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SUMMARY

Agricultural performance of a country, generally, depends to a large extent on the quantum and distribution of rainfall.
So its accurate forecasting is vital for planning and policy purposes. An attempt is made here for modelling and forecasting of
Indian monsoon rainfall time-series data by using the promising nonparametric methodology of ‘Wavelet analysis in frequency
domain’. Maximal overlap discrete wavelet transform (MODWT) which, unlike discrete wavelet transform (DWT), does not
require the number of data points to be a power of two is employed. Haar wavelet filter is used for computing the same in
order to analyze the behaviour of time-series data in terms of different times and scales. Wavelet methodology in frequency
domain and Autoregressive integrated moving average (ARIMA) methodologies are applied for describing the data and for
computing one-step ahead forecasts for hold-out data. Relevant computer programs are developed in SAS, Ver. 9.3 and R, Ver.
2.15.0 software packages and are appended as an Annexure. Comparative study of performance of the two methodologies is
carried out from the viewpoint of one-step ahead forecasts on the basis of Root mean square prediction error (RMSPE), Mean
absolute prediction error (MAPE) and Relative mean absolute prediction error (RMAPE). It is concluded that, for the data
under consideration, Wavelet analysis in frequency domain approach is superior to ARIMA approach.
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1. INTRODUCTION

Autoregressive integrated moving average
(ARIMA) methodology (Box et al. 2007), which is a
parametric approach, has virtually dominated analysis
of time-series data during last several decades. Here,
role of various explanatory variables enter into the
model “implicitly” through response variable
observations at past epochs. However, quite often it is
not possible to postulate appropriate parametric form
for the underlying phenomenon and, in such cases;
“Nonparametric” approach is called for. Accordingly,
in recent years, an extremely powerful methodology of
“Wavelet analysis” is rapidly emerging (Antoniadis
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1997, Vidakovic 1999, Percival and Walden 2000).
Although, a number of research papers have been
published dealing with various theoretical aspects of
Wavelets, their application to data is still a difficult task.
Wavelet analysis can be studied in two ways: One is
in “time domain” and another is in “frequency domain”.
In respect of the former, Fryzlewicz ef al. (2003)
developed Wavelet process model for forecasting
nonstationary time-series. Sunilkumar and Prajneshu
(2004) applied Wavelet thresholding approach for
modelling and forecasting of monthly meteorological
subdivisions rainfall in Eastern Uttar Pradesh, India.
Sunilkumar and Prajneshu (2008) carried out modelling
and forecasting of marine fish production of India using
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Wavelet thresholding with autocorrelated errors. For the
latter approach, Renaud et al. (2003) developed
methodology for prediction of time-series data based
on multiscale decomposition. Almasri et al. (2008)
proposed a test statistic by using Wavelet
decompositions to test the significance of trend in a
time-series data. A difficult problem of testing for linear
trend is the presence of dependence among the residuals
because of which tests for trend based on the classical
ordinary least squares regression become inappropriate.
In many situations, error autocovariance function
exhibits a slow decay reflecting possible presence of
long memory process. Wavelet analysis has been
extensively used for such purposes, since it suitably
matches the structure of these processes. The
autocovariance function of the Wavelet transformed
series exhibits different behaviour in the sense that
autocovariance functions of the transformed series
decay hyperbolically fast at a rate much faster than the
original process. In general, series that are correlated
in the time domain become almost uncorrelated in the
Wavelet domain. Aminghafari and Poggi (2007, 2012)
used Wavelets and kernel smoothing approach for
forecasting nonstationary time-series.

