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SUMMARY

The small area models make use of explicit linking models based on random area specific effects that account for between
areas variation apart from variations explained by auxiliary variables included in the model. The basic small area model considers
the random area effects as independent. In practice, it should be more reasonable to assume that the random effects between
the neighbouring areas are correlated. In this context, many models have been developed in recent past (Singh ez a/. 2005 and
Pratesi and Salvati 2008, Salvati ef a/. 2012). In the present study, a spatial unit level small area model is obtained using
Geographically Weighted Regression (GWR) approach. Further, the spatial model is studied under Hierarchical Bayes (HB)
framework to improve small area estimates. Small area HB estimates are obtained using Gibbs sampling. The effects of
incorporating spatial information in the model through three spatial weighting procedures are compared. Results show that

estimates from new spatial model in HB framework are more efficient than the empirical approach.
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1. INTRODUCTION

Small area estimation is used when the sample
sizes within the areas are too small to provide reliable
direct survey estimates. In making estimates for small
area with adequate level of precision, it is often
necessary to use indirect estimators (small area models)
that borrow strength from related areas and/or time
periods. These models make use of explicit linking
models based on random area specific effects that
account for between areas variation apart from
variations explained by auxiliary variables included in
the model. The basic small area model considers the
random area specific effects as independent. In case,
the variable under study is spatial in nature, it should
be more reasonable to assume that the random effects
between the neighbouring areas are spatially correlated
and thus correlation decays to zero as distance between
any two areas in the population increases.
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A popular approach of incorporating the spatial
information in the model is through Geographically
Weighted Regression (GWR) (Brunsdon et al. 1996,
Fotheringham et al. 2002) which assumes that the
regression coefficients vary spatially across the
geography of interest. GWR approach extends the
traditional regression model by allowing local rather
than global regression parameters to be estimated by
representing non-stationary local phenomena. Salvati
et.al. (2012) investigated GWR-based small area
estimation under the M-quantile modelling approach.
In particular, they specify an M-quantile GWR model
that is a local model for the M-quantile of the
conditional distribution of the outcome variable given
the covariates. Here, a new spatial unit level model has
been developed using GWR approach in which
regression coefficients vary spatially across the area of
interest. Empirical Best Linear Unbiased Predictor
(EBLUP) of small area mean and Mean Squared Error
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(MSE) estimator of variance have been obtained for this
spatial model.

By incorporating the spatial effects in this model
through Geographically Weighted Regression (GWR)
approach, it may possible to improve small area
estimates. Due to incorporating spatial effects, number
of parameters becomes more. So, MSE estimation of
this EBLUP is more complicated. To tackle this
complication, Hierarchical Bayes approach is used to
find the estimates for the parameters of the model and
inferences for different parameters are exact unlike the
EBLUP estimation. This motivates us to use HB
estimates for spatial data. Datta and Ghosh (1991)
introduced a Hierarchical Bayes (HB) approach for
prediction in general mixed linear models. Datta et al.
(1998) considered a superpopulation approach to HB
prediction of small area mean vectors using the
multivariate nested error regression model of Fuller and
Harter (1987). You and Rao (2000) presented multilevel
models in a HB framework and estimated small area
means through its posterior mean. You and Rao (2003)
also developed two-step approach to obtain design-
consistent small area estimates by utilizing survey
weights. You and Chapman (2006) considered the
situation where the sampling error variances are
estimated individually by direct estimators. They
constructed a full HB model for the direct survey
estimators and the sampling error variances. This HB
approach automatically takes account of the extra
uncertainty of estimating the sampling error variances,
especially when the area specific sample sizes are small.

Therefore, in the present study, proposed spatial
model is again studied in HB framework and three
different weight matrices were used to incorporate the
spatial effects in the model. Further, it is always difficult
to obtain accurate information about the distribution of
the variances. So, sensitivity analysis was done to know
the effects caused by the choice of different priors on
posterior means and variances. Hereby, in section 2, a
spatial unit level small area model is developed using
GWR approach and in section 3, model is proposed
under HB framework. Section 4 presents results related
to statistical properties of the estimator and weighting
approaches. In this section, the effects of incorporating
spatial information through three spatial weighting
approaches (i.e. Neighbourhood criteria, Gaussian-
decay and Spherical variogram approach) are compared
empirically through spatial simulation study and section
5 shows the results of sensitivity analysis of small area

estimates to the choice of values of different
parameters. Finally in section 6, conclusion is given.

