Available online at www.isas.org.in/jisas

ISAS

JOURNAL OF THE INDIAN SOCIETY OF
AGRICULTURAL STATISTICS 67(3) 2013 305-317

Two Stage Sampling with Two-phases at the Second Stage of Sampling for
Estimation of Finite Population Mean under Random Response Mechanism

U.C. Sud, Kaustav Aditya, Hukum Chandra and Rajender Parsad
Indian Agricultural Statistics Research Institute, New Delhi

Received 25 January 2012; Revised 29 April 2013; Accepted 30 April 2013

SUMMARY

The problem of estimation of finite population mean in the presence of the random response has been considered when
the sampling design is two-stage with two phases at the second stage. Three different types of estimators, based on subsampling
of nonrespondents, collecting data on the subsample through specialized efforts, are developed. Expressions for the variances
of the estimators along with unbiased variance estimators are developed. Optimum values of sample sizes are obtained by
considering a suitable cost function. The percentage reduction in the expected cost of the proposed estimators is studied

empirically.
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1. INTRODUCTION

For large or medium scale surveys we are often
faced with the scenario that the sampling frame of
ultimate stage units is not available and the cost of
construction of the frame is very high. Sometimes the
population elements are scattered over a wide area
resulting in a widely scattered sample. Therefore, not
only the cost of enumeration of units in such a sample
may be very high, the supervision of field work may
also be very difficult. For such situations, two-stage or
multi-stage sampling designs are very effective. It is
also the case that, in many human surveys, information
is not obtained from all the units in surveys. The
problem of nonresponse persist even after call backs.
The estimates obtained from incomplete data may be
biased particularly when the respondents differ from the
nonrespondents. Hansen and Hurwitz (1946) proposed
a technique for adjusting for nonresponse to address the
problem of bias. The technique consists of selecting a
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subsample of nonrespondents. Through specialized
efforts data are collected from the nonrespondents so
as to obtain an estimate of nonresponding units in the
population. Foradori (1961) studied the subsampling of
the nonrespondents technique to estimate the population
total in two stages using unequal probability sampling.
Srinath (1971) used a different procedure for selecting
the subsample of respondents where the subsampling
procedure varied according to the nonresponse rates.

Oh and Schereun (1983) attempted to compensate
for nonresponse by weighing adjustment. Platek and
Gray (1983) used quassi-randomisation technique for
estimation in the presence of nonresponse. Kalton and
Karsprzyk (1986) tried the imputation technique.
Tripathi and Khare (1997) extended the subsampling
of nonrespondents approach to multivariate case.
Okafor and Lee (2000) extended the approach to double
sampling for ratio and regression estimation. Okafor
(2001, 2005) further extended the approach in the
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context of element sampling and two-stage sampling
respectively on two successive occasions. Chhikara and
Sud (2009) used the approach for estimation of
population and domain totals in the context of item
nonresponse. Again, Sud et al. (2012) considered the
problem of estimation of finite population mean in the
presence of nonresponse under two stage sampling
design when the response mechanism was assumed to
be deterministic. It may be mentioned that the weighting
and imputation procedures aim at eliminating the bias
caused by nonresponse. However, these procedures are
based on certain assumptions on the response
mechanism. When these assumptions do not hold good
the resulting estimate may be seriously biased. Further,
when the nonresponse is confounded i.e. the response
probability is dependent on the survey character, it
becomes difficult to eliminate the bias entirely.
Rancourt et al. (1994) provided a partial correction for
the situation. Hansen and Hurwitz’s subsampling
approach although costly, is free from any assumptions.
When the bias caused by nonresponse is serious this
technique is very effective i.e. one does not have to go
for 100 percent response, which can be very expensive.

In what follows, different estimators of population
mean using two-stage sampling designs are developed
in Section 2 based on the technique of subsampling the
nonrespondents, where nonresponse mechanism is
assumed to follow Bernoulli distribution within each
selected primary stage units (psus). However, it is
assumed that the response mechanism is deterministic
at the primary stage unit (psu) level ie. the entire
population of psus can be assumed to be divided into
responding and nonresponding groups. Also given are
expressions for variance of the estimators and unbiased
variance estimators. Optimum values of sample sizes
are obtained by minimizing the expected cost for a fixed
variance. The results are empirically illustrated in
Section 5.3.

