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SUMMARY

When measuring an observation is expensive, but ranking a small subset of observations is relatively easy, ranked set
sampling (RSS) can be used to increase the precision of the estimators. Estimating the variance in case of RSS has been found
to be cumbersome in the context of finite population. Therefore, in this paper, we propose two different variance estimation
procedures using Jackknife method in RSS under finite population framework. We compare the efficiency of these proposed
variance estimation procedures with each other through a simulation study.
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1. INTRODUCTION

Ranked set sampling (RSS) is a method of
sampling that provides a more precise estimator of
population mean than simple random sampling (SRS)
when actual measurements are either difficult, time
consuming or expensive in terms of time, money or
labour and ranking on the basis of visual inspection or
any other rough method, not requiring actual
measurement, is relatively easy. The method of RSS
was first introduced by Mclntyre (1952) to improve
upon SRS for situations where some preliminary
ranking of sampled units is feasible. In situations where
visual inspection is not directly available, ranking can
sometimes be done on the basis of a covariate that is
more accessible requiring less costs than, but correlated
with, the character of interest. Thus, if we are interested
in the volumes of trees, we may use the ranking by
diameter to approximate the ranking by volume. This
procedure is called as ranking using concomitant
variables. This was first discussed by Stokes (1977) and
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referred it as “ranked set sampling with concomitant
variables”. Patil et al. (1994) have discussed various
aspects of RSS in detail. Chen et al. (2004) discussed
RSS including the method of bootstrapping from ranked
set samples.

1.1 RSS in the Context of Finite Population

The majority of research in RSS has been
concerned with estimating the mean. Estimation of
variance of an estimator from ranked set sample has
received less attention. Most of the works which have
been done in the area of RSS are in the context of
infinite population. However, Patil et al. (1995)
discussed the methods of RSS without replacement in
the context of finite population sampling and provided
unbiased estimator of population mean and its variance
expression. The expression of variance of the estimator
is not quite simple. Moreover, the expression of
estimator of variance has not been provided. Krishna
(2002), Sud and Mishra (2006, 2007) and Kankure and
Rai (2008) made an attempt to extend the theory of RSS
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when the sampling is done from a finite population.
Modarres et al. (2006) proposed two different bootstrap
methods for ranked set samples.

The RSS procedure involves randomly drawing m?
units by simple random sampling without replacement
(SRSWOR) from a population of size N with mean u
and a finite variance 6. Then, m’ units are randomly
partitioned into m equal-sized sets with set size m. The
units within each set are then ranked on the basis of
some auxiliary character which may or may not be
quantifiable. The unit receiving the smallest rank is
accurately quantified from the first set, the unit
receiving the 2”¢ smallest rank is accurately quantified
from the 2" set and so forth, until the unit with largest
rank is accurately quantified from the m” set. This
constitutes one cycle. The entire cycle is replicated r
times until altogether n = mr observations are
quantified out of m?r originally selected units. These 7
quantified units constitute the ranked set sample.

Patil et al. (1995) showed that the probability of
the ¢ ranked unit in the population has the i rank in
any of the disjoint SRSWOR subset of size m is given

by

P[yem = Yq] = 47 = [z‘q—_llJ(Z:iq J/ m

vi=1,2,..,mandg=1,2, .. N (1)

and the probability of the ¢ ranked unit in the
population has the i rank in the disjoint subset 1 and
the ## ranked unit in the population has the j# rank in
the disjoint subset 2 as

P[Yim =Yg ¥(jumy =¥ | = Bf

(T A )

3

Pt (M)

Vi, j=12,..,m and q <t 2)

where multinomial coefficient

N | N!
m,m - m!m!\(N —2m)!

If ¢ =t then B =0 and if ¢ > 7 then B’ =B .