2. SPATIAL UNIT LEVEL SMALL AREA
MODEL

Consider unit level model given by Battese et al.
(1988)

_.T . _ L
yl,j—xijﬂ+vl,+eij,]—1, 2,.onyi=1,2.m (1)

where, Yy denote the value of the variable of interest
or dependent variable for the j# unit in small area i and
let X, = (xl,j P Xy o xijp) denote the vector of values
of the p unit level auxiliary variables associated with
this unit, », is the number of sampling units in small area
i and m is the number of small areas. S is a vector of p
unknown fixed effects, v; is the random area effect
associated with small area i, assumed to have mean zero
and variance ¢?, and e, is random error associated
with j# unit of i"* small area with mean zero and
variance 2. The error terms are assumed to be
mutually independent, within small area as well as
between small areas. Further, it is assumed that they are
normally distributed. In matrix notation, model (1) is
expressed as

Y, =X+ vl.ln,. te,j=1,2,..n;i=1,2,..,m_2)
where,
Y,‘ = (y,'p Yips - yin,— )a ‘th = (xl'la xiza ey xin,-) is

n, * p matrix and e, = (e, e, ..., €y ). The variance-

covariance matrix of ¥, is given as

var(¥) = o1, +o,1,1%, 3)

Here, 1,, is the unit column vector of length »; and

L, is the identity matrix of order 7.

Let,

vi=z S+€;,i=1,2,...m )

where, z, is a vector of ¢ area level covariates of area
i, 6.is q % 1 vector of regression coefficients associated
with i area and €, is error term associated with area
effect v,. Further, in matrix notation, this can be written
as

v=7ZJ56+ €, %)
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where, v is m x 1 vector of area effects for all areas,
Z is block diagonal matrix of area level covariates of
order m *x mgq, 6= (8, &, ...5,) is mq % 1 vector of
regression coefficients and e= (€,,€,,...€,,) is vector
of error terms. The spatial distance weight matrix for
the i area is given by

va O . . . 0
0 Yio - . . 0
W =LL=|" = ' (6)
o0 . . Yim |

Here, the matrix L. can be defined as the gramian
root of the weight matrix W. and can be written as

Jra 0 . . . 0
0 Jrn - . . 0

L =| - . . . )

where, , represents the spatial weight given to k" area
with respect to i’ area. It is expected that as distance
between i and k" area increases, the weight assigned
by W, i.e. vy, decreases. This means spatial effect
decreases with distance and distant areas are likely to
be more heterogeneous. Here, three types of weighting
approaches are used to incorporate the spatial effects
in the model. In first approach, (Neighbourhood criteria
method) for i area, the element Y of the weight
matrix W, assigned weight as

0 0

¥, = r 'if i and k are contiguous

0, otherwise.

where, 7, is the total number of areas that share an edge
with area 7 (including area i itself). Further, it is also
possible to introduce location effect through y, with a
continuous function such as Gaussian distance-decay
based weighting as

Vie =X (~di/21), 7= max(dy)
Here, the value of the weight would decay
gradually with distance, to the extent that when d,,

= r, the weighting would be 0.5. The simplest way of
denoting the spatial dependence of these areas is the
use of authorized variogram function. In this approach,
elements of W, i.e. y, are obtained by using following
equations.

Ya = 1 —=1(dy)
This also preserves the symmetric nature of weight
matrix. Main authorized variogram functions are

exponential, spherical and Gaussian variograms.
Spherical variogram function is defined as

3
3dy, 1 dy .
() = [g‘z(ﬂ ] <o

1, otherwise

Premultipling 17L; in equation (5), one can get the
following equation

1Ly =1L, Zy+ 17L, e 8)

where, 1 denote the vector of one’s. Further, above
equation can be written as

v, =z, Si+€; ©)

where,

*

Vi = \Yivi tVi2Va T eoee T A Yim Vs
Zi*T5i = \IVilZlT51+\/J/i2Z2T52 t.o..t VimZnT15m

and

* 0 _
€ T AWVu&itVie€at ot Vim €

Thus, for i area, the model (2) can be written as

Y. =Xl.,3+v; Lte,j=1,2,..n;i=12, ..,m

(10)

Putting the value of v; from (9) above model can
be written as

* *
I,i = Xi,B+ziT5i1ni+ei lni +e,-,

J =L2, ., ni=1,2,.,m (11)

For simplicity in further analysis, drop the star sign
(*) from above equation and thus model (11) can be
written as

T
I’l_:xiﬂ+zi 5l~lni+Ei lni +ei,

J=L2, ,ni=1,2,.,m (12)
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Unit level model is given by