Agricultural performance of a country, generally,
depends to a large extent on the quantum and
distribution of rainfall. So its accurate modelling is vital
in planning and policy making. Accordingly, several
attempts have been made in the past to develop models
for describing rainfall. In Indian context, Rajeevan et
al. (2004) have provided an excellent review of multiple
and power regression models employed since 1988
along with various modifications made in these models
from time to time, particularly in the identification of
relevant explanatory variables. Azad et al. (2008)
developed a Wavelet-based significance test for
periodicities in Indian monsoon rainfall. Ghosh et al.
(2010) computed size and power of the test for testing
significance of trend in Indian monsoon rainfall data
using Discrete wavelet transform (DWT). Paul et al.
(2011) applied Wavelet methodology for detection of
trend in Indian monsoon rainfall and found that there
is a significant declining trend. However, none of the
above mentioned articles dealt with the issue of
forecasting Indian monsoon rainfall through Wavelets.
Purpose of the present article is to discuss and apply
Wavelet methodology in frequency domain for
modelling and forecasting purposes and compare its
efficiency with that of the usual ARIMA methodology.

2. WAVELETS

The term Wavelet is used to refer to a set of basic
functions with a very special structure which is the key
to its main fundamental properties. Wavelets are
fundamental building block functions, analogous to the
trigonometric sine and cosine functions. As with a sine
or cosine wave, a wavelet function oscillates about zero.
This oscillating property makes the function a wave.
However, the oscillations for a wavelet damp down to
zero, hence the name wavelet. If y(.) is a real-valued
function defined over the real axis (— oo, o) and satisfies
two basic properties:

(i) Integral of y(.) is zero, i.e. I Y (u)du=0

—o0

(ii)) Square of w(.) integrates to unity, i.e.

[ v2du=1,

—o0

then the function w(.) is called a wave. A good
description of wavelets can be found in Daubechies
(1992), Ogden (1997) and Percival and Walden (2000).

3. MAXIMAL OVERLAP DISCRETE
WAVELET TRANSFORMS (MODWT)

The MODWT is a linear filtering operation that
transforms a series into coefficients related to variations
over a set of scales. It is similar to DWT, in that, both
are linear filtering operations producing a set of time-
dependent wavelet and scaling coefficients. Both have
basis vectors associated with a location # and a unit less
scale 7,= 2 — 1 for each decomposition level j =1, ..,
J,- Both are suitable for the analysis of variance
(ANOVA) and for multiresolution analysis (MRA).
However, MODWT differs from DWT in the sense that
it is a highly redundant, nonorthogonal transform
(Percival and Walden 2000). It retains downsampled
values at each level of the decomposition that would
otherwise be discarded by DWT. The MODWT is well
defined for all sample sizes N, whereas for a complete
decomposition of J levels, DWT requires N to be a
multiple of 2/. MODWT offers several advantages over
DWT. Redundancy of MODWT facilitates alignment
of the decomposed wavelet and scaling coefficients at
each level with original time-series, thus enabling a
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ready comparison between the series and its
decomposition. ANOVA derived using MODWT is not
influenced by circular shifting of input time-series,
whereas values derived using DWT depend on starting
point of a series (Percival and Walden 2000). Finally,
redundancy of MODWT wavelet coefficients modestly
increases effective degrees of freedom on each scale
and thus decreases variance of certain wavelet-based
statistical estimates. Since MODWT is energy
conserving, it is well suited for analyzing scale
dependence of variability in ANOVA studies (Percival
and Mofjeld 1997).

3.1 MODWT Filters

A linear filter a, is a sequence of weights, i.e. a, =
{..a,, a,, a, a, a,, ..}. Linear filtration of a time-
series x (or a stochastic process {x,}) is defined as

a; ®x, = 2 A Xi—m

m

where ® stands for convolution operation. An important
characteristic of this filter is its frequency response
defined as the Fourier transform of a,, i.e.

A= ar exp(-i2m f 1), 172 <f< 112,
t

where f is the frequency. MODWT may be thought
of as linear filtration of the time-series or the stochastic
process with a special set of linear filters: Wavelet filter
fy and scaling filter g;. These are interconnected via
the so called quadrature mirror relationship:

gr=C0" "y =D g
and fulfill the conditions:

A = = .

S iy=0.Y i =1/2 and X Mhiszu =0, for all
1=0 1=0 [==e0

nonzero integers n.

L1 L1 o

Y, &=0,Y & =1/2 and ¥, &&1420=0, for all
1=0 1=0 I=—o

nonzero integers #.