Patil et al. (1995) showed that the ranked set
estimator i.e. sample mean is unbiased estimator of the

population mean, g =Y , which is given by
1 rom
Vrss = =Y Viimk 3)

mr - i=1

Variance of the ranked set estimator, yggg, is

given by
_ 1 (N=-1-mr , _
V(Orss) = 7,7 TU Y 4)
where
RN 712 m!(m—1)!
2 =— K_Y ’ y = .
? N;( S S NNV —2man)”

N m
y = -Y)YTr-¥) and T = | Y Biis a
M Jicy
symmetric matrix with zeroes on the diagonal and a
function of N and m only and it does not depend on
population values Y .

Patil et al. (1995) obtained an unbiased estimator
of population mean and its variance expression. But,
estimating the variance of the estimator from an
observed sample in case of RSS under finite population
context has been found to be cumbersome as some 7,
(probability of inclusion of i unit in the sample) and
7, (inclusion probability for i and j” units together in
the sample) come out to be zero.

The Jackknife method of variance estimation is
one of the popular resampling procedures available in
the literature. Therefore, we propose two different
variance estimation procedures using Jackknife method
under ranked set sampling framework in the context of
finite population in section 2.

1.2 Jackknife Method of Variance Estimation

The Jackknife method is also known as the
Quenouille-Tukey Jackknife, since this tool was
invented by Quenouille (1949) and later developed by
Tukey (1958). The Jackknife and Bootstrap resampling
procedures have been discussed in detail by Shao and
Tu (1995). Wolter’s book (1985) serves as a key source
of reference for methods of variance estimation.
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Let § be an estimator of 0 defined for a sample

X = (X, ..., X). The complete sample is to be
partitioned into & groups of m observations such that
n = mk. Let é<a) be the estimator of the same

functional form as g, but computed from the reduced
sample of size m(k-1) obtained by omitting the o”
group and define the ‘pseudovalues’ as

0, = kO—(k-1)0,, (5)

Quenouille’s unbiased estimator of 6 is the mean
of the pseudovalues, given by

k A
5 = ZZIHa/k (6)

The Jackknife estimator of variance is given by

1 &(a 2\
v (5) - k(k_l);l(ea—e)

The Jackknife estimator of variance can
alternatively be given by

k—1
v (5) = {2 O "“92} )

In the context of finite population, the Quenouille’s
estimator,§ , has to satisfy two important Lemmas
(Wolter 1985). These are as follows:

@ §=

® E(w®)) = vid) = vi6}.

In the context of finite population, Lemma (a)
ensures the unbiasedness of the Quenouille’s estimator,
§ for the parameter of interest 8 and Lemma (b)
ensures the unbiasedness of the Jackknife estimator of
variance, v, (é) , for V{é} .

2. PROPOSED METHODOLOGY FOR
VARIANCE ESTIMATION IN RSS

We propose the following two different approaches
in order to develop the variance estimation procedures
using Jackknife method in ranked set sampling:

1. Cycle based approach
2. Strata based approach

2.1 Cycle Based Approach

We propose cycle based approach for variance
estimation using Jackknife procedure in the context of
RSS. Under this approach, in the sample of mr
observations, there are r cycles considered as 7 groups
each of size m. For applying usual Jackknife procedure,
it is proposed to drop one complete cycle and obtain
the estimator from the reduced sample. Then, drop
another cycle and proceed in the same fashion until all
the cycles are dropped once. Here, dropping of m units
at a time is repeated r times. In this way, one unit is
dropped from each rank in the process of dropping one
cycle.

Let & be the original estimator of population
mean, u. Again, let fi,) be the estimator of the same
functional form as &, but computed from the reduced
sample of size m(r-1) after deleting o group or cycle.
The expressions of & and fi ) are given by

1 m r
= Vrss = mZ Zyu:m)k and (8)
=1 Tk=1
. Il 1
ey = ;2 _12 @mks Ya=12,...r. (9)

(k#ar)
The pseudovalues are given by

A,= rﬂ—(i’—l)ﬂ(a), (10)

The Quenouille’s estimator of p is given by

. | A
0==> (1)
r o=1
and the Jackknife estimator of variance of the estimator

i is given by

) L &y, v
w (i) = r(r_l)%(ﬂa—u)- (12)

