬁzzpﬂﬂml_ n zzﬂm-j
1=1]=1 Zm 1=1j=
1=1
1 0

The necessary and sufficient condition for

E(X)-#=0 for any CDF F s
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B 1
n_ n
>m
Or A
n r.|2
P = =L 2 .m
1=1
m
Or
n n’m
n = , 174 2, .m

which is the same as (5).

Theorem 2: If O is the class of all RSM’s R defined

by
2
E’Q:R isaRSM suchthatinijz nm .
EE - m 0O
: 2" g
H for each jH
¢y
Then the variance of X when R is given by
_ 1 n 0m 52
V(X|R)—Hj‘x2dF(X)—n2 2; > My, Jﬁ )
Proof:
var (X|R) = E(X)? - (E(X))’
o DZ O .n 2
=EG- ) X0 O—
SRR T

Since all X’s are independent, therefore

_ n n [m D2
Var (X|R )_iz E( ) iz F’ljﬂm.jﬁ

n"f= n"f=Eg=

, n Om f
‘_IX dF(x) ——— 27 Zﬁznjrum Jﬁ
which is the same as (9).

Theorem 3: If Var (X |Rg) denote the variance of the
estimator X under simple random sampling, then for

any R , Var ()?|RR)2V()?|R), for any fixed F
with finite variance, and

Var (X|Rg )=V (X|R)iff R = Ry, .

Proof: For simple random sampling the RSM Ry
= (1) IS

am

: i=1 2,..n,j=1 2,...
Eb ;  otherwise

We know for R [

m
Er (Xi)= Pikn.j
=

1 m
72,
and Eg, (X)=p

Therefore we have from (9) and (10)

(XIR)

Var (X|Rg )-Var

_lop (x.)_i S 112
g M nZ,Zl
_1 2 2
==0y Bz (Xi)-ne’0
n’ 5
12 2
=55 (Er(Xi)-#) 20
n"f=

with equality if Ep(X)) = u= Eg, (X)),
ie. R=RR0rnl.j= m, i=1,2,..n
m
Theorem 4: The RSM that maximizes
n m

|=1a=ja:j

Mo (1
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forallj,j =1,2,...m,i=1,2, ..n minimizes

1

Var (>2|R), RO for all cdfF.

The maximum value of (11) is given by

HE+(d) ﬂdﬁg)("i' H % ), if fi5=HdE (12)

and

d

g if Hl;H<BdE (13)
where

g = m i+

j-E(mj j+ (14)

and [a} ] is the maximum integer not larger than d]

The proof of Theorem 4 is based on the following
Lemma 1.

Lemma 1: Assume that the real numbers 4, B, i = 1,
2, ... m satisfy

B,<B,<..<B, (15)
n
> A=0 (16)
1=1
and
m
DA20 =12, (17)

Then Z AB =0
1=1

Proof of Lemma 1: From (17) we have 4, > 0 and
A, +4, ,=0. Hence from (15) and (16)

S AB=AB+Y AB+> AB -3 AB
=1 1=2 1=2 1=2

3

AB-B)+BY A =Y A(B -B)
1=1 1=2

33
NI\.)

A(B —By) + An1(Bnt —By) +An(By —By)

1l
N

m-2

> Z A (B =B +Ana(Bna =By +An(Bna —B) -

m

jA(a B) +(Ant +An) (Bt ~BY)

1=2

m-3

=Y A(B -B) + A (B ~B)
1=2

(A1 + An) By ~B)
> 23A<a ~B) * An-o(Bns ~B)

H(An 1+ Ar)(Brz ~B)
: EA(E% ~B) +(Anz +Ana +An)(Brz B

A repetition of this process shows that

ZAia > (A + Ag+...

=1

An)(B; —By) 20

This completes the proof.

Proof of Theorem 4: From (9) it is clear that the
problem of minimizing Var (X |R) implies that the

n [Om f

problem of maximizing z N L. jﬁ . In order to
=1 =1

find the optimal RSM which maximizes

n [Om f

Zﬁ‘znjﬂmjﬁ let us take two RSM R and R*
=1[]=1

defined as R = (n)

