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SUMMARY

Parker et al. (2006, 2007a, 2007b) have constructed balanced and unbalanced split-plot Box-Behnken designs and Central
Composite designs involving quantitative factors using second-order split-plot response surface designs. In this paper we have
developed balanced and unbalanced response surface designs under split-plot structure involving both quantitative factors and
qualitative factors based on the designs given by Parker e al. (2006, 2007a, 2007b). In all these designs we have considered

qualitative factor as a hard to change factor.
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1. INTRODUCTION

Box and Wilson (1951) introduced the concept of
Response Surface Methodology (RSM) which has been
discussed by many others. Some of the recent reviews
are Neff and Myers (2000), Myers and Montgomery
(2002), Myers et al. (2004), Box and Draper (2007),
Andersoncook ef al. (2009), Khuri and Mukhopadhyay
(2010). Response Surface designs have been found to
be efficient, economical and are useful for developing,
improving and optimizing processes. The classical
response surface designs have been developed using
completely randomized designs assuming that the levels
of all factors are equally easy to change. But in
industries and manufacturing processes, often we come
across situations involving two types of factors - hard
to change (HTC) factors, whose levels are difficult to
change, and easy to change (ETC) factors, whose levels
are easy to change. In such situations complete
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randomization of the design is not appropriate, so split-
plot design structure is used. Under split-plot
nomenclature there are two distinct types of
experimental units, each requiring separate
randomization. HTC factors are randomly assigned to
the whole-plot experimental units and ETC factors are
assigned randomly to sub-plot units. This random
assignment of factors gives rise to two error terms,
whole-plots error 0 and sub-plots error & When the
numbers of sub-plot runs in the whole-plots are same,
the design is said to be balanced and when the whole-
plots are of different sizes then the design is said to be
unbalanced. Kowalski (2002), MclLeod and Brewster
(2004), Vining et al. (2005), Montgomery (2005),
Kowalski et al. (2007), Parker et al. (2008), Cheng and
Tsai (2009), Wang et al. (2009) and Jones and
Nachtsheim (2009) have discussed the concept of split-
plot designs involving quantitative factors only.
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Consider an agricultural experiment in response
surface design under split-plot structure. We study the
effects of irrigation methods (factor 1), types of
pesticides (factor 2), fertilizers (factor 3) and qualities
of seeds (factor 4) on the yield of a crop. In this
experiment, fertilizers and seeds are ETC factors and
irrigation methods and pesticides types are HTC factors.
Irrigation methods and pesticides types require
relatively larger areas as compared to fertilizers and
seeds. All the four factors are quantitative in nature and
are at three levels. HTC factors are randomly applied
to whole-plot units. Within each whole-plot, ETC
factors are randomly applied to sub-plot units.

The most popular second-order designs in
response surface methodology are Central Composite
Designs (CCDs) and Box-Behnken Designs (BBDs).
Parker et al. (2006, 2007a, 2007b) have discussed two
systematic methods for constructing balanced and
unbalanced CCDs and BBDs under split-plot structure
involving quantitative HTC and ETC factors. The first
method was named as VKM method which is the
generalized version of the method by Vining et al.
(2005). The second method which minimizes the
number of whole-plots was named as MWP method.

The above experiment may be studied using
response surface designs under split-plot structure,
given in Parker et al. (2006, 2007a, 2007b) for two
HTC and two ETC quantitative factors. Here, we have
two HTC and two ETC factors, all at three levels. They
are quantitative in nature. Three-level balanced or
unbalanced BBDs or CCDs with axial points for both
HTC and ETC factors as = 1 can be used. Irrigation
methods and pesticides types are allocated to
wholeplot units and fertilizers and seeds quality are
allocated to sub-plot units. With two HTC and two ETC
factors, balanced VKM method CCD and BBD require
10 whole-plots of size 4 each and unbalanced VKM
method CCD and BBD require 9 whole-plots of size 4
each and 1 whole-plot of size 2. Balanced MWP method
BBD needs 9 whole-plots of size 5 each.