By Lemma (a) of section 1.2, it follows that, 7 =

A

Q. = Yges and thus 7 is unbiased estimator of
population mean, u.

The Jackknife estimator of variance can
alternatively be given by

r—1| « .
W) = w(@) = {Z —rﬂz} (13)

a:
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Now

ZE(/J(a)) rE(ﬂZ)

E[wi@] =

- (r—l)[V(/ft<a))+{E(ﬂ(a))}2—V(ﬂ)—{E(ﬂ)}z]

= (r=D[V(fa) - V(D] (14)

For moderate to large population size N, an
approximation to the expression of variance of RSS
estimator (as in Equation 4) obtained by Patil et al.
(1995) can be given as

. _ 1 (N=-1-mr , _
VD = VGrss) = 01" N1 C 7

Sy T b 4 (15)

Now, it can be noted that after deletion of a
complete cycle exactly 7-1 units are there for each ranks
in the sample. Then, using the similar notations of Patil
et al. (1995), from Equation (9) we get

m*(r =1V (i)

_ (r- 1)20(,m)+<r 1)2226,, (r— 1)20,,

i=1 j=1

m 2
=(r—1>{maz—2<u(izm>—mz}(r—l){— “ 02}
Py N-1

—(r— 1)i Cii
i=1

=(r—1)|:m{N L-m(r-1)
N-1

2 (:u(z m) /,l) - 2 Cll :|

. 1 N-1-m(r-1) , _
=Vle) =20l N1 0 7
1 N-1-m(r-=Dr > _
= 16
m(r—1) N -1 [ ] (16)
where
V(Yimi) = O'<2,-;m), COV(y(i:m)k,y(j:m)k')=Cij’

2

Z%mrma _z(ﬂam) w? 22

i=1 j=1

1 m 2 m
and 7 = ;|:2(:u(i:m) — ) +2Cn1-
i=1 i=1
Then, using these results in Equation (14) we get

- r=1| N=1-m(r- 1) N—-1-mr 2
E - _
o ]= r [m(r DIN=1)  mr(N - )}[ 7]

- o -7] (17)
mr

It can be seen that y,(f) is no longer an unbiased
estimator of the variance, V(). This problem of bias
of the Jackknife estimator of variance can be eliminated
by using

/:Z(*a) _ ﬂ+(1—f)% (ﬂ(a) - ) > instead of ﬂ(a);

mr

N-1’

where f=

Hence, in this case, the rescaling factor is

b
a- f)% = (1 - ]\ilnrl) . This results in the following
definitions:

The pseudovalues as ﬂ:[:Fﬂ_(r_l)ﬂ:a)’

12,&; and the

T a=1

Quenouille’s estimator as U =

Jackknife estimator of variance as

W@’ = —2%» (18)

Now

E[Vl(fl*)]

=F rT_li(ﬂ(*a) _ﬂ)2:|

. 2
- 5[ = {u+(1 12y i) u”

o=l

(- £YE[w (@) ] (19)

Substituting the expression of Equation (17) in
Equation (19), we get
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el ()] - (13 | lo* 7]

1 N-1-mr o7
merI: ]

V(yrss) = V(@) (20)

Hence, the proposed estimator of variance after
using the obtained rescaling factor becomes
approximately unbiased for the variance of the
estimator.

n

2.2 Strata Based Approach

In this section, we propose another approach of
variance estimation in RSS under finite population
context named as “Strata based approach”. Consider the
ranks as strata and observations of each rank as units
within a stratum. In the sample of mr observations, there
appears a natural grouping where there are » cycles
considered as » groups each of size m. Here, there are
m strata and each stratum consisting of 7 units. For
applying usual Jackknife procedure, it is proposed to
drop one unit randomly from each rank (i.e. stratum)
and obtain the estimator from the reduced sample.
Here, m units are dropped at a time and these m units
create a group. Then, other m units are dropped (one
from each stratum) in such a way that these m units do
not contain those units which were dropped in first
dropping. In this manner, exhaustively mr sample units
(i.e. 7 groups each of size m) are dropped in the process
of r times of dropping procedure. Hence, one unit is
dropped from each rank in the process of adopting the
proposed strata based approach.