Let ﬁj,l and &;; be respectively ji" level
MODWT wavelet and scaling filters and let Lj be width
of j level equivalent wavelet and scaling filter. Thus,

hjj=§;,=0 for /<0 and [2L;j. Let H;(f) and

G ;(f) be respectively frequency responses of £;;
and. & Then

~ L, 172/ < <172/
IAGE 7
0, Otherwise
and
~ I, 0<f<1/2/"
G, = /=]
0, Otherwise

Thus, hj; is a band pass filter for range of
frequencies 1/2*1<f<1/2 and g, is a low pass filter
for range of frequencies 0 < /< 1/2*1. For Haar wavelet
filters:

1727, 1=0,.,2/7" -1
hjp=q-1/27, 1=2/"1 .2/ -1
0, Otherwise,

and for Haar scaling filters:

N {1/21', 1=0,..2/ -1

81 = )
0, Otherwise.

Lengths of Haar filters /;; and &, are L=2.

3.2 MODWT Coefficients

For a redundant transform, like MODWT, an N
sample input time-series will have an N sample
resolution scale for each resolution level. Therefore,
features of wavelet coefficients in a multiresolution
analysis (MRA) will be lined up with original time-
series in a meaningful way. For a time-series X with
arbitrary sample size N, the j level MODWT wavelet
(W j) and scaling (Vj) coefficients are defined as:

L-1
W= hit X imodN-
1=0

L;-1
Vie= Y 81 Xiimodn 3.1

=0
where hj;=h;;/ 27/2 are ji level MODWT wavelet
filters, and g;; = gj,l/2j/2 are j" level MODWT
scaling filters, L. is width of /" level equivalent wavelet
and scaling filters. For a time-series X with V samples,

MODWT yields an additive decomposition or MRA
given by
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o
X=2D;+S;, (3.2)
jl
where
Dj;= 2, ujiW;itimodN»
1=0
Sjt = Vil Vj,t+lm0dN’ (3.3)
1=0

uj; and Vj; being the filters obtained by periodizing

hj; and &;;.According to eq. (3.2), at a scale /, a set
of coefficients {D.} each with the same number of
samples (V) as in the original signal (X) is obtained.
These are called wavelet “details” and capture local
fluctuations over whole period of a time-series at each
scale. Set of values S Jo provide a “smooth” or overall
“trend” of the original signal and adding Dj to Sy, , for
Jj = 1,2, .., J, gives an increasingly more accurate
approximation for it. This additive form of
reconstruction allows prediction of each wavelet
subseries (Dj., S, ) separately and adding individual
predictions an aggregate forecast is generated.

3.3 Choosing Number of Levels

A time-series can be completely or partially
decomposed into a number of levels. For complete
decomposition of a series of length N =2/ using DWT,
maximum number of levels in the decomposition is J.
In practice, a partial decomposition of level J < J
suffices for many applications. A J; level DWT
decomposition requires that N be an integral multiple
of 270 . The MODWT can accommodate any sample
size N and, in theory, any J. In practice, largest level
is commonly selected such that J, < log,(N) in order
to preclude decomposition at scales longer than total
length of the time-series. In particular, for alignment of
wavelet coefficients with the original series, condition
Lj, <N (ie. width of equivalent filter at T Tevel
is less than sample size) should be satisfied to prevent
multiple wrappings of the time-series at level J,.
Selection of J, determines the number of octave bands
and thus number of scales of resolution in the
decomposition.

4. FORECASTING THROUGH WAVELET
METHODOLOGY

Following Renaud et al. (2003), Azad et al. (2008),
Aminghafari and Poggi (2007) and Aminghafari and
Poggi (2012) for the Haar wavelet, reconstruction
formula for # = N + | can be written as

J
Xna1 =V N+ D Wi N
J=1

4.1
Then, to predict X, ,, it suffices to predict
MODWT approximation and detail coefficients \7], N4l
and Vf/j, ~N+1- Hence, idea is to predict for each scale
unknown MODWT coefficients by a linear combination
of their past values dyadically lagged starting from N:

A~

. Aj
WinN+= 2 aj W
k=1

JN=2" (K-1)°
S A.I+l S
ViN+ = 2 aj+1,ij,N_21(K_1) .
k=1

It may be noted that the past values appearing on
the right hand sides of above equations must depend
only on the past observations of the process itself. The
explanatory variables are selected using dyadically
lagged values of MODWT coefficients in order to
extract coefficients of nonredundant (i.e. decimated)
wavelet transform corresponding to dyadic grid adapted
to (i.e. ending at) last observed value. Then, complete
prediction equation of X, ., when N observations X,
X,, ..., X are given, is of the following form:

. J A 2 Ajql 2
Xna=2 ajaW, N o? oy T > ay kY vtk
j=lk=1 k=1

where W = (w,, ..., w), v,) represents Haar MODWT

J
of X(X=V;+ ZWj). For example choosing AJ. =1
j=1

for all resolution levels j, leads to the prediction

Xns1=ajW;y+ajaVin.

To further link this method with prediction based
on a regular Autoregressive (AR) process, note that if
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on each scale the lagged coefficients follow an AR(A].),
addition of the prediction on each level would lead to
same prediction formula (4.1). This multiresolution
prediction model is actually linear. To estimate

J+1
0= 2 A; unknown parameters grouped in a vector o,

Jj=1 . .
normal equation 4’ Ao = A'S is to be solved, where
A/ = (LN—I""’ LN—M ),

, ~ ~ ~ ~ ~
Lt = [Wl,t""’wl,t—ZAl""’Wf,t""’wj,l_zj A sees VI foeens

Vyi-2" A, ]

’

a :[al’l,...,al’Al ,...,aj’l...,aJ’A],...,aj_'_l’l,...,a J+L,A 4 ],
’

S =X Noes Xiitreon X Neptst )

A is OxM matrix, « and § are respectively O and M
(< Q) size vectors.

5. RESULTS AND DISCUSSION

Indian monthly rainfall time-series data during the
years 1871 to 2012, available at the website
(www.tropmet.res.in) of the Indian Institute of Tropical
Meteorology, Pune, India, is considered. Indian
monsoon rainfall amount each year is calculated as the
sum of monthly rainfalls from June to September of that
year. Data during 1871 to 2001 comprising 131 data
points are used for model building and data during
2002-2012 comprising remaining 11 data points are
used for model validation. Computer programs for
computation of MODWT and One-step ahead forecast
through Wavelet method are respectively developed in
R, Ver. 2.15.0 and SAS, Ver. 9.3 software packages and
are appended as an Annexure.

5.1 Modelling of Rainfall Data by ARIMA
Approach

In order to examine stationarity of the data, unit
root test proposed by Dickey et al. (1979) is applied
for parameter in the auxiliary regression

A1y = Pyio1 + 00Dy + &

The relevant H,: p = 0 against H,: p <0. The
estimate of p is computed as —0.006. Calculated ¢-
statistic is —0.58 which is greater than the critical value
—1.95 of ¢ at 5% level of significance (Franses 1998).

Therefore, H), is rejected at 5% level and so p <0,
implying thereby that the data is stationary. The best
ARIMA model, selected on the basis of minimum AIC
and BIC values, is ARIMA(1,0,0) model. Parameter
estimates along with corresponding standard errors of
this model are reported in Table 1.

Table 1. Parameter estimates and other statistics.