2. THEORETICAL DEVELOPMENTS

Let the finite population U under consideration
consists of N known psus labelled 1 through N. Let the
i-th psu comprise M second stage units (ssus). Let Yy
be the value of study character pertaining to j-th ssu in
the i-th psu, i=1, 2,..., N, j=1, 2,..., M. The objective
is to estimate the population mean which is defined as,

N

— 1
Y = N_MZEyl]

i=1 j=1

Casel. Let n psus be selected by simple random
sampling without replacement (srswor) from N
and within each selected psu, m ssus are also
selected by srswor design. Further, out of m
ssus, m;, ssus respond while m,, ssus do not
respond, m, +m,= m. A subsample of size &,
is selected from m,, by srswor and data are
collected on the subsampled units through
specialized efforts, m, = h, f,, i = 1,2, ..., n.
Here at the second stage m,, responding and m,,
nonresponding units are being generated as a
result of m independent Bernoulli trials, one for
each element 7 in m with constant probability
0, of “success”, i.e. the response. So, we have
Pr(i € m; | m) =6, = 0, and Pr(i & j em,|

= 92,

m) = t/lm

Theorem 2.1 An unbiased estimator of y is given by

-, IG 1 _ _
V. = ;Zz(milymil +m Yy, )s (2.1)
i=1

with variance

1 1), 1&%1 1),

7y = | = |2 ——— |5

Vo) (n N)b an;(m M) M
+—L 3 1-0)(f - S}

Nimn P i i2 iM - (22)

An unbiased variance estimator of (2.2) is given
as

11 S
V(yr)_(__FJ" Nn(n— 1)2(m M)

/2 /2
1 _\Sim, (N-n)
t 2 2 (fin-D2 P 2[ }

n < m? o
(2.3)
where
| M
S7 = (N w17, YiMzﬁ%Yij,
Sa = (M — 1)2( Z—§+Z—% and
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(m+DM _ my ., D=m]
m m*(m (f’ D+ M@m-1)
Define,

1 _ _
Sb (n _1)(2))1": J Yim ZZ(milymil +mi2yh7-2)’

m;y

S = —1)(2 A Zyz, MV im

Jj=1

Iy
mig
Proof: By definition, we have

i1 Ym, T M,
E(y) = E1E2E3E4{E5{ Z(mly o T M2V, )H

n;; m
+
_ E1E2E3 E4{ Z(mtlyml mt2ym2)}
ni;; m

_ EIE{E3{ Z( i, ’zim H

- EI{Ez{ 2<9y,m+<1 9)y,m>H

i=1

_ { (0T +1-6) M)}

i=1

n;

This shows that ¥ is an unbiased estimator of the

population mean Y . Here, E srepresents the conditional
expectations of all possible samples of size 4, drawn
from m,, E, is the conditional expectation of all
possible samples of size m, , m,, respectively drawn
from m by keeping m,,, m,, fixed, E, is the conditional
expectation arising out of m independent Bernoulli
trials leading to m,, success and m,, failures, m, + m,
= m, E, is the conditional expectation of all possible
samples of size m drawn from M and E, refers to
expectation arising out of all possible samples of size
n drawn from a population of size N.

Similarly, we can write

V() = VI{EEEE (3)} + E\V,{EEE ()}
+ E\E,V,{E,E{(3,)} + E\E,EV,{E.(y,)}
+ E\E\EE AV (3,)}.

Various terms are expressed as below.

11
VA{E,E,EE (Y.)} = (__stb,

1 G101
E\V{EEE(F)) = EZ(m MJS,M,
E\E,V,{EE(5))) =0,
E\E,E\V {E; ()} =0,

» 1 i(l—
E1E2E3E4{V5(y,)} = Eizl

O (f,-1)s2

m

Here, V|, V,, V, V, and V are defined similarly
as k|, E,, E;, E, and E . Hence, by adding all the terms
we get,

1 1), 191 1),

vl = D — S + I — Sl

Vo (n N)b anl(m M) M
+Li(l—0)(f ~-1S;
Nm”li_l i i2 iM

To obtain an unbiased variance estimator, we
proceed as follows,

ConSider’ Sl/72 = (l’l 1)(2))”” YVr J Where,
— | _
Yim = ;(milymil +mi2yh,~2 )

It can be shown that,

E\EEEE(s)7) =

1 4 1-6) 5 n
- “(fia DSy ———
NZI —(fio = DSing —

N [20.(1-6,
XZ{ (m )+(1 0)* +67 - m}SlM and

i=1

DM 1-6,
E2E3E4E5(s{,%,)=—(m;) Siv - (( _i)(fl ~1)Siy
2
! {zei(l_ei)+(1+0,-)2+49i2—m}5ﬂ.
(m-1) m M
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Therefore,
- ﬁi(—ﬁ)—

_i; M f 52 M( _1)2( M s,',%,
and
SA:%\/I 2%

Substituting the estimated values of S? and $3, in

Eq. (2.2) we get the required result.

As the total cost of the survey is proportional to
the optimum size of the sample, we determine the
optimum values of n, m and f,, by minimizing the
expected cost for a fixed variance. To achieve this,
consider the following cost function

C=Cn+ C2imil +C3ihi2
i=1 i=1

where,
C : Total cost,

C, : Per unit travel and miscellaneous cost between
the psus,

C, : Cost per unit of collecting the information on
the study character in the first attempt,

C, : Cost per unit of collecting the information by
expensive method after the first attempt to
obtain information failed.