Often in industrial experimentations, the
experimenters need to conduct experiments when at
least one of the factors is qualitative in nature. The
response surface designs involving both qualitative and
quantitative factors were studied and analyzed by
Draper and John (1988), Aggarwal and Bansal (1998),
Aggarwal et al. (2000), Ankenman and Dean (2003),

Joseph et al. (2009) but none of them have constructed
designs under split-plot structure.

In this paper we have developed balanced second-
order response surface designs involving both
qualitative and quantitative factors under split-plot
structure using the balanced designs given by Parker et
al. (2006, 2007a). We have also developed balanced and
unbalanced response surface designs under split-plot
structure involving both qualitative and quantitative
factors using unbalanced designs given by Parker et al.
(2007b). In all these designs we have considered only
one hard to change qualitative factor, s hard to change
quantitative factors and » easy to change quantitative
factors. The selections of designs are made on the basis
of D-optimal value.

2. MODEL AND DESIGN SELECTION
CRITERION

Consider (» + s +1) number of factors, where r is
the number of ETC quantitative factors, x|, x,, ..., x,;
s is the number of HTC quantitative factors, z,, z,, ...,
z; and one HTC qualitative factor w. The second-order
response surface model for the ¢ run; u =1, 2, ..., N,
is given by the equation ( 2.1 ).

r S r
E(y,) = by+ 1w+ ;ﬁ.m + ;aizu +|Zlﬁn>q2u

S r rs
+;0'ii2i% Y D BiXuXiu ty Y AjXuZ
r

i<j=1 SNt
S
+Zrixiuwu +z/7iziuwu (2.1)
=1 1=1
~ o5 +0?
with var(y,) = Y¢ 7% for all u
%7?, foru# u'
cov(y,,y,) = .
VO Vi) D, otherwise

where, 3, is fixed but unknown; 7, is the effect due to
the HTC qualitative factor w; [B’s are regression
coefficients of ETC factors x; a’s are regression
coefficients of HTC quantitative factors z; /\ij is the
interaction coefficient between i ETC quantitative
factor and j™ HTC quantitative factor; T, is the
interaction coefficient between the qualitative factor w
and i" ETC quantitative factor; ) is the interaction
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coefficient between the HTC qualitative factor w and
i HTC quantitative factor. 0 is the whole-plots error

with g3 whole-plots error variance and € is the sub-
plots error with g? sub-plots error variance and

y = 02/0? is the variance ratio.

D-optimality, which is one of the several
optimality criteria, is used for selecting the design.

3. ALGORITHM FOR THE CONSTRUCTION
OF THE BALANCED AND UNBALANCED
DESIGNS

3.1 Balanced Designs

The procedure for constructing second-order
response surface designs under split-plot structure based
on balanced CCDs and BBDs is as follows:

First, we consider designs with » ETC factors and
(s + 1) HTC factors, developed by Parker et al. (2006,

combinations of equal number of +1’s and —1’s, where
p is the number of zeroes in the column of w, excluding
number of zeroes in the center runs. This design is again
sorted first on the basis of qualitative factor w and then
on the basis of the remaining HTC quantitative factors.
The model matrix is generated according to equation
(2.1) and its D-optimal value is obtained. This
procedure is repeated for all possible 27 combinations
having equal number of +1’s and —1’s. The same
procedure is repeated for all combinations of » and
(s + 1) factors of the VKM method CCDs and BBDs.
We have further extended this procedure for developing
designs for MWP method CCDs and BBDs. In all the
CCDs we have assumed the value of a and Bas 1. The
above procedure is explained with the help of following
example:

Example 1: Consider a MWP method BBD with
parameter » = 3 (ETC quantitative factors), s = 1 (HTC
quantitative factors) constructed by Parker ez al. (2006).
The MWP BBD is