7/ nxm

and R* = (n;})nxm. Let R* is
the required optimal RSM, then in order to show

nOm , O a0
Zﬁznjﬂm.j 2 szlmﬂmﬁ
n Hm f Om DZE
; 2 urumjﬁ ﬁjzl“w“mﬁ %
~ n [m [ m m U
2 :1nu'um i+ MjHm jﬁjzlnu'“m y +znu'“m ﬁ
m [Jm mMm,, 0
=2 :l(rh +ny )ﬂm'j%,zzl(nj' ”ij')ﬂm.rﬁ
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=}

m Table 1a. Observations on girth and height

n; + -y
& ,:1( i+ e, Z( v . S.No. Girth Height
1 83 70
m n m
= . e = I M 18)
Him. | MMy =Ny Jm j 20 (
&4 qu( )“ 2 8.6 65
In view of Lemma 1 we may show that 3 8.8 63
4 10.5 72
mm
| Z Z (nij Ny — NNy ),um.j, >0 5 10.7 81
JHasE 6 108 83
For all, j = 1, 2, ... m, My j satisfies (15) and 7 11.0 66
nom (i ) 8 11.0 75
NN —n..n., ’u K -
;Jﬂ it N JMmL ) satisfies (16) as 9 11 20
n m ( o ) 10 11.2 75
n.n.., —n..n., ’u .
i T TR JHm
;J = 11 11.3 79
12 11.4 76
n,m m 0
=ZEW Zr\j'ﬂm.j' _nijznij',um.fﬁ 13 11.4 76
=g = =
14 11.7 69
n
=S (WmEx (X;) -y mEr (X)) =0 s 12,0 75
= 16 12.9 74
To show (18), the same Lemma implies that we may
17 12.9 85
show
18 13.3 86
nm m . o,
z > Z NaNa' ~NgNgr 20 forall j,j'=1,2, ..m, 19 13.7 71
1=1 a=) =]
, o o 20 13.8 64
This fact implies that the RSM, R* maximizes (11)
and hence is optimal RSM. The maximum value of this 21 14.0 78
RSM can be found by the softwares on Operation 2 142 80
Research, as suggested by Yanagawa and Shirahata
(1976). Details of these methods are omitted for brevity. 23 14.5 74
24 16.0 72
5. EMPIRICAL STUDIES
25 16.3 77
In what follows, we consider two empirical studies 26 173 81
to demonstrate the utility of the proposed procedure. :
. 27 17.5 82
1. For the purpose of comparing the proposed
estimators, an empirical study on Davison (2005) 28 17.9 80
was carried out wherein a part the data (Table 1a) 29 18.0 20
of girth (inches) and height (feet) of 31 trees of ’
an experiment on ‘volume from measurements of 30 18.0 80
girth and height for future trees’ is taken for the 31 0.6 g7
estimation of population mean. Girth is the tree )
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Table 1b. Ranked set sample of set size 5 on girth

83 11 11 17.3 18.0
8.6 10.7 1.1 11.7 14.2
10.5 11.3 11.7 16.0 16.3
8.8 11.4 14.0 14.2 18.0
10.7 11.3 11.4 11.7 20.6

Table 1c. Ranked set sample of set size 5 on height

66 71 72 80 80
65 74 80 80 82
63 72 75 75 81
65 74 80 80 84
65 76 76 80 87

Table 1d. RSMs R(G) & R(#) for girth and height

Table 1f. RSM and PPRSM under SRS

11111 (/5 1/5 1/5 1/5 1/50
H1111 H/5 1/5 1/5 1/5 1/57
Rp=111110 P (/5 1/5 1/5 1/5 1/5]
11119 H/5 15 1/5 U5 15
Hi1115 H/51/51/51/5 1/55,

Table 1g. Relative precision based on PPRSM over an

estimator based on SRS

Parameters | Variance of Variance of Relative
estimators estimators Precision
using PPRSM using SRS
Girth 0.45 5.12 11.38
Height 2.63 42.42 16.13

respectively
O 211 0 11 2 0O
%1 2 1 og %1 2 1 og
1 2 2 0 ol 11 2 1 o
R(G):Er 121 q% R(H):Er 121 0%
H 31 o0 o, H 211 o5,
5
jz_lnij=5,0Sn,SS,t—1,2, 5,j=1,2,..5

Table 1e. PPRSMs, P(G) and P(H) for girth and height
respectively
[1/5 2/5 1/5 1/5 0] [1/5 2/5 1/5 1/5 0]
1/5 1/5 2/5 1/5 0 1/5 1/5 2/5 2/5 0
PG)=|1/52/52/51/50 P(H) =[1/5 1/5 2/5 1/5 0
1/5 1/5 2/5 1/5 0 1/5 1/5 2/5 1/5 0
1535 150 0f . [1/5 2/5 1/5 15 0]
N o
p=—, Y p=L0<p <1,1=1,2,..5=12.5

diameter measured at 4 ft 6 inch above the ground.
The Ranked Set Sample of set size 5 for girth and
height parameters is arranged into 5 X 5 matrices
(Table 1b and Table 1c). After ignoring the
fractional values the RSM and PPRSM for both
the parameters, the values are presented in Table
1d and Table le. Table 1f gives the same matrices
for the case of SRS. The calculated value of
relative efficiency of PPRSM based estimator over
SRS based estimator for both the parameters are
shown in Table Ig.