Let @ be the original estimator of population
mean, u. Again let d, be the estimator of the same
functional form as &, but computed from the reduced
sample of size m(r-1) after deleting o group. The
expressions of 2 and fl,, are given by

0= Vrss = 2 zy(i:m)k and Q1)
=1 k:l

1T EH 1 &
:u(Ol)= _z_ 1 2 Yim)k» Y o= 1’ 2’ v 1. (22)
Mzt "= L=t

(k#ar)

The pseudovalues are given by

By =rft=(r =D, (23)

The Quenouille’s estimator of p is given by

L 1S,
i = r%ua 24)

and the Jackknife estimator of variance of the estimator
is given by

w(ft) = 2 (g — 1) (25)

By Lemma (a) of section 1.2, it follows that,

r(r —1)

1i=01=Ygss and thus [i is unbiased estimator of
population mean, u.

The Jackknife estimator of variance can
alternatively be given by

Vl(ﬂ) = v ()=

{Erl —rﬂz} (26)

Now, in the similar way, from Equation (14) we
get

E[w(@] = =DV (fe)-V(@ ] 27)
For moderate to large N,

-1- _
N-l=mr >_ }

1
V) = V(ygss) = %{ N—1

1 N—l—mr{o_z__}

mr N-1 4 (28)

In the similar way as in previous section, we get

1 N—-1-m(r-1) 0_2_7}’

V(la(a)) = m(r—l) N -1 (29)

since, after deletion of units by this approach exactly
r-1 units are there for each ranks in the sample.

Then, using these results in Equation (27) we get
A 11, _
)| =—|o -
E[w(@] mr[ 7] (30)

It can be seen that y,(z) is no longer an unbiased

estimator of the variance, V(&). This problem of bias

of the Jackknife estimator of variance can be eliminated
by using
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By =+ (1= 1) 2y~ . instead of fy:
h _ mr
where f = Nl
Hence, in this case, the rescaling factor is

)%

I—N—r1 . This results in the following

- f)/
definitions:
The pseudovalues as [, =rf—(r—1)fy)s

. . A 1 a Ak
Quenouille’s estimator as @ =—) 4, and the

r =
Jackknife estimator of variance as :
Wiy = 2 - G1)
Now,

E[w@"H] = E{ Z(ﬂ(a) ﬂ)}

= (- HE[w(@ ] (32)
Substituting the value of (30) in (32), we get

. 1 N-1 _
eln)] = o 17

V(Vrss) =V (@) (33)

Hence, the proposed estimator of variance after
using the obtained rescaling factor becomes
approximately unbiased for the variance of the
estimator.

n

3. COMPARISON OF PROPOSED VARIANCE
ESTIMATION PROCEDURES

In order to study the performance of the proposed
variance estimation procedures using Jackknife method
in RSS under finite population framework, we did a
simulation study. Under simulation study, we generated
a bivariate normal population using SAS (Statistical
Analysis System) software of size 1000. Here, two
variables X and Y were taken into consideration where
Y was treated as variable of interest and X was treated
as auxiliary variable. The auxiliary variable was used
for ranking as required in the procedure of RSS. The
parameters of the generated bivariate normal population
are given below:

Mean for X =X = 30, mean for ¥ = ¥ = 35,
standard deviation for X = oy = 8, standard deviation

for Y = Oy = 7 and the correlation between X and
Y=p=0.7.

Further, 500 samples of different sample sizes with
different combination of number of cycles () and
number of ranks (m) were drawn using RSS scheme
from this simulated population. Then, the estimates of
RSS estimator as well as its variance, % CV, skewness
and kurtosis were obtained on the basis of estimates
from these 500 samples for each sample size separately.
Percentage relative bias was obtained using following
expression given by

Voo =Y
9%Bias = [—y RSSY }XIOO

where Y and Yggs are the population mean and the
estimate of population mean based on RSS estimator
respectively.