MWP BBD
Runs XX, X3 7 Runs XX, X3 7 Runs X, X, X3 7
1 0 -1 -1 -1 14 0 -1 -1 1 27 0 -1 -1 0
2 0 1 -1 -1 15 0 1 -1 1 28 0 1 -1 0
3 0o -1 1 -1 16 0o -1 1 1 29 0 -1 1 0
4 0 1 1 -1 17 0 1 1 1 30 0 1 1 0
5 -1 0 -1 -1 18 -1 0 -1 1 31 -1 0 -1 0
6 1 0o -1 -1 19 1 0o -1 1 32 1 0 -1 0
7 -1 0 1 -1 20 -1 0 1 1 33 -1 0 1 0
8 1 0 1 -1 21 1 0 1 1 34 1 0 1 0
9 -1 -1 0 -1 22 -1 -1 0 1 35 -1 -1 0 0
10 I -1 0 -1 23 I -1 0 1 36 1 -1 0 0
11 -1 1 0 -1 24 -1 1 0 1 37 -1 1 0 0
12 1 1 0o -1 25 1 1 0 1 38 1 1 0 0
13 0 0 0o -1 26 0 0 0 1 39 0 0 0 0

2007a) to construct designs with » ETC factors, s HTC
quantitative factors and one HTC qualitative factor w.
Next we pick the first set of 7 and (s + 1) combination
of the design. The (s + 1) HTC factor is considered
as a qualitative factor w. We have added one centre run
to the designs given by Parker et al. (2006, 2007a) if
the number of runs in the designs are odd. The design
is then sorted on the basis of qualitative factor w. The
zeroes present in the column of the qualitative factor
w are replaced by a combination from all possible 27

There are N =39 runs in the design, including one
center run. The factor z, is considered as qualitative
factor w. After sorting the design with respect to this
factor w, the zeroes of the column are replaced with
[(1-1-11-1111 —=1-11 1], which is one of the
combination from all 2'? possible combinations of 1.
In order to make the design balanced we have added
another center run against quantitative factors and then
to the above combination of =1 for qualitative factor
we have added —1 and +1 against two center runs of
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The design is then sorted on the basis of HTC
qualitative factor w in lexicographic order. The sorted

model matrix X is as follows.

Model Matrix X

the quantitative factors. Next generate model matrix X

as per equation (2.1).

x2x2 x3x3 xle x3xl x3x2 le sz wx3

Y15

k

Runs
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12
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14
15

16
17
18
19
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21

22
23

24
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28

29
30

31

32
33
34
35

36
37
38
39
40
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where, £ is the constant term. D-optimal value of sorted

design involving qualitative and quantitative factors

under split-plot structure is obtained using the formula

|z ix [
N

for different values of variance ratio Y as follows:

, where 2 is the variance-covariance matrix,

Variance Ratio y| 0 0.1 {02 ]103] 04] 1.0

D-optimal value |.4407(.3738|.3475|.3312(.3195|.2831

whereas the D-optimal value of the design given by
Parker ef al. (2006) involving only quantitative factors
is .3857.

The second-order designs under split-plot
structure, based on balanced VKM method BBDs and
MWP method BBDs, involving both qualitative and
quantitative factors are given in Table 1 and Table 2
respectively of Appendix I. Table 3 and Table 4 of
Appendix I contains designs based on balanced VKM
method CCDs and MWP method CCDs respectively.
We have given only those designs in Appendix [ which
have high D-optimal values. The table gives the level
combinations of HTC qualitative factor w and
D-optimal values of the designs, where, D, gives the
D-optimal value of the original design and D, gives the
D-optimal value of our design. Only some of the results
are shown in the Appendix [. The complete catalogue
of the results is available with the authors.

3.2. Unbalanced Designs

The procedure for constructing unbalanced
second-order response surface designs under split-plot
structure based on VKM and MWP method CCDs and
BBDs is same as that followed for constructing
balanced designs. We pick the first set of the design
generated by Parker ef al. (2007b), with » ETC and
(s + 1) HTC quantitative factors, in order to construct
the design for » ETC and s HTC quantitative and one
HTC qualitative factor. The (s + 1) factor is considered
as qualitative factor w. One centre run is added to the
designs given by Parker et al. (2007b) if the number
of runs in the design is odd. The design is sorted on
the basis of factor w. The zeroes present in the column
of the qualitative factor w are replaced by a combination
from all possible 27 combinations of +1’s and —1’s,
where p is the number of zeroes in the column of w,
excluding number of zeroes in the center runs. When
there are equal number of =1 in the combination then

we get balanced design and when the number of +1 in
the combination are unequal then we get unbalanced
design. Thus two types of designs are constructed using
the unbalanced designs given by Parker ef al. (2007b),
one balanced designs and other unbalanced designs.