From Table 1g, it is clear that the relative
precision of the proposed procedure is quite high
for both the parameters (girth and height) of the
trees considered under the study.

. We borrow another data set from Parsad er al.

(2010) on biometrical character, average number
of green leaves of hybrid Jowar crops to compare
the performance of RSS and SRS based estimators
for set sizes 10 and 15. Here we have taken the
absolute values of the data while making RSM.
Table 2a and Table 2b show the RSM and PPRSM
for set sizes 10 and 15 respectively. In Table 2¢
we have shown the efficiency gain of PPRSM
based estimator over SRS based estimator for set
sizes 10 and 15.
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Table 2a. Ranked set sample, RSM and PPRSM for set size 10

6.4 6.4 6.8 69 69 7.5 7.7 8.8 10.6
48 49 5.5 68 7.7 8.4 9.3 9.5 98 118
5.6 5.9 7.4 82 93 9.4 11.6 11.6 1.8 118
6.4 7.2 7.4 84 84 8.8 8.8 9.5 95 116
48 5.7 5.9 8.1 9.4 9.5 10.5 1.5 1.6 118
6.4 7.2 7.5 75 8.4 9.3 9.4 9.7 99 106
6.9 7.4 8.2 8.2 8.4 8.4 8.8 9.9 100 10.6
48 6.4 6.8 74 77 8.4 9.3 9.3 9.4 9.5
48 5.0 5.9 64 15 7.7 7.7 9.6 100 116
5.6 5.6 6.4 64 68 6.8 6.8 6.9 75 82

[ 2 3 2 1 2 0 0 0 0 0o
2 1 1 1 2 2 1 0 0 0
2 1 1 2 4 0 0 0 0 0
1 2 4 2 1 0 0 0 0 0
1 2 1 2 1 1 2 0 0 0
1 1 3 2 2 1 0 0 0 0
2 4 1 2 1 0 0 0 0 0
1 1 2 2 3 1 0 0 0 0
2 2 3 2 1 0 0 0 0 0
2 2 4 2 0 0 0 0 0 0|