T T
yij = x,-jﬂ-i-z,- 5,-+Ei +e,-j,

J=L2, .,ni=1,2,.,m (13)
3. HIERARCHICAL BAYES ESTIMATION

Let us consider the model (13) in hierarchical
Bayes (HB) framework and can be written as

vyl B 8,€ 07 ~N(xjB+z]Si+€;,00),
j=12, .. n, i= 1,2 ... m
;|62 ~N(©, 62),i=1,2,...m

and marginal prior distributions of the parameter will
be

B~N,(0,0),6 ~ N, (0,D),

o7 ~1G(ag,by) and o7 ~1G(ay,by)

Here, a, b, a,, b, are known and IG(a,, b)
denotes the inverted gamma distribution with shape and
scale parameters a, and b, respectively. Under the HB
approach, the posterior mean E(¥; [{y;}) has been used
as point estimate for mean and the posterior variance
V(?,-I{y,j}) as a measure of variability. In order to

estimate E(I7,-|{yij}) and V(I7i|{y,-j}), the Gibbs
sampling method given by Gelfand and Smith (1990)

has been used. Full conditional distributions for the
Gibbs sampler have been obtained as follows

2 2

-1
T
(ﬂl&ei,aé,af,Y%Np( ! (H+C‘1] x
O-e O-e

2
e

T -1
XT(Y—UZ6+Ue),(X X+C‘1] J

TyyT
(5| B.g; 02,02.Y)~ qu(%(w_,_l)—l)—l
O-e e

Ty:T
ZTUT(Y -S), (M+D_l)_l}
O,

e

-1
€l B.5,.02,00.Y;) ~ N([ﬂﬁ ] 1, (Y, -Q)),

a9,

0-62 |ﬂ,5,ei,0'€2,Y) ~ IG[aO +%’b0 +%[Y —(Xﬁ+UZ5
+U o' [Y —(XB+UZS+U €)]],
2 2 m 1 7
and (O-E |ﬂ’§’ei’o-e ’Y) ~ IG((al +5)’b1 +EE E)
where,

0,= X,p+2/s1,,
S=Xp+Ue,(j=1,2,..,n)and (i=1,2, .. m)

1, 0 . . . 0]
01 . .. 0
U =
0o 0 . . 1,
L m _IpnXm
zT 0 0 |
0 z7 0
Z =
*T
00 . . Zo e

It is important to note that proper priors have been
used for all the unknown parameters to ensure that all
the posterior distributions are proper (Hobert and
Casella 1996). Here, values for the parameters of the
priors (i.e., hyperparameters) were chosen very small
to reflect a fairly vague knowledge of the prior
distributions. Now, it is straight forward to draw
samples from these full conditional distributions as they
have closed-form. After a “burn-in” period of B = 5000
iterations, next 5000 samples were considered to obtain
pRsPGE=1,2,..me® (= 1,2, ..m), g2P
and 0%, k=1, 2 ..d}. The prior parameters of
inverted gamma distributions were also chosen to be
very small.

Conditional on {yij},ﬂ,é',O'e2 and ¢? the

posterior distribution of €, from the unit level model
can be obtained as

2 -1
€] B.6.02,02Y)~ N([ni + ”;J 1, (Y, -X,B

€
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: 1 _
+Z]61,)).(Z5+ =)™

e €

Hence it can be seen that,

E@E)| B.8,02,0..Y;)) =€, (B,5,02,02.Y))

-1
2
- {ni +"—3J 1, (Y= (X,8+2] 51,))
O-G
Thus the conditional posterior mean of ¥ is

E(Y;|B.8,62,62.Y;) = Y,(B.5.02,62)
= XlTﬂA—l—ZlT5l+ét (ﬂag’o-ezao-ez’yi)

Similarly, the conditional posterior variance of Y;

is given by

Vi(B.5,02.02)

o LY
o; o2
Now, using the simulated samples of {AX), §&*
(i=12,..,m), egk) (i=1,2,..,m), o'ez(k) and o'ez(k),
k=1, 2, ..., d} the unconditional posterior mean and

posterior variance of ¥, were estimated. The posterior

V({Y;|B.6,02,0,.Y) =

mean E()7l~|{y,-j}) is estimated as

YiHB

1 S
S T(BY.67.020.0:9) (19)
Similarly, the postierior variance V (¥; |{ yii}) is

estimated as
N n — Loa o, pth) o) 200 2k
V() = SV, 020 0t

1 2 2
+EEZ:1 [)fi(ﬂ(k)’5i(k)’o.€2(k)’O_ez(k))}

2
1 2
_[EZZ:IYi (ﬂ(k) ,5i(k),0'.52(k),0'62<k)):| (15)

In following section, a comparison of HB
estimates with corresponding spatial EBLUP
(SEBLUP) estimates is made for spatial unit level small
area model through simulation study.