This procedure for constructing the designs is
explained with the help of the following example.

Example 2: Consider the unbalanced VKM method
CCD given by Parker et al. (2007b) with » =3 (ETC
quantitative factors) and s = 1 (HTC quantitative
factors). Taking 7 =3, s =0 and w = 1 (HTC qualitative
factor), the unbalanced second-order response surface
design under split-plot structure is constructed. The
design is sorted on the basis of HTC qualitative factor
w. The sorted model matrix X, obtained using equation
(2.1), is as follows:

Model Matrix X

2 xl w xlxl x2x2 x3x3 xle x3x1 x3x2 le sz wx3

1 -1 -1 -1 1 1 1 1 -1 1 -1 1 -1 -1

1 1 -1 -1 1 1 1 1 1 -1 -1 -1 -1 -1
1 -1 1 -1 1 1 1 1 -1 1 -1 -1 1 -1

I 0 0 -1 -1 0 0 1 0 O 1 0 0 0
I 0 0 1 -1 0 0 1 0 0O -1 0 0 0
I 0 -1 0-1 0 1 0 0 o o0 0 1 0
I 0o I 0-1 0 1 0 0 0O 0 0 -1 0
I -1 0 0-1 1 0 0 -1 0o 0 0 0 0
I 1 0 0-1 1 0 0 1 0o 0 0 0 0

1 0 0 0-1 0 o0 O 0 0 0 0 0 O
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D-optimal value of sorted design involving
qualitative and quantitative factors under split-plot
structure is .5250 whereas the D-optimal value of the
same design given by Parker e al. (2007b) involving
only quantitative factors is .3920.

The balanced second-order response surface
designs obtained using unbalanced VKM and MWP
method BBDs given by Parker ef al. (2007b), under
split-plot structure involving both qualitative and
quantitative factors are given in Table 5 and Table 6 of
Appendix II respectively. Table 7 of Appendix II
contains balanced second-order response surface
designs under split-plot structure obtained using
unbalanced VKM method CCDs given by Parker et al.
(2007b). In Appendix III, Table 8 and Table 9
respectively gives unbalanced second-order response
surface designs under split-plot structure obtained using
unbalanced VKM method BBDs and MWP method
BBDs given by Parker et al. (2007b) and Table 10 of
Appendix III gives unbalanced second-order response
surface designs under split-plot structure obtained using
unbalanced VKM method CCDs given by Parker et al.
(2007b). We have given only those designs in the
Appendices II and III which have high D-optimal
values. The tables give the level combinations of HTC
qualitative factor w, D-optimal values of the designs
given by Parker et al. (2007b), denoted by D, and
D-optimal values of our designs, denoted by D,. Only
some of the results are shown in the Appendix Il and
Appendix III. The complete catalogue of the results is
available with the authors.

4. CONCLUSIONS

It has been observed that when one of the HTC
quantitative factors of the design given by Parker et al.
(2006, 2007a, 2007b) is changed to HTC qualitative
factor, the D-optimal value of most of the designs under
split-plot structure increases as compared to original
designs. The designs developed in this paper enable one
to study both qualitative and quantitative factors under
split-plot structure. It has also been seen that these
designs give better estimates of quadratic effects and
more effects are estimated independently.
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APPENDIX I

Table 1. D-optimal values of the Balanced Designs based on Balanced VKM method BBDs.