The cost function considered above is suitable for
situations prevailing in mail surveys. In these surveys
the first attempt to collect information from the
respondents is made through e-mail/postal mail. Many
of the respondents may not send the required
information through mails. To collect information, a
subsample of nonrespondents may be obtained for data
collection by specialized effort, say, personal interview.

The expected cost in this case is,

Cs ~a m(1-6,)
SR

C'=E(C)=" C1+—2 mo; +
i=1 fi2

To minimize the expected cost consider the
function ¢ = C" + A{V(3") — V,}. Here, 4 is the
Lagrangian multiplier. Also, we determine V), by fixing
the coefficient of variation, say equal to 5%. To obtain
closed form expressions for the various sample sizes
we have considered m,, = h,f, in place of m, = h,f,,
i =1, 2, ..., n. Differentiating with respect to n, m, A
and f, equating the resultant derivatives to ‘0’ and
simplifying give the optimum values as,

k

n =-——
opt (V Sb j
0
N

_ ~(B=D)+(B-D,)’ +4AE

op 1 and
- 1 1o M-
c32<1—6i>[ms - =0)S, +— D '"S}
f — i=1 N N M
20pt T — C c N N .
—+22¥0 Y a-6)s;,
m N i=1

Keeping in view the fact that the sample sizes are
positive values, we took only the positive values of m opt

and f, opt”

_ —(B=D)—(B- D))’ +4AE

opt o and

2(1 0){m§ ——Z(l 012, + g M —m msﬂ
= ~ N& M
f20pt= Cc C .
[ Ly 229}2(1 6)S2,
m

=1 i=1

where,

N
k=S§+%2(i——)S@ 2“ % (f,-vsi,

i=1 M

{sze C32(1 ‘9)}20 031,

2 i=1

N _n. N ¢2
PP AN T

o o N
N
B=- cgz(; S (£, -1 + 3 53
i=1 2 i=1 i=1
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N
E= X Si and ¥, =0.0025 x V2.

i=1

Case 2. Consider the situation that a sample of #n psus
is drawn from N and within each selected psu
a sample of m ssus is drawn by srswor design.
Let there be no nonresponse in 7, psus. In the
remaining n, psus, m,, ssus respond while m,,
ssus do not respond. A subsample of /4, units
is selected from m,, by srswor and data are
collected through specialized efforts, m,, = A,

S 1= 1,2, ..., n,
In this context, we state the Theorem 2.2 as below
Theorem?2.2. The estimator

., 1 & (M1 YV, + M2 V)
v = ;{2 Vim 2, 24)

i=1 i=1 m

is unbiased for Y , with variance

l_i sz Lyl 1
V() = b+ NS\ m M

1 a-6)
i Nni5

(fia=DSiy- (2.5)

An unbiased variance estimator of the estimator

.
y, 1s given as

. 1 1), N-1 &(1 1)\s?
— —_— 4+ — _—— _—
V= (n N) Nn(n-1) ;(m M)

1 i2 l/r%l N-n
+ — - - -
anz}m (Jiz )a Nn(n—-1)

G, M (1 1
X{Z[D‘;}M—a Z(m M) } 2.6)

i=1

where
SZZZ—[Zyzm 2 Z(mzlym1+mz2yh,2) _nyr]
(n=17 i1 m
1 m
and Si%n =( )(2)’1] myzm) ylm_;gl

Proof: By definition, we have

E(y)

|

i=1 m

_EE E[ {21 +"22(milymil+mizimiz>}}
1 i=1 m

=EE l: {"2 2 —17im +@yim)}]
=1 i=1 m

i 1 n ny
=E, Ez;{zyim +3 0.Vim +<1—el~>yim)H

i=1 i=1

Thus, y/ is an unbiased estimator of the

population mean Y. Here, E; represents conditional
expectations of all possible samples of size /4, drawn
from m,, E, is the conditional expectation of all
possible samples of size m,,, m,, respectively drawn
from m by keeping m,,, m,, fixed, E, is the conditional
expectation arising out of m independent Bernoulli
trials leading to m,, success and m,, failures, m,, + m,
= m, E, is the conditional expectation of all possible
samples of size m drawn from M and E, arises out of
selection of all possible samples of size » from N.