At the same time, 500 SRSWOR samples were
generated to compare the RSS scheme with usual
SRSWOR scheme for each RSS sample size. Further,
percentage gain in efficiency of the RSS estimator with
respect to SRSWOR estimator of population mean was
obtained using the following expression

V (Vsrs) =V (Vgss)
= 100
GE { V (Frss) }(

where, V(yrgs) and V(ygeg) are the variance obtained
based on 500 samples for the RSS estimator and usual
SRSWOR estimator respectively.

Further, in order to study the performance of
developed variance estimation procedures using
Jackknife method, these procedures were applied on
each selected RSS sample for different combination of
number of cycles () and number of ranks (m). For this,
Relative Bias (R.B.) and Relative Stability (R.S.) of the
estimates of variance of RSS estimator of population
mean, y;(if), were computed for the proposed
approaches. The formula for R.B. and R.S. are given
by

1 A _
;zvls (&) =V (Igss)

V (Vrss)

x100
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and
rs, = VMSEMUD))
o MSE(Ygss)
1 Ak _ 2 %
_ L;{Vls(ﬂ )_V(yRSS)} }
V(Vrss)

where MSE denotes the mean square error and s
denotes the number of samples selected for variance
estimation.

SAS codes were written for selection of ranked set
samples and for obtaining variance of the RSS estimator
of population mean, estimates of variance, Relative Bias
and Relative Stability for both the approaches in the
context of finite population.

4. SIMULATION RESULTS AND DISCUSSIONS

The statistical properties of the RSS estimator
(sample mean) of population mean such as variance,
% Bias, % CV, skewness, kurtosis and percentage gain
in efficiency (GE) of RSS estimator with respect to
usual SRSWOR estimator of population mean were
obtained for different sample sizes (n) i.e. 60, 120 and

180, using different combination of set size (m) and
number of cycles (#) for 500 different samples and are
presented in Table 1.

The graphical presentation of comparison of
empirical variance of the RSS estimator was made for
different sample sizes with different combination of set
size(m) and number of cycles () and is presented in
Fig. 1.

Fig. 1. Comparison of variance of the RSS estimator for different
sample sizes with different combination of m and r.

Table 1. RSS estimator along with its variance, % Bias, % CV, Skewness, Kurtosis and GE with respect to SRSWOR
estimator for different sample sizes (n) with different combination of set size () and number of cycles (7).

n m r RSS Mean Variance % Bias % CV | Skewness Kurtosis GE
60 2 30 35.1033 0.6449 —-0.0936 2.2877 0.0737 —-0.3026 28.9795
120 2 60 35.1789 0.2939 0.1215 1.5411 0.0304 —0.0283 28.9131
180 2 90 35.1262 0.1893 -0.0286 1.2385 0.0578 —-0.1280 22.0715
60 3 20 35.2013 0.5974 0.1853 2.1956 | —0.1879 —0.0844 39.2459
120 3 40 35.1856 0.2703 0.1406 1.4775 0.1689 0.2009 40.1996
180 3 60 35.1091 0.1709 —-0.0772 1.1773 0.0806 —-0.1904 352174
60 4 15 35.1052 0.5693 —0.0882 2.1494 0.1123 0.0643 46.1001
120 4 30 35.1405 0.2714 0.0122 1.4826 0.0759 —-0.1794 39.5902
180 4 45 35.1395 0.1544 0.0093 1.1183 | -0.0073 —-0.1528 49.6255
60 5 12 35.1876 0.5445 0.1463 2.097 -0.0122 —0.1604 52.7666
120 5 24 35.1603 0.2287 0.0685 1.360 0.0893 —-0.0916 65.7128
180 5 36 35.1480 0.1373 0.0335 1.054 0.0305 —0.1488 68.3294
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It can be observed from the Table 1 that the
estimates of RSS mean are almost unbiased in all the
cases considered here. While considering the variance
of RSS mean as shown in Table 1 and Fig. 1, it can be
seen that the obtained variance is decreasing with the
increase of sample size (77) as well as with the increase
of set size (m) for a fixed sample size (7). Similar kind
of trend is found for percentage gain in efficiency also.
With the increase of sample size () as well as with the
increase of set size () for a fixed sample size (n), the
RSS estimator becomes more stable in terms of % CV.
The RSS estimator is symmetric and mesokurtic in
nature. These results ensure the superiority of RSS over
SRS in case of finite population, as shown by several
authors previously.