Level Combinations of qualitative factor w

-1
-1
-1

1
-1
-1
-1
—1

-1
-1
-1

-1

-1

-1 -1

-1

-1

-1

1
1
1
1
1
1
1
1

1

1

-1 -1 -1

-1

-1

-1

1

1

-1

-1

1

1

.3536 4008

16

3977
3912

.2850

4030

.3401

48

4043

4013

3757
.2690

2367

96

2686

2681

2522

.3450

2234

18

.3407
.3370
.3360
2753

2246

40

2746
2691

2512

3799 4303

120

4314

4318

4233

2368

2059

80

2267

2242

2092
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Table 2. D-optimal values of the Balanced Designs based on Balanced MWP method BBDs.

s w N D, D, Level Combinations of qualitative factor w
0 1 16 3575 4140 I -1 I -1
4008 -1 -1 I 1
3937 -1 1 I -1
3867 1 I -1 -1
0 1 40 3857  .4409 -1 -1 -1 -1 -1 -1 1 1 1 1
4333 -1 -1 -1 -1 -l 1 -1 11 1
4422 -1 -1 -1 -1 1 1 -1 1 I 1 -1
4407 -1 -1 -1 1 - 11 I -1 -1 1
0 1 28 4269 4596 -1 -1 -1 -1 1 I 1 1
4306 -1 -1 -1 1 - 11 1
4290 -1 1 I -1 -1 -1 1 1
4284 -1 1 r 1 -1 -1 1 -1

Table 3. D-optimal values of the Balanced Designs based on Balanced VKM method CCDs.

w N D, D, Level Combinations of qualitative factor w
1 12 .4283 5546 -1 1
.5546 1 -1
1 24 3527 3995 -1 -1 1
4005 -1 I -1 1
.3004 -1 1 1 -1
.3982 I -1 -1 1
1 64 2933 3427 -1 -1 -1 1 I -1 1 1 I -1 -1 1 -1 1 1
-1 -1 -1 -1 1 11 1 -1
.3424 -1 -1 -1 1 I -1 1 1 I 1 I -1 -1 -1 -1
1 -1 1 -1 I -1 1 - 1
.3399 -1 -1 -1 1 I -1 1 1 I -1 -1 1 1 -1 1
-1 I -1 1 - 1 -1 -1 1
3035 -1 -1 -1 1 I -1 1 1 I -1 -1 1 -1 1 1
-1 -1 -1 1 -1 -1 1 1 1
1 48 2801 2951 -1 -1 -1 -1 1 11 1
2959 -1 -1 -1 1 - 11 1
2957 I -1 -1 1 I -1 -1 1
.2947 1 I -1 -1 -1 -1 1 1
1 20 .3527 4783 -1 -1 -1 1 1 1
4789 -1 -1 11 -1 1
4784 -1 I -1 -1 1 1
4511 -1 -1 11 1 -1
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I 40 3538 3990 -1 -1 -1 -1 -1 -1 1 1 1 I 1
4060 -1 -1 -1 1 -1 -1 -1 1 1 I 1
4024 -1 -1 -1 1 | S e | 1 -1 I 1
3990 -1 -1 1 -1 1 1 I -1 -1 -
1 48 317 3547 1 I -1 -1 | S e | 1 I -1 -1 -1 1
-1 1 I -1 -1
3548 1 1 I -1 -1 1 I -1 -1 I -1 I -1 1
-1 I -1 -1 -1
.3069 1 I -1 -1 1 I -1 -1 -1 -1 I 1 -1 -1 1
I -1 -1 1 1
3518 1 I -1 1 -1 1 -1 I -1 -1 I -1 I 1 1
-1 -1 -1 -1 1
I 80 3041 3255 -1 -1 -1 1 -1 r 1 -1 -1 1 -1 1 -1 1 1
I -1 -1 1 -1 I -1 1 1
.3263 -1 -1 -1 1 -1 I 1 I -r -1 -1 1 -1 -1 -1
| I 1 1 I 1 I -1
3259 -1 -1 -1 1 -1 I 1 1 I -1 -1 -1 -1 -1 1
-1 -1 1 -1 I 1 1 1
.3063 -1 -1 -1 1 -1 1 1 -1 -1 1 -1 1 I -1 -1
1 1

Table 4. D-optimal values of the Balanced Designs based on Balanced MWP method CCDs.

r K w N

D,

D,

Level Combinations of qualitative factor w

I 0 1 10

4622

.5903
.5903

4472

.5083
4716
4452
3677

4211

4726
4602
4507
4465

4269

4596
4306
4284
4130
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APPENDIX II

Table 5. D-optimal values of the Balanced Designs based on Unbalanced VKM method BBDs.