To obtain the variance we proceed as follows:
V() =VHEEEE (DY EV, {EEE ()
+ E\E,V{E,E (¥} + E\E,E;V,{E, (7))}
+EE,ELE, AV (V)

where,

VAEEEE () = (l—%)&?,

Ll
E\VAEEE(Yy)} = Nn=\m M iM >
E\E,V.E,E,(y))} =0,

E\E,E\V,E.(y))} =0

L A-6) 2
and E E,E;E,V,(Y) = an —(fir =DSii

i=1
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Here, V|, V,, V5, V, and V; are defined similarly
as £, E,, E;, E, and E,. By adding the above three
terms we get the required result. To obtain an unbiased
variance estimator, consider,

1
Sb Eyzm 2 2

(—1) i1 m

Taking the expectations and simplifying we get,

1 X1 1),
‘—Nm_DZ(;‘ﬁ)SfM
< (1-6) 9) n o1

i=1

N [260-6) 2 }S
;{ — +(1-6)*+6> - vl

(Mt Yy, M2 Vi, )’ - ny;’z}

”2 2
E\E,E\E,EE (s,") = S},

and also we have

2 2
E\EEE(Sim) = Siy,

” (m+DOM .,  (d-6) 2
EsEEE (Sin) = ——Siu m(m_l)(ﬁ —DSim
) 2
- {20"(1 0’)+(l—¢9j)2+¢9,-2—m}5’—’”.
(m-1) M

Here E, represents conditional expectations of all
possible samples of size 4, drawn from m,,, E is the
conditional expectation of all possible samples of size
m,,, m,, respectively drawn from m by keeping m,,, m,,
fixed, £, is the conditional expectation arising out of
m independent Bernoulli trials leading to m,, success
and m,, failures, m,, + m, = m, E; is the conditional
expectation of all possible samples of size m drawn
from M, E, arising out of selection of all possible
samples of size n, n, drawn from N,, N, keeping n,,
n, fixed and E, is the expectation arises out of

randomness of n, and n,, n, + n,=n, N+ N,= N.

Thus,

5 I &1 12 1% s

SZ :SIIZ + I It m;y 1 Sim
b n(n—l);_;(m Mja nlz::‘ (2 )

For the psus with no nonresponse §3, =52 while in

72

: 4 5; o
psus with nonresponse problem Sj, ==, Substituting
a

the estimated values in the variance expression in Eq.
(2.5) we obtain the required result.

To determine the optimum values of n, m and f,
we proceed as earlier i.e. minimization of expected cost
subject to fixed variance. The relevant cost function in
this case is,

L) L)
C=Cpy+Cpym+ Cy Y my+C3 Y i,
i=1 i=1

where, C, C,, C, and C; are same as defined earlier.
The expected cost is,

= EC)

= —|:C1N2+C2N1m+C22ml9 +C32(1 e)m
i=1 i=1 i2

To minimize the expected cost consider the
function ¢ = E(C) + A{V(37) V,}, where A is the
Lagrangian multiplier. To obtain closed form
expressions for the various sample sizes we have
considered m,, = h,, f, in place of m,, = h, f,, i =1,
2, ..., n,. The optimum values obtained through
minimization are as follows:

Ry = 2,m ,f andfzopt ,/ .
(Vo+

Keeping in view the fact that the sample sizes are
positive values, we took only the positive values of my,
and fZOpt which are

’BZ B
= |— = 1
A2 and‘fopt Xl

181 1 1 X(1-6)
k=SE+—=Y| ——— |53 +—=Y —22(f, - 1S},
| bNg(m MJMNEm (f2=DSi

where,

A= (CzNﬁszHjZ(l 6,)Sis »

i=1 i=1
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N, N, 5 N, 5
B, = C32(1—9i){25m —2(1—0,98,-4,
i=1 i=1 i=1

N LA=60)| ver_ L {h e
A =GN +C, Y 6,+C3 ), f’ NSb—MZSiM,

i=1 i=1 2 i=1

i=1 i=1

N N,
B,=C\N, {25514 +2(1_0i)(f2 ~DSiy },

and V, = 0.0025x 7>

Case 3. Let a sample of n psus is drawn from N, within
each selected psu a sample of m ssus is drawn
by srswor. Let there be no nonresponse in n,
psus. In the n, psus m,, ssus respond while m,,
ssus do not respond. A subsample of /4, units
is selected by srswor from m,, and data are
collected through specialized efforts, let there
be complete nonresponse in the n, psus.
Further a subsample of /4, psus is drawn out
of n, psus and data are collected through
specialized efforts on each of m ssus in the
selected £, psus. Here ny = f,h, and m, = h,
J» i = 1,2, ..., n,. Inthis context we state the
following theorem.