The variance of RSS estimator, estimates of
variance, relative bias (R.B.) and relative stability (R.S.)
following the proposed variance estimation approaches
were obtained for different sample sizes (n) with
different combination of set size (m) and number of
cycles (7) for 500 different samples in case of RSS and
are presented in Table 2.

It can be observed from the Table 2 that the values
of RS of both the proposed procedures are almost
comparable for different cases considered here. Both
the procedures show quite low amount of relative bias
for estimation of the variance of the RSS estimator. In
most of the cases, Cycle based approach shows less RB
than the Strata based approach. Both the methods are
at par with each other as far as RS is concerned. But
with the increase of set size (m) for a fixed sample size,
the estimator of the variance obtained following both
the approaches becomes less stable in most of the cases.
Therefore, it can be concluded that estimator of the
variance obtained following both the proposed
approaches are almost comparable with respect to RS
for different sample sizes with different combination of
set size (m) and number of cycles (7). But Cycle based
approach is preferable than Strata based approach in
terms of RB, simplicity and convenience of the
approach.

5. CONCLUSION

In this paper, two different variance estimation
procedures namely, Cycle based approach and Strata

Table 2. Comparison of proposed procedures for different sample sizes (n) with different combination of set size (m) and
number of cycles (r).

Variance Cycle Based Approach Strata Based Approach
m r of the Estimate of RB RS Estimate of RB RS
Estimator Variance Variance
30 0.6449 0.6557 1.6694 | 0.2773 0.6504 0.8468 | 0.2909
2 60 0.2939 0.3078 4.7089 | 0.1971 0.3076 4.6468 | 0.1945
90 0.1893 0.1879 —0.7460 | 0.1441 0.1929 1.9077 | 0.1492
20 0.5974 0.5966 —0.1196 [ 0.3255 0.5766 —3.4766 | 03154
3 40 0.2703 0.2771 2.5341 | 0.4469 0.2835 4.8806 | 0.4547
60 0.1709 0.1727 1.0691 | 0.1876 0.1740 1.8309 | 0.1801
15 0.5693 0.5656 —0.6518 [ 0.4023 0.5571 —2.1445 | 0.3588
4 30 0.2714 0.2621 —3.4464 | 0.2478 0.2594 —4.4278 | 0.2609
45 0.1544 0.1586 2.7458 | 0.2239 0.1632 5.7075 | 0.2306
12 0.5445 0.5343 —-1.8759 | 1.0709 0.5265 -3.3098 1.0530
5 24 0.2287 0.2510 9.7776 | 0.3327 0.2475 8.2593 | 0.3216
36 0.1373 0.1533 11.6912 | 0.2976 0.1538 12.0695 | 0.2926
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based approach using Jackknife method in ranked set
sampling under finite population framework are
proposed. Under the proposed approaches, rescaling
factor is obtained in RSS in the context of finite
population and it is shown theoretically that the
proposed estimator of variance becomes approximately
unbiased for variance of the RSS estimator using the
obtained rescaling factor. The comparison of the
proposed variance estimation procedures is done
through simulation study. The variance estimation
procedure following Cycle based approach and Strata
based approach performs at par with respect to relative
stability for different sample sizes with different
combination of set size (712) and number of cycles (7).
But Cycle based approach is preferable than Strata
based approach in terms of relative bias, simplicity and
convenience of the approach.
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