4. SIMULATION STUDY

In this study, spatial population structure has been
generated assuming mean value of the dependent
variable y fixed for a given area which is located at the
centroid of the population in the map. Since, total 15
areas have been considered in the population, therefore,
mean value of the other 14 areas for the dependent
variable y has been generated assuming spatial pattern
based on distance from this area. In this pattern, the
values of y depend on distance from the centroid.
Further, the mean values of auxiliary variable x have
been generated using mean values of y and bivariate
normal distribution, keeping the value of correlation
coefficient between mean values of y and mean values
of x fixed, i.e. p = 0.7. In order to generate the unit level
data for each area, the bivariate normal population has
been assumed and coefficient of variation has been
fixed at 15% for y and x in each of the small areas.
Further, values of other area level covariate i.e. z, have
been generated following the similar approach using
mean values of y and fixed correlation coefficient i.e.
o = 0.8 between y and z. It may be noted that, number
of units in each of the small area are different, ranging
from 335 to 430 with total population of 5945 units.

The sample size n, (i = 1, 2, ... ,15) is random
within each area ranges from 2 to 5. In each simulation
run it sums up to 50 for the whole population under
study. Sampling units were selected with simple random
sampling without replacement. The unit level model is
given by

V= B, + xijlﬁl +z0,+¢€,+ el.j,j =1,2,..,n;
i=1,2,..m (16)

In order to implement the Gibbs sampler based on
above model (16), the following priors were assumed
for different parameters 8, ~ N(0, 10%), 8, ~ N(0, 10%),
§ ~ N,(0.D), o ~ 1G(0.001,0.001), o2~
1G(0.001,0.001), where D is the matrix with diagonal
elements of the order 10* and non-diagonal elements
of order 103. After a burn-in period of 5000 iterations,
next 5000 samples were kept for {,B(()k),,b’l(k),5(k),e§k)
(=12 ..m),c?® and o2, k=12, .., d}.5®
was obtained by multiplying &% with vector (0, 0, 0,
s 1,0,0,..,0) 1 in the i place and 0 everywhere else.
Gibbs sampler for the model (16) was implemented



360 Yogita Gharde et al. /Journal of the Indian Society of Agricultural Statistics 67(3) 2013 355-362

using WinBugs software. The WinBugs program
constructs the necessary full conditional distributions
and carries out the Gibbs sampling. Prior and initial
values were generated using this software. Gibbs
sampler was first run for a burn-in period of 5000
iterations and then 5000 more iteration were run and
kept for analysis and estimation. This was done for all
three different weighting approaches i.e. neighbourhood
criteria, gaussian-decay and spherical variogram
approach and posterior mean and posterior variances
were obtained. Posterior means are almost same for all
three approaches. Following figure shows posterior
variances of Hierarchical Bayesian estimates for three
different weighting approaches.

—¢— Neighbourhood criteria method =—s=— Gaussian method «+- -+ Spherical method

n A A n
AN /A A
VA4 \V/A W /\;
VAN SN N\ SN /

- o K

Posterior variance
D =N W e N

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Area

Fig 1. Posterior variances of Hierarchical Bayes estimates for
spatial unit level small area model for three different weighting
approaches.

Fig. 1 shows that posterior variances are different
for all three weighting approaches. Variances are least
for all small areas in case of spherical variogram
approach as compare to other two methods. It can easily
be seen that Neighbourhood criteria method performs
well as compare to Gaussian decay function method of
incorporating spatial-effects. Table 1 shows the % bias
and %pgain in efficiency of SHB estimates with respect
to SEBLUP estimates of spatial small area models.

where,

Percentage bias = [(f.SEBLUP —Y;SHB) y;SEBLUP ]xlOO

Percentage gain in efficiency
— I:(‘}iSEBLUP _ ‘}iSHB ) ”}iSEBLUP ]X 100

The Table 1 shows that when sample size is more,
% bias is very less and it increases with decrease in the
sample size. % bias is almost equal in all the three
weighting approaches. It also shows that there is % gain
in efficiency in HB approach with respect to EBLUP