Level Combinations of qualitative factor w

1

-1
-1
-1
-1

-1

-1

-1

-1

-1

-1

1
1

-1

-1

-1

-1

1

-1

-1
-1

-1
-1

1

1

1

-1

-1

1

1

-1

-1

1

1

1

-1 -1 -1 -1

-1

1

4255

3717

14

4133
4009

4412

3812

38

4397

2728 3041

74

.3037

.3005

.3805 2857

38

2804

.3805 4279

110

4233

4161

4063

2467

2118

74

2288
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Table 6. D-optimal values of the Balanced Designs based on Unbalanced MWP method BBDs.
r s w N D, D, Level Combinations of qualitative factor w
2 0 1 14 3788 4377 1 -1 I -1
4255 -1 -1 I 1
4133 —1 I -1 1
3 0 1 26 2531 .3389 1 1 I -1 1 I -1 -1 -1 -1 I -1
3304 1 -1 I -1 1 I -1 -1 -1 -1 I 1
3264 -1 -1 I 1 1 I -1 1 I -1 -1 -1
3219 -1 -1 -1 -1 -1 -1 1 1 1 1 11
4 0 1 42 1729 2254 -1 -1 -1 -1 -1 I -1 1 1 1 r -1 1 1
1 I -1 -1 -1 I 1 -1 -1
2209 -1 -1 -1 -1 I -1 -1 -1 1 1 r -1 1 1
I -1 -1 -1 -1 I 1 1 1
2194 -1 -1 -1 -1 I -1 -1 -1 11 -1 1 1 1
1 1 I 1 I -1 -1 -1 -1
2143 -1 -1 -1 -1 -1 I 1 -1 11 I 1 1 1
I -1 r 1 -1 -1 -1 -1 -1
Table 7. D-optimal values of the Balanced Designs based on Unbalanced VKM method CCDs.
s w N D, D, Level Combinations of qualitative factor w
2 0 1 22 3724 4243 -1 I -1 1
4227 -1 -1 I 1
.3095 -1 1 1 -1
3 0 1 24 3920 5199 -1 -1 -1 1 1 1
5077 1 -1 I -1 -1 1
.5045 —1 1 I -1 -1 1
4 0 1 42 3127 3318 -1 -1 -1 1 -1 1 1
.3305 -1 -1 -1 -1 1 1 1
3302 1 -1 I -1 I -1 -1 1
2 1 1 38 3674 4189 -1 I -1 1 -1 1 -1 I 1 -1 -1
4188 -1 -1 -1 1 1 r 1 -1 -1 1 I -1
4139 -1 -1 -1 -1 -1 -1 1 1 1 1 I 1
4098 -1 -1 I -1 -1 I 1 -1 -1 1 1 1
301 1 32 .3375 4367 -1 -1 -1 -1 -1 -1 -1 1 11 I 1 1 1
.3865 -1 -1 1 1 1 1 -1 I -1 -1 -1 1 1 -1
3828 -1 -1 1 1 1 I 1 I -1 -1 -1 1 -1 -1
3112 -1 -1 I 1 -1 -1 1 I -1 -1 -1 1 1 1
4 1 1 74 3244 .3483 -1 -1 -1 1 I -1 -1 I -1 -1 -1 1 1 -1
-1 1 I 1 1 I -1 -1 1
3434 -1 -1 -1 1 I -1 -1 1 I 1 -1 1 1 -1
I -1 -1 1 -1 I -1 1 -1
.3429 -1 -1 -1 1 I -1 -1 1 I -1 -1 1 1 1
-1 I -1 -1 1 I -1 -1 1
3344 -1 -1 -1 1 I -1 -1 I -1 -1 -1 1 1 -1
-1 1 I 1 1 I 1 -1 -1
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APPENDIX IIT

Table 8. D-optimal values of the Unbalanced Designs based on Unbalanced VKM method BBDs.