Theorem 2.3.The unbiased estimator of Y is

)—)'r” = _{2y1m+2 (mllym11+m12yh72)+ Zy’m}
n i i=1 1 h3 ‘

with variance

V()= LR i —— 25 +§4S<2
r n N T Nn = iM

Ny 1
+f32s,i,} 2( %1, -1s2, +%(f3 D82,
i=1

(2.8)
2 1 Y., =V )2
where, Spy = i —Yn,)" where,
: 3—lid
1 &
LI
Yy, N, & M

An unbiased estimator of variance is,

Ve = (l_%js;;z Nn(—‘—)zszm

L &my . sE L (N-D L) st
+Nn2m (Jiz )0{ Nn(n— 1)(m M)Z

i=1 i=1 04
L (N-m) 2[ } m  mfs=D (N=1
Nn(n D Mo n  Nmn-1)
» (1 1VIQo | 1[, (N-mn-f)
X{Sbha (m M)h3 ;slm}-i-nz{fs Nn-1) }
511

+2 (mtlyml +m12yh )
i=1 i=1 M

1
where, s,;”Z = -1 {2

—m2
+ yzm ny, :|and Sl%h Z(yzm yh3 ’

h3 i=1 (h3

3 Z)’zm and Sb,y,m, Sims ,m,a, D etc.
3 i=1

are defined earlier.

where, Vi, =

Proof: By definition,
E(y))= E\E,EE, %

1 n m: + h
E5|:E6;{2ylm 2( llymll mlzyhﬂ)-*_r% Zylm}:|
i=1

i=1 m hy T
= E,E,E,E, %

3
[ {Z(yzm)-’_z(mllyml +mlzymt2)+%2()_)im)}:|
3

=EIE2[ {szwwa 6)im)+ hjzy,m}]

=1 =1 =1

= E1[E2 ; {ZY,M +2<H,KM +(1-6)¥y) + ’Zj ZYM H

=1 i=1 3 i=1
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Hence, Y”is an unbiased estimator of the

population mean Y . Where, E represents conditional
expectations of all possible samples of size 4, drawn
from, E; is the conditional expectation of all possible
samples of size m,|, my, respectively drawn from m by
keeping m.,, m, fixed, E, is the conditional expectation
arising out of m independent Bernoulli trials leading to
m,, success and m,, failures, m, +m,=m, E; is the
conditional expectation of all possible samples of size
m drawn from M, E, arises out of selection of all
possible samples of size s, drawn from n; while £,
arises out of selection of all possible samples of size
from N.

To obtain the variance we proceed as follows:
V(y)= V{E,E,E,EE, (3))} + E,V,(E;E,E E,
O TEEJVAEEE, (Y)Y + E\EEV {EE (3} +
E\E,E.E,VAE (3))} + E\E,E;E,EAV(3)}.

Here, V,, V,, V5, V,, V5 and V, are defined
similarly as E,, £, E;, E,, E; and E,.

Hence, we have,

11,
VIAEEEEES ()} = (;_ﬁ)sb ,

N
EVEEEE () = (= DS5,»
E\E,V,{E,EE, (7))

g DR

E\E,EV, {EE,(FD}=0,
E\EEEV {E,(N}=0,

2 d- 9)<ﬁ2 ~1sZ,

E\E,EEEAV, (Y} =

Thus, by adding all the terms we obtain the required
variance of the estimator i.e.

vay=( 1oLl (L L §S2 +§482
TN N M |5 T

N N

\ 1 $d-6) 2
) Sh t+— “(fa =DS;
f3i:1 zM} N2 (fio =DSin

N P
+ N gons
Nn(fs )Sin,

To obtain the unbiased estimator of variance,
consider,

1
Sb (_1)|:2yzm 2 2

i=1 M

- - 2
(M1 Yy, + M2V, )

where,

E\E,E;E ESEGE, (s7°)

1341 1 1 % 1-6
=S§+—2(;——js,ﬁ4 D Y
= i=1

M

nefs (L 1) 1 QF(1_1)e
+N(n—l)§(m M)S’M N(n—l)lz::‘(m M)SlM
N 2 n R[26.1-6)
N(n—l)(f3 DSiw, N(n—l);;{ m

2
+1-6)*+67 —M}S’M ,
n| M

E E E E7(szm) = SzM’

(m+D)M

g2 __(1=6)
EEEE(Szm = - im

m(m—1)

(fin=DS3

2 2 Sint
+(1-6) " +67 —m;——,
(1-6,) } v and

(11
N3 i=1 m M

Here, E, represents conditional expectations of all
possible samples of size 4, drawn from m,,, E is the
conditional expectation of all possible samples of m,,,
m,, respectively drawn from m by keeping m,,, m,
ﬁxed E; is the conditional expectation arising out of
m independent Bernoulli trials leading to m,, success
and m,, failures, m, + m, = m, E, is the conditional
expectation of all possible samples of size m drawn
from M, E; arises out of selection of all possible
samples of size h; drawn from n,, E, arises out of
selection of all possible samples of size n, ,n, and n,
drawn from N,, N, and N, keeping n,, n, and n, fixed
and E, refers to the expectation arises out of

m

L1 {29,-(1—01.)
(m-1)

2
E\E,EE,(Si,) = Spy, +
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randomness of n, n, and n,, where n, + n, + n; =n
and N, + N, + N; = N.