Parameter | Estimate | Standard error | z-value | p-value

Constant 85.01 0.65 130.78 | <0.001

ARI —0.12 0.08 -1.32 0.18

5.2 Modelling of Rainfall Data by Wavelet
Approach

For computation of MODWT and forecasting of
Indian monsoon rainfall by Wavelet approach,
methodology discussed in Sections 3.2 and 4 is
followed. Here, we take J; as 7. Haar wavelet is used
for analyzing the data on a scale by scale basis to reveal
its localized nature as exhibited by MODWT
coefficients at level 7 in Fig. 1. Here, X denotes original
time-series plot, W1 to W7 denote the wavelet details
components, and V7 denotes the smoothed component
of MODWT. A perusal indicates that localized variation
in the data is detected at lower scale, whereas global
variation is detected at higher scale. Further,
Multiresolution analysis (MRA) is also carried out on
the basis of “Haar” wavelet and graph of the same is
exhibited in Fig. 2. The wavelet coefficients are related
to differences (of various order) of (weighted) average
values of portions of X, concentrated in time.
Coefficients at the top (below) provide “high
frequency” (“low frequency”) information. Wavelet
coefficients do not remain constant over time and
reflects changes in the data at various time-epochs.
Locations of abrupt jumps can be spotted by looking
for vertical (between levels) clustering of relatively
large coefficients. Above mentioned pattern can also be
verified from the MRA exhibited in Fig. 2.

The Root mean square error (RMSE) values for
fitted models by ARIMA and Wavelet methods using
observations during 1871 to 2001 are respectively
computed as 81.75 and 62.60 respectively. Further, one-
step ahead forecasts of Indian monsoon rainfall hold-
out data for the years 2002 to 2012 by using the above
two methods are also computed. The Root mean square
prediction error (RMSPE), Mean absolute prediction
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Fig. 1. MODWT of Indian monsoon rainfall time-series data.

error (MAPE), and Relative mean absolute prediction
error (RMAPE) values for fitted ARIMA model, viz.
90.61, 61.35, and 8.37 are found to be higher than the
corresponding ones for fitted Wavelet method, viz.
67.79, 46.54, and 6.19. respectively, thereby reflecting
superiority of Wavelet approach over ARIMA approach
for prediction purposes also for the data under
consideration. For validation of fitted models, more
replicates with moving windows are also used. In the

Fig. 2. MRA of Indian monsoon rainfall time-series data.

first window, observations during 1871-2001 are used
for model building and those during 2002-2006 for
prediction; in the second window observations during
1872-2002 are used for model building and those during
2003-2007 for prediction, and so on. Finally, data
during 1876-2006 are employed for model building and
those during 2008-2012 for prediction. The
corresponding values of MAPE, RMAPE, and RMSPE
are computed and are reported in Table 2. Again, it is
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Table 2. One- step ahead prediction performance based on window prediction.

Wavelet ARIMA
PredictionWindow MAPE RMAPE(%) RMSPE MAPE RMAPE(%) | RMSPE
2002-2006 55.961 7.81 77.2455 64.176 9.25 97.120
2003-2007 42.716 5.12 54.167 43.299 5.36 61.234
2004-2008 47.567 5.90 57.802 50.145 6.01 63.299
2005-2009 60.964 7.91 82.240 65.567 8.78 92.070
2006-2010 62.250 8.12 81.640 65.522 8.74 92.068
2007-2011 59.292 7.70 80.965 67.722 8.91 92.647
2008-2012 50.448 6.91 74.209 55.295 7.60 85.264

concluded that Wavelet method outperforms the
ARIMA method. In order to get a visual insight, fitted
and predicted values of Indian monsoon rainfall by
ARIMA and Wavelet methods along with data are
exhibited in Fig. 3. A perusal indicates that latter is

1050

Rainfall (mm)

550

1870
i
a5
70
":
I

1
1
19
19
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2
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Fig. 3. Predicted values of Indian monsoon rainfall by Wavelet
(Solid line) and ARIMA (Dashed line) methods along with the
data points
better than former for both modelling and prediction
purposes. However, it may be pointed out that, although
Wavelet methodology is able to capture the pattern in
monsoon rainfall unlike ARIMA method, yet it could
not predict satisfactorily very low rainfalls during 2002,

2004, 2007 and 2009.