Table 1. Percentage bias and percentage gain in efficiency
of Spatial HB (SHB) estimates with respect to the Spatial-
EBLUP (SEBLUP) estimates for three weighting

approaches.
Neighbourhood Gaussian Spherical
criteria method method method

Area | Sample| % bias |% gainin | % bias [% gainin| % bias |%gain in

size efficiency efficiency efficiency

1 5 | -0.30[ 3.83| -0.30( 0.30 | —0.29| 1.46

2 4 |-12.27) 32.33(-12.30| 5.58 |-12.37|22.43
3 3 | -6.50[ 0.58] —6.50( 0.76 | —6.56| 1.10
4 2 [-11.70[ 0.91|-11.69( 11.79 |-11.69| 37.07
5 4 | -1.56] 10.17| -1.53{26.00 | —1.39] 38.86
6 3 5.89 14.88] 5.90| 1.76 5.96129.34
7 2 (-11.22[ 3.15|-11.20( 3.82 |-11.19| 6.73
8 4 | —6.32] 3427 -6.32( 7.73 | —6.40| 25.19
9 2 | 218 11.76| —2.21( 4.37 | —2.34| 14.49
10 5 | 9.48 2.27| 9.50|11.57 | -9.55| 38.57
11 3 9.37] 19.22| 9.34| 8.06 9.25] 48.06
12 4 1.23] 26.46| 1.23( 0.13 1.29]29.24
13 2 | 043 7.11| -0.45( 0.44 | —0.50( 37.32
14 4 | -0.16) 1.03[ -0.15]19.21 | —0.03 | 43.52
15 3 | -8.63] 21.13| —-8.68( 2.14 | —8.80 42.30

approach for all the three weighting methods. The %
gain in efficiency is highest in case of neighbourhood
criteria method as compared to its counterparts.

Sensitivity Analysis: In practice, it is always difficult
to obtain accurate information about the distribution of
the variances. Here, inverted gamma distribution was
assumed on variance components. Now, the interest is
to know the effects caused by the choice of different
priors. Basically, the sensitivity of posterior means to
the choice of different priors on the variance
components was evaluated to understand this effect. In
order to see the sensitivity of the posterior estimates to
the choice of a; and b,, different values of these
parameters i.e. 0.001, 0.01, 0.1, 1 and 10 have been set.
Following figures show the posterior variance for
different gamma values for three different weighting
approaches.
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Sensitivity analysis shows that posterior estimates
of small area means and variances (Fig 2, 3, 4) are
almost same when g, and b, are small (< = 0.1). This
indicates small area mean estimates and variances are
very much stable for small values of @, and b,, as there
is negligible difference among the estimates. But as g,
and b, increase, small area means are stable but
posterior variances are decreasing rapidly. This
indicates that posterior variances decrease as the priors

—&— G(0.001,0.001) =t G (0.01,0.01) ++- e+ G[0.1,0.1) =Se=G[1,1) --B--G(10,11

Variance

e e  aLans L b S |

L= I T - ]

o 1 2 2 4 5 6 7 8 9 10 11 12 13 14 15
Area

Fig 2. Posterior variances of Hierarchical Bayes estimates for
neighbourhood criteria method.

—e— G(0.001,0.001) —f— G(0.01,0.01) &+ G(0.1,0.1) =s&=G(1,1) --#--G(10,1(

T R atmma U SR R B LR B |

Variance
= = [ w = w [=2) ~

o1 2 32 4 5 6 7 8 9 10 11 12 13 14 15
Area

Fig 3. Posterior variances of Hierarchical Bayes estimates for
Gaussian method.

—— G(0.001,0.001) —=—G(0.01,0.01) ---k=+ G(0.1,0.1) ===G(1,1) --M--G[10,1(
45

b
W =

Variance

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Area

Fig 4. Posterior variances of Hierarchical Bayes estimates for
Spherical method.

become more informative. You and Rao (2000) also
showed that as g, and b, increase, the posterior estimates
of the variances decrease and there is no difference
among the estimates for very small values of
parameters. So, if there is strong prior information on
a, and b, (for example 1 or 10), the posterior estimates
of the variance components will be significantly
different from non-informative priors. Thus small
values of parameters can be considered as non-
informative priors.

5. CONCLUSION

In this study, attempt has been made to obtain
small area estimates for spatial unit level model under
hierarchical Bayes (HB) framework. Three different
weighting approaches were used to incorporate the
spatial effects in the model in the form of elements in
the weight matrix. Study shows that posterior mean for
all three weighting approaches are almost same in all
small areas but variances are different. Variances are
least for all small areas in case of spherical variogram
approach as compare to other two methods. It can easily
be seen that neighbourhood criteria method performs
well as compare to Gaussian-decay function method of
incorporating spatial effects.