[ 0.2 0.3 0.2 0.1 0.2 0 0 0 0 0
0.2 0.1 0.1 0.1 0.2 0.2 0.1 0 0 0
0.2 0.1 0.1 02 04 0 0 0 0 0
0.1 0.2 0.4 02 0.1 0 0 0 0 0
0.1 0.2 0.1 02 0.1 0.1 0.2 0 0 0
0.1 0.1 0.3 02 02 0.1 0 0 0 0
0.2 0.4 0.1 02 0.1 0 0 0 0 0
0.1 0.1 0.2 02 03 0.1 0 0 0 0
0.2 0.2 0.3 02 0.1 0 0 0 0 0
0.2 0.2 0.4 02 0 0 0 0 0 0
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Table 2b: Ranked set sample, RSM and PPRSM for set size 15
5.7 5.9 6.4 6.8 7.4 7.5 7.7 8.2 8.2 8.3 8.4 9.3 9.3 9.5 11.6]
5.0 6.4 6.4 6.8 7.4 7.4 8.2 8.2 9.5 9.6 10.6 10.6 10.6 11.6 11.8
4.8 5.5 7.3 7.7 8.1 8.4 9.3 9.8 9.8 9.8 9.8 9.9 9.9 11.6 11.6
4.8 50 64 7.5 7.5 7.5 8.8 9.7 9.7 9.8 9.8 10.0 10.6 11.6 11.8
5.7 59 59 6.4 7.5 7.7 8.1 8.2 83 8.3 8.4 8.4 9.3 10.2 11.6
48 48 5.7 5.9 6.4 6.4 7.3 7.3 7.7 8.1 8.4 9.3 9.8 9.8 11.6
5.6 57 64 7.2 7.4 4.5 7.7 8.1 8.2 8.8 9.3 9.4 9.8 10.6 11.8
55 57 64 6.4 6.8 7.4 7.4 8.2 83 9.3 9.3 9.6 9.9 10.6 10.6
64 64 64 6.9 7.3 7.3 7.5 7.5 7.7 7.7 8.4 8.4 9.8 9.8 11.6
7.3 7.4 7.5 7.7 7.7 7.7 8.2 8.2 8.4 8.4 9.6 9.7 9.8 9.8 11.6
5.0 5.0 5.6 6.4 6.8 6.9 7.2 7.5 7.7 8.1 8.3 9.4 9.9 9.9 10.0
5.0 5.0 5.5 6.4 6.4 7.3 7.4 7.7 7.7 8.4 8.4 8.8 9.3 9.4 9.8
6.4 6.8 6.8 6.9 6.9 7.2 7.4 7.7 8.2 8.8 8.8 9.4 9.6 10.2 10.6
5.0 5.5 5.9 5.9 6.4 6.8 7.7 8.4 8.4 8.4 9.6 9.8 10.2 11.6 11.8
[ 5.0 5.0 5.6 5.6 6.4 6.4 6.8 7.2 7.2 7.4 9.4 9.8 9.8 10.6 11.8
3 2 6 2 1 1 0 0 0 0 0 0 0 0 0]
1 2 3 2 2 3 2 0 0 0 0 0 0 0 0
1 1 1 3 1 6 2 0 0 0 0 0 0 0 0
2 1 3 1 4 1 1 2 0 0 0 0 0 0 0
4 8 1 1 1 0 0 0 0 0 0 0 0 0 0
2 4 2 3 1 2 1 0 0 0 0 0 0 0 0
3 2 4 3 1 1 1 0 0 0 0 0 0 0 0
4 3 2 2 2 2 0 0 0 0 0 0 0 0 0
3 3 6 2 1 0 0 0 0 0 0 0 0 0 0
2 8 4 1 0 0 0 0 0 0 0 0 0 0 0
2 2 3 4 1 3 0 0 0 0 0 0 0 0 0
2 3 2 4 3 1 0 0 0 0 0 0 0 0 0
1 6 2 2 2 1 0 0 0 0 0 0 0 0 0
1 4 1 3 3 2 0 0 0 0 0 0 0 0 0
| 2 4 4 1 2 1 1 0 0 0 0 0 0 0 0.
(315 2/15 615 215 115 115 0 0 0 0 0 0 0 0 0]
/15 2/15 3/15  2/15  2/15 3/15 2/15 0 0 0 0 0 0 0 0
/15 115 1715 3/15 1/15 6/15  2/15 0 0 0 0 0 0 0 0
2/15  1/15  3/15 /15 4/15 1/15 /15 2/15 0 0 0 0 0 0 0
415 8/15 1/15 1/15 1/15 0 0 0 0 0 0 0 0 0 0
2/15  4/15  2/15 3/15 1/15 2/15 1/15 0 0 0 0 0 0 0 0
3/15  2/15  4/15 3/15 1/15 1/15 1/15 0 0 0 0 0 0 0 0
415 3/15  2/15 2/15 2/15 2/15 0 0 0 0 0 0 0 0 0
3/15  3/15  6/15 2/12 1/15 0 0 0 0 0 0 0 0 0 0
2/15  8/15 4/15 1/15 0 0 0 0 0 0 0 0 0 0 0
2/15  2/15 3/15  4/15 1/15 3/15 0 0 0 0 0 0 0 0 0
2/15 3/15 2/15  4/15  3/15 1/15 0 0 0 0 0 0 0 0 0
/15 6/15 2/15  2/15  2/15 1/15 0 0 0 0 0 0 0 0 0
/15 4/15 1/15  3/15  3/15 2/15 0 0 0 0 0 0 0 0 0
| 2/15  4/15  4/15 1/15 2/15 1/15 1/15 0 0 0 0 0 0 0 0_
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Table 2c: Efficiency gain based on PPRSM over an
estimator based on SRS

Variance of Variance of Relative
Set size estimators estimators Precision
using PPRSM using SRS
10 0.23 4.47 19.43
15 2.75 61.26 22.28

6. CONCLUSIONS

When the measurements of units are very costly
and time consuming and there is heterogeneity between
the units of the population, the SRS become useless.
In such situations, RSS is a cost-effective and precise
method of sample selection. Furthermore, if the set size
used in the experiment is very large then the technique
of construction of PPRSM is appropriate for estimating
the population mean. In this discussion, the proposed
design is more efficient than SRS for estimating mean
of the population, under the assumption that ranking of
sampling units are easier than actual measurements. It
also contains the information about all order statistics.
We have demonstrated theoretically as well as with the
help of two empirical examples that the proposed
procedure is more advantageous in comparison to
existing procedures of RSS for large set size in the
sense that it provides unbiased estimators as well as it
give equal importance to all the rank orders.
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