6. CONCLUDING REMARKS

The utility of nonparametric Wavelet methodology
in frequency domain for modelling and forecasting
purposes employing Haar wavelet is highlighted.
Superiority of this approach over traditional
Autoregressive integrated moving average methodology

is demonstrated for Indian monsoon rainfall time-series
data. It is hoped that research workers would start
employing Wavelet analysis, which is a very promising
and versatile methodology, for analyzing their data sets.
The prediction of monsoon rainfall may be used by
farmers for selecting appropriate crops to be sown in
future years as well as by policy makers for proper
planning, pertaining to exports and imports, fixing of
minimum support prices, etc., particularly for rainfed
crops. In this paper, computer program for computing
one-step ahead predictions was written using SAS-IML.
As future work, attempt is being made to write it in R
to ensure wider usage. Further, there is a need to
improve the one-step ahead prediction accuracy of
Indian monsoon rainfall. It is believed that it depends
on a number of predictors, like North Atlantic sea
surface temperature, and North Pacific mean sea level
pressure. In this article, the effect of these predictors
on Indian monsoon rainfall was implicitly assumed but
for making more efficient predictions, extension of the
Wavelet and ARIMA methodologies capable of
incorporating the effect of above predictors explicitly
in the models need to be developed. Work is also in
progress to study the utility of other wavelets, like
Daubechies, Least asymmetric, and Symmlets and shall
be reported separately in due course of time.
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ANNEXURE

(i) R PROGRAM FOR COMPUTING MODWT

library(wavelets)

library(wavethresh)

mydata <-read.table(“E:/Project IASRI/
Monsoon rain/monsoon.txt”,header=TRUE)
y<-mydata[“monsoon”

# computing MODWT and MRA
modwt<-modwt(y, filter="haar”,
n.levels=7,boundary="periodic”, fast=TRUE)
mra<-mra(y, filter="haar”, n.levels=7,
boundary=""periodic”, fast=TRUE,
method="modwt”)

#extracting MODWT coefiicient vector
wl<-modwt@W]|[1]]
w2<-modwt@W|[2]]
w3<-modwt@W|[3]]
waA<-modwt@W|[[4]]
w5<-modwt@W|[5]]
wo6<-modwt@W/[[6]]
w7<-modwt@W/[[7]]
v7<-modwt@V[[7]]

#extracting MRA coefiicient vector
d1<-mra@DI[1]]

d2<-mra@DI[2]]

d3<-mra@DI[3]]

d4<-mra@DI[4]]

d5<-mra@DI[5]]

d6<-mra@DI[6]]

d7<-mra@DI[7]]

s7<-mra@S|[7]]

(ii) COMPUTING ONE-STEP AHEAD
FORECAST BY USING MODWT

data wavelet;

input wl w2 w3 w4 w5 wb w7 v7 x;
/* wl-w7 are wavelet coefficients and v7
contains smooth coefficients*/

/* x is original time series®/

cards;

proc iml;

use wavelet;

read all into w;

close wavelet;

n=nrow(w);

x=w[,ncol(w)];

level=7; /* specifying the level of
decompositions*/

1j=2;

/* computing one-step ahead forecast*/
%macro forecast;
%do no_matrix = 1 %to level;
c&no_matrix. = j(rj,1,0);
a&no_matrix. = j(1j,j,0);
doi=1toj;
do k=1 to 1j;
a&no_matrix.[k,i]=w[(n-
&no_matrix.)-2*¥*i*(k-1),i];
c&no_matrix.[k]=w[(n-
&no_matrix.)-2*¥*j*(k-1),j+1];
end;
end;
l&no matrix.=a&no_matrix.[,1];
do i =2 to level;
l&no_matrix.=l&no_matrix.//
a&no_matrix.[,i];
end;
l&no_matrix.=l&no_matrix.//c&no_matrix.;
%if &no_matrix. "= 1 %then %do;
a = l1||1&no_matrix.;
11 = a;
%end;
%end;
%mend;
%forecast;
beta=j(10,1,0);
s=j(level,1,0);
doi=1 to level;
s[i]=x[n-(i-)];
end;
run;
C_=j(rj, 1.0);
A_=j(1j,level,0);
do k=1 to 1j;
do i=1 to level;
A [k,i]=w[(n)-2%*i*(k-1),i];
end;
C_[k]=w[(n)-2**J*(k-), level+1];
end;
L =a_[1];
do i =2 to level;
L =L //a [,i];
end;
L =L //IC ;
beta=inv(a*a‘)*a*s;
xnl=beta’*L,_; /* xnl denotes one-step ahead
forecast*/
print xnl;
run;
quit;