Thus,

»m 11 1 M;o
2=S - - - - i2
S = )2 2 F(fin -

/2

Som 1 (1 1)sh
= 2(7%)?

nn-1) &
:

1§11
h3 m M
Here again, for the psus with no nonresponse §32,

i D (f3— 1)[Sbh;

i=1

2 L .
= Sim while in psus when there is nonresponse problem
” 1 &01 1
Sim G2 2 —_——— 2
= = Soh
o and SbN3 3 ]’l,3 ; m M

Substituting the estimated values in the Eq. (2.8) we
get the required expression in Eq. (2.9).

q2  —
SiM -

To determine the optimum values of n, m, f,, and
/5 we proceed as follows,

The cost function in this case is given as,

n, n,
C=Cym+ Cynym + Cy Y gy + C3(Y, iy +m3hs)
i=1 i=1

where, C, C,, C, and C; are same as defined earlier.

The expected cost is,

C" = E(C)

’ Nfs
To minimize the expected cost consider the

function, ¢ = E(C) + A{V(3;) — V,}. To obtain closed

form expressions for the various sample sizes we have
considered m,, = h,, £, in place of m,, = h,, /?2., i=1,
2, ..., n,y and also to overcome the problem arising due
to simultaneous minimisation of n, m, £,, f; we assume
that n; = f,h;. Thus, minimization gives the optimum
values as

032(1 Oym

—n|:Clm+C2—m+—2 mo; + N
i=1

o

—B, 1/ B; —4A,G;

24,

f20pl -

Keeping in view the fact that the sample sizes are
positive values, we took only the positive values of m

and f, opt

m - /2 and /. ~By + B} —4A,G;
pt D2 2opt

24,

opt

where,

N; o 1(1 1
+ 808 —1)SsA 4| ——— |x
v 2 DS, N(m J

2 b M

N > (1-6)
251' +2S1M+f3ZSiM 2 - (f2=DSis
P -l

N
4, = N(C1+C2 14

22@)20 6)Siu
——632(1 e)ZSlM,

Ny
=3 A-60)Siu

i=1

N, N, N,
G.=—Cs 2, (1=6){>. Sis + Y. Sita
i=1 i=1 i=1

- %(l—&)[N Sty + (=152, ]
= par i 39DN; m M iM 1

N
D, =Ny, 3 (1-6,)53, and V,=0.0025 x 72
i=1

Control Case. The following estimator was also
considered for efficiency comparison
purpose. Here we assume that a srswor
sample of » psus is selected from N and
within each selected psu a srswor
sample of m ssus are selected. Data are
collected through specialised efforts i.e.
there is no nonresponse. Then we give
the following Theorem.
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Theorem 2.4. The estimator

D RIES IS

2.10
nm:; 1 j=1 ( )
is unbiased for Y , with variance
1 1 %51 1),
74 ——— |82 —— Sy -
= ( NJ b anl(m MJ M 2.11)
An unbiased estimator of variance is,
A 1 1Y, 1 &(1 1),
V) =| ——— sy +— > | ——— |57,
) (” N)b Nnil(m M) 12
where,
Sp=— E(y -9 =iiy
b (n _1) im im m< ii» and
im (Zyl] yt%n)
_1)
Proof: By definition,
J L
EG) = E{Ez(—zylm)} = EI(ZZYZ-M)
i=1 i=1

1 i -
=—2Ym=v.
N i=1
Thus, y is an unbiased estimator of the population

mean Y . Here, E, denotes the conditional expectation
pertaining to all possible samples of size m drawn from
M and E| is the conditional expectation pertaining to
all possible samples of size » drawn from N.

Again we see that, V(y) = V,E,(y) + E,V,(3).

where
_ 1 1.2
V.E,(y) = (;_N)Sb and
L[ 2
EV>(Y) = N, + = m M

To obtain unbiased estimator of variance, we have,

Ad-L

2
E(s;) = EEy(sp) = 507 Sib and

E(si)

2
SiM '

Now substituting §2 = Szm and

__2(

83, = s?, in the variance express10n we obtain the
required result.