Further, it shows that when sample size is more,
%bias is very less and it increases with decrease in the
sample size. %bias is almost equal in all the three
weighting approaches. Although, it also shows that
there is % gain in efficiency in spatial-HB (SHB)
approach with respect to SEBLUP approach for all the
three weighting methods but neighbourhood criteria of
incorporating weights seems to have more impact in
gain in efficiency. Sensitivity analysis shows that
posterior estimates of small area means and variances
are almost same when parameters of inverted gamma
distribution which are assumed for variances, are small
(<=0.1). But as the value of these parameters increase,
small area means are stable but posterior variances
decrease rapidly. This indicates that posterior variances
decrease as the priors become more informative.



362 Yogita Gharde et al. / Journal of the Indian Society of Agricultural Statistics 67(3) 2013 355-362

ACKNOWLEDGEMENTS

Authors are grateful to the Associate Editor and referees
for their valuable comments.

REFERENCES

Battese, G.E., Harter, R.M. and Fuller, W.A. (1988). An error-
components model for prediction of county crop areas
using survey and satellite data. J. Amer. Statist. Assoc.,
83, 28-36.

Brunsdon, C., Fotheringham, A.S. and Charlton, M.E. (1996).
Geographically weighted regression: a method for
exploring spatial nonstationarity. Geographical Anal., 28,
281-298.

Brunsdon, C., Fotheringham, S. and Charlton, M. (1998).
Geographically weighted regression-modelling spatial
non-stationary. The Statistician, 47(3), 431-443.

Datta, G.S. and Ghosh, M. (1991). Bayesian prediction in
linear models: applications to small area estimation. Ann.
Statist., 19, 1748-1770.

Datta, G.S., Day, B. and Maiti, T. (1998). Multivariate
bayesian small area estimation: An application to survey
and satellite data. Sankhya: The Indian Journal of
Statistics, Special Issue on Bayesian Analysis, A60, 344-
362.

Fotheringham, A.S. Brunsdon, C., and Charlton, M. (2002).
Geographically Weighted Regression: The Analysis of
Spatially Varying Relationships. John Wiley & Sons,
Chichester, UK.

Fuller, W.A. and Harter, R.M. (1987). The multivariate
components of variance model for small area estimation.
In: R. Platek, J.N.K Rao, C.E. Sarndal and M.P. Singh
(Eds.), Small Area Statistics, Wiley, New York, pp. 103-
123.

Gelfand, A.E. and Smith, A.F.M. (1990). Sampling based
approaches to calculating marginal densities. J. Amer.
Statist. Assoc., 85, 398-409.

Ghosh, M. and Rao, J.N.K. (1994). Small area estimation:
an appraisal (with discussion). Statistical Science, 9(1),
55-93.

Hobert, J.P. and Cassella, G. (1996). The effect of improper
priors on Gibbs sampling in hierarchical linear mixed
models. J. Amer. Statist. Assoc., 91, 1461-1473.

Moura, F. and Holt, D. (1999). Small area estimation using
multilevel models. Survey Methodology, 25, 73-80.

Pfeffermann, D. (2002). Small area estimation - New
developments and directions. Intern. Statist. Rev., 70,
125-143.

Pratesi, M. and Salvati, N. (2008). Small area estimation: the
EBLUP estimator based on spatially correlated random
area effects. Statist. Methods Appl., 17, 113-141.

Rao, J.N.K. (2003): Small Area Estimation. Wiley, London.

Salvati, Nicola, Tzavidis, Nikos, Pratesi Monica and
Chambers, Ray (2012). Small area estimation via
M-quantile Geographically Weighted Regression. 7est,
21(1), 1-28.

Singh, B., Shukla, G. and Kundu, D. (2005). Spatio-temporal
models in small area estimation. Survey Methodology,
31,183-195.

You, Y. and Rao, J.N.K. (2000). Hierarchical bayes estimation
of small area means using multi-level models. Survey
Methodology, 26, 173-181.

You, Y. and Rao, J.N.K. (2003). Pseudo hierarchical Bayes
small area estimation combining unit level models and
survey weights. J. Statist. Plann. Inf., 111, 197-208.

You, Y. and Chapman, B. (2006). Small area estimation using
area level models and estimated sampling variances.
Survey Methodology, 32(1), 97-103.