Level Combinations of qualitative factor w

-1
-1
-1
-1
-1

-1
-1

-1
-1

-1

-1

1
1
1
-1

-1

-1 -1 -1 -1

-1

-1 -1 -1 -1

-1

-1 -1 -1 -1

-1

1

1

4509
4229

.3770

14

4199
3874
4405

3812

38

4396

4337

.3039

2728

74

.3033

3031

.2840
2836
2822
2725

.3805

38

.3805 4222

110

2472

2118

74

.2433

.2423

241
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Table 9. D-optimal values of the Unbalanced Designs based on Unbalanced MWP method BBDs.
ros w N D, D, Level Combinations of qualitative factor w
2 0 1 14 3788 4509 -1 -1 -1 -1
4199 -1 -1 I -1
.3986 -1 1 I 1
3 0 1 26 2531 3358 -1 -1 I 1 I -1 1 -1 -1 -1 -1 -1
.3292 -1 -1 -1 -1 -1 -1 -1 -1 1 1 I -1
3214 -1 -1 -1 -1 -1 -1 -1 1 1 1 I -1
3138 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 1
4 0 1 42 1729 2331 -1 -1 -1 -1 -1 -1 -1 -1 1 1 r -1 1 1
1 -1 r 1 -1 -1 -1 -1 -1
2318 -1 -1 -1 -1 -1 -1 -1 -1 11 r -1 1 1
1 -1 I 1 I -1 -1 -1 -1
.2298 -1 -1 -1 -1 -1 -1 -1 -1 11 r -1 1 1
1 -1 I 1 I -1 -1 I -1
Table 10. D-optimal values of the Unbalanced Designs based on Unbalanced VKM method CCDs.
ros w N D, D, Level Combinations of qualitative factor w
2 0 1 22 3724 4306 -1 -1 -1 -1
4245 -1 -1 -1 1
4217 -1 1 I 1
30 1 24 392 .5246 -1 -1 -1 -1 -1 -1
5160 -1 -1 -1 -1 -1 1
.5097 -1 -1 -1 -1 1 -1
4 0 1 42 3127 3333 -1 -1 -1 -1 -1 -1 -1 -1
3319 -1 -1 -1 -1 -1 1 1
3318 -1 -1 -1 -1 I -1 -1 1
3302 -1 -1 -1 1 -1 I 1 -1
2 1 1 38 3674 4166 1 -1 r 1 -1 -1 -1 -1 -1 1 1 -1
4155 -1 -1 -1 -1 I -1 1 -1 1 -1 I -1
4144 -1 -1 -1 -1 -1 -1 -1 1 11 1
.3968 -1 -1 I 1 -1 -1 1 I -1 -1 -1 -1
3 1 1 32 3375 4105 1 I -1 1 I -1 -1 -1 -1 -1 r 1 1 1
4025 1 1 1 -1 1P 1 -1 -1 1 -1 -1 1 -1
.3999 1 -1 -1 1 1 I 1 -1 1 1 r 1 -1 -1
3978 -1 I -1 1 1 I -1 1 I 1 -1 -1 1 1
4 1 1 74 3244 3416 -1 -1 -1 -1 -1 -1 1 -1 11 I -1 -1 -1
1 I -1 1 I -1 -1 1 11
3316 ([ -1 -1 -1 -1 -1 -1 1 -1 I 1 I -1 -1 -1
1 I -1 1 1 I -1 -1 1 -1
3313 -1 -1 -1 -1 -1 -1 1 -1 I 1 I -1 -1 -1
1 1 1 1 1 1 -1 1 -1 -1
3293 -1 -1 -1 -1 -1 -1 1 -1 I 1 I -1 -1 -1
1 I -1 1 1 1 -1 1 1 -1