The cost function in this case is, C = C\n + C;nm,
where, C, C, and C, have been defined earlier. To
obtain optimum values of » and m we minimize the cost
by fixing the variance. The optimum values are as
follows,

14 1 1
Syt 20— ISi

B N m d
Moy = Sb , an
Vi, +22
Mo N
N 2
S;
C127M
m =
o\ Cy(S; - ZS,M>

3. EMPIRICAL ILLUSTRATION

For the purpose of empirical illustration we
consider the MU284 data given in Sarndal ef al. (1992).
Using this data a population with N=27 psus and M=10
ssus was generated by combining the adjacent 10 units
and allocating them to the respective psus. In our
analysis we considered two target variables from this
MU284 data. These variables are denoted by P85 and
P75, and described as the human population (in
thousand) of 270 municipalities of Sweden in 1985 and
1975 respectively. Here, we used four different values
of 6, for each psus. Further, various combinations of
cost components C, C, and C; were considered. We
computed the percentage reduction in expected cost
(%RIEC) as well as optimum values of sample sizes
of different estimators described in previous with
respect to controlled estimator y . The values of
%RIEC, optimum sample sizes and various
combinations of cost components C,, C, and C; are
reported in Table 3.1 and Table 3.2. In particular, Table
3.1 and Table 3.2 present the values for P85 and P75
respectively. Note that the percentage reduction in
expected cost for case i(i=1, 2, 3) is computed as

(c-C?)
C

%RIEC = %100 where C is the total cost for

Control Case and C® (i = 1, 2, 3) is the expected cost
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Table 3.1. The optimum values of sample sizes along with percentage reduction in expected cost (%RIEC) of
5,7, vy over v, for the variable P85.
Cost Control First estimator Second estimator Third estimator
) ) 37 )
C |G G| n m n m | f, %RIEC n m S5 | BRIEC| n | m 5 %RIEC
25| 2 45 | 14 3 23 8 3.06 | 36.19 23 | 8 | 273 |64.15 |18 | 5 1.68 | 49.34
25| 2 50 | 14 3 24 8 322 | 36.44 24 | 8 | 2.88 6471 |19 | 5 1.79 | 49.90
25| 2 55| 14 3 25 8 3.38 | 36.66 24 | 8 | 3.02 6521 |19 | 5 1.90 | 50.31
25 | 4 45 | 14 3 22 8 2.66 | 22.96 21 | 6 | 193 160.73 |18 [ 5 1.65 | 42.68
25 | 4 50 | 14 3 22 8 2.80 | 23.42 22 | 6 | 2046143 |19 | 5 1.75 | 43.29
25 | 4 55| 14 3 23 8 294 | 23.82 23 | 6 | 2.14 16205 |19 | 5 1.86 | 43.90
30 | 2 45 | 14 4 23 8 2.87 | 38.15 23 | 9 | 27316391 |17 | 5 1.52 | 49.67
30 | 2 50 | 14 3 23 8 3.03 | 38.38 23 | 9 | 2.88 | 6447 |18 | 5 1.62 | 50.14
30 | 2 55| 14 3 24 8 3.17 | 38.58 24 | 9 | 3.02 6497 |18 | 5 1.71 | 50.59
30 | 4 45 | 14 4 21 8 2.53 | 26.61 21 | 6 | 1.93 16053 |17 | 5 1.49 | 43.46
30 | 4 50 | 14 3 22 8 2.67 | 27.02 22 | 6 | 204 6124 |18 | 5 1.59 | 44.17
30 | 4 55| 14 3 22 8 2.80 | 27.38 22 | 6 | 2.14 | 6186 |18 | 5 1.68 | 44.82
35| 2 45 | 14 4 22 8 2.71 | 39.58 22 | 9 | 273 163.69 |17 | 5 1.39 | 49.94
35| 2 50 | 14 4 22 8 2.86 | 39.79 22 | 9 | 288 |6426 |17 | 5 1.48 | 50.36
35| 2 55| 14 3 23 8 299 | 39.98 23 | 9 | 3.02|6476 |18 | 5 1.56 | 50.75
35| 4 45 | 14 4 21 8 242 | 29.32 21 | 7 | 19316036 |16 | 5 1.37 | 44.32
35| 4 50 | 14 4 21 8 2.56 | 29.69 21 | 7 | 2041|6106 |17 | 5 1.46 | 44.94
35| 4 55| 14 3 22 8 2.68 | 30.02 22 | 7 | 2141|6168 |17 | 5 1.54 | 45.52

for the case i. That is, C) = ’, C® = C” and C® =
C” are the expected cost for case 1, 2 and 3

respectively. The empirical analysis reported in the
paper was done using SAS 9.3 software.

The results for variable P85 reported in Table 3.1
reveal that the %RIEC is maximum for the second
estimator followed by the third estimator and least in
the first estimator. The %RIEC increases with increase
in travel and miscellaneous cost (C,) for the first and
third estimator and decreases in case of the second
estimator. The %RIEC decreases with increase in data
collection cost at first attempt (C,) for the all the

estimators. The %RIEC increases for all the estimators
with the increase in cost per unit of collecting the
information by expensive method after the first attempt
to obtain information failed (C;). It is also seen that,
for given C| and C, as C; increases the rate of increase
of %RIEC is maximum in the second estimator
followed by the third estimator and least in the first
estimator.

Turning now to Table 3.2 for the results of variable
P75. In Table 3.2 again similar to variable P85 we
observe that the %RIEC is maximum for the second
estimator followed by the third estimator and least in
the first estimator. However, in contrast the %RIEC
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Table 3.2. The optimum values of sample sizes along with percentage reduction in expected cost (Y%RIEC) of v, 77, vy

over 7y, for the variable P75.

Cost Control First estimator Second estimator Third estimator
;) ) ") ")
C, 16 Cy; | n m n m | f, %RIEC | n m Sy | %RIEC| n | m /> | %RIEC
25 | 2 45 | 15 8 23 |13 | 2.12 | 45.10 23 | 8 | 278 16692 |13 [ 8 | 0.80 | 50.54
25 | 2 50 | 15 8 23 | 13 | 2.23 | 4532 23 | 8 | 293 |6741 |13 |8 | 085 | 51.24
25 | 2 55 | 15 8 24 | 13 | 2.34 | 45.52 24 | 8 |3.08 6784 |13 |8 | 090 | 51.89
25 | 4 45 | 15 8 21 13 | 1.84 | 34.09 21 | 7 | 197 |6342 |13 | 8 [ 0.78 | 45.38
25 | 4 50 | 15 8 21 13 | 1.94 | 34.48 21 | 7 | 2.07 |64.08 |13 [ 8 | 0.83 | 46.29
25 | 4 55 | 15 8 22 | 13 | 2.04 | 34.82 22 | 7 | 218 |64.65 |13 | 8 | 0.88 | 47.11
30 | 2 45 | 15 9 22 |13 | 1.99 | 46.71 22 |9 | 278 |66.81 |12 [ 8 | 0.72 | 50.28
30 | 2 50 | 15 9 22 | 13 | 2.10 | 46.92 22 |9 | 293 6730 |13 |8 | 077 | 50.92
30 | 2 55 | 15 8 23 [ 13 | 2.20 | 47.11 23 | 9 | 308 |67.74 |13 | 8 [ 0.81 | 51.52
30 | 4 45 | 15 9 20 (13 | L.75 | 37.07 20 | 8 | 197 |6334 (12 [ 8 | 0.70 | 45.67
30 | 4 50 | 15 9 21 13 | 1.85 | 37.43 21 | 8 | 2.07 |64.00 |12 | 8 | 0.75 | 46.49
30 | 4 55 | 15 8 21 13 | 1.94 | 37.75 21 | 8 | 2.18 | 6457 (13 | 8 | 0.80 [ 47.25
35 | 2 45 | 15 10 21 13 | 1.88 | 47.89 21 | 9 | 278 16671 (12 [ 8 | 0.66 | 50.06
35 | 2 50 | 15 22 | 13 | 1.98 | 48.09 22 |9 | 293 |6721 |12 [ 8 | 0.70 | 50.65
35 | 2 55 | 15 9 22 | 13 | 2.08 | 48.27 22 |9 | 3.08 |6764 |12 [ 8 | 0.74 | 51.21
35 | 4 45 | 15 10 20 [ 13 | 1.68 | 39.28 20 | 7 | 197 |6326 (12 [ 8 | 0.65 | 45.86
35 | 4 50 | 15 9 20 (13 | 1.77 | 39.63 20 | 7 | 207 |6392 (12 | 8 | 0.69 [ 46.63
35 | 4 55 | 15 9 21 13 | 1.86 | 39.92 21 | 7 | 218 | 6449 |12 [ 8 | 0.73 | 47.32

increases with increase in travel and miscellaneous cost
(C)) for the first estimator and decreases in case of the
second and third estimator. Moreover, like for P85, the
%RIEC decreases with increase in data collection cost
at first attempt (C,) for the all the estimators in case of
P75 too. We also noticed a identical pattern between
P85 and P75 with respect to C;. Overall, results for two
variable are almost identical.

4. DISCUSSION AND CONCLUSION

The %RIEC is maximum for the second estimator
because there is partial nonresponse in the second stage
for the first estimator for whole sample size n, whereas
for the second estimator, there is partial nonresponse

in the second stage only for a part of the sample size
(i.e. n, psus) and there is complete response in the other
part (i.e. n, psus) where as for the third estimator, there
is full response in 7, psus, partial nonresponse in the
second stage for n, psus and complete nonresponse at
the first stage for n; psus (n, + n, + n, = n). Thus the
first estimator is more costly than other two estimators
and the third estimator is more costly than the second
estimator.

To summarize, all the three estimators, of
population mean in the presence of nonresponse based
on subsampling of the nonrespondents, have better %
RIEC as compared to the estimator based only on
interview method of data collection resulting in 100%
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response. Among all the three estimators, the second
estimator has the maximum %RIEC followed by the
third estimator and %RIEC is least in the first estimator.
Hence, the second estimator was found best among all
the three estimators in respect of the criterion of
%RIEC.
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