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SUMMARY

Robust statistical methods, such as M-estimators, are needed for nonlinear regression models because of the presence of
outliers/influential observations and heteroscedasticity. Outliers and influential observations are commonly observed in many
applications, especially in toxicology and agricultural experiments. For example, dose response studies, which are routinely
conducted in toxicology and agriculture, sometimes result in potential outliers, especially in the high dose groups. This is because
response to high doses often varies among experimental units (e.g., animals). Consequently, this may result in outliers (i.e.,
very low values) in that group. Unlike the linear models, in nonlinear models the outliers not only impact the point estimates
of the model parameters but can also severely impact the estimate of the information matrix. Note that, the information matrix
in a nonlinear model is a function of the model parameters. This is not the case in linear models. In addition to outliers,
heteroscedasticity is a major concern when dealing with nonlinear models. Ignoring heteroscedasticity may lead to inaccurate
coverage probabilities and Type I error rates. Robustness to outliers/influential observations and to heteroscedasticity is even
more important when dealing with thousands of nonlinear regression models in quantitative high throughput screening assays.
Recently, these issues have been studied very extensively in the literature (references are provided in this paper), where the
proposed estimator is robust to outliers/influential observations as well as to heteroscedasticity. The focus of this paper is to
provide the theoretical underpinnings of robust procedures developed recently.

Keywords: Asymptotic linearity, Heteroscedasticity, M-estimation procedure, Nonlinear regression model.

1. INTRODUCTION go to zero as x —» oo . By nonlinear regression models
we mean that the parameters of the model appear
nonlinearly. Alternatively, one could consider models
where the parameters appear linearly but the model is
nonlinear in x, such as high order polynomials in x. An
advantage of such models is that the parameters arise
in the model linearly and hence are easy to estimate and
one can even perform exact statistical inferences (under
suitable assumptions). However, disadvantages
outweigh the advantages of using such polynomial
regression models. Often, unless very high degree
polynomial is used, it is not always feasible to capture
the underlying scientific phenomena using a polynomial

Nonlinear regression models are widely used in
many applications such as in dose response studies
conducted in agricultural sciences, toxicology and other
biological sciences. One of the reasons to consider
nonlinear regression models is that in many applications
it is not reasonable to assume that the rate of change
in mean response E(y), where y is the response variable
of interest, is constant with respect to the explanatory
variables such as dose (x). For example, in toxicology
it is common to assume, due to saturation in the mean
response, the rate of change in E(y) may asymptotically

Corresponding author : Shyamal D. Peddada
E-mail address : peddada@niehs.nih.gov



216 Changwon Lim ef al. / Journal of the Indian Society of Agricultural Statistics 67(2) 2013 215-234

curve. As the degree of the polynomial increases the
power of statistical inference will decrease. Lastly, in
toxicology and in other sciences, researchers are often
interested in estimating dose corresponding to desired
response, such as ED,,. If one were to use standard
polynomial regression models then such parameters are
often nonlinear functions of the model parameters (e.g.
ratio of regression parameters) which can potentially
lead to Fieller’s problem which may not always have a
satisfactory solution.

For the above reasons nonlinear regression models,
which are not necessarily polynomials in dose, are
widely used in applications (Arunachalam and
Balakrishrnan 2012, Lim et al. 2011a, 2011b, 2012,
2013, Prajneshu and Das 1998, Prajneshu and Sharma
1992, Ratkowsky 1990). More precisely, a model such
as the following is widely used

v, =fx, 0 +o¢g, i=1,2, ..,k (1)

- T
where y, = (¥, - Yion )" are n, x l'response vectors,
x, are m % 1 vectors of known regression constants (e.g.,
dose), 6 = (6,, ..., Qp)T is a vector of unknown
parameter, f'is a pre-specied nonlinear function of 6

and €; are independent and identically distributed
random vectors with N(0, /). The total sample size 7 is

given by X, n.

Throughout this paper we assume that 0, =0 (z,,
7) where z; are g x 1 vectors of known constants (e.g.,
dose), 7= (7, ..., Tq)T is a vector of unknown parameters
and o is a pre-specied function of 7. Thus in the case
of homoscedasticity o (z,, 7) is constant for all z; and
is not constant when the data are heteroscedastic. In
toxicological studies, the variability in response y may
sometimes depend upon the mean response, which is
likely to be monotonic in dose. In practice, however,
one never knows a priori if the data are homoscedastic
or heteroscedastic. Consequently, one never knows, a
priori, whether to use ordinary least squares (OLS)
based methodology or to use iterated weighted least
squares (IWLS) based methodology. Adding to the
complexity, it is not uncommon to find outliers and/or
influential observations in these data. It is well known
that the efficiency and the accuracy of OLS and IWLS
depend upon the underlying variance structure (Lim et
al. 2011a, 2011b, 2012, 2013) and potential outliers
and/or influential observations in the data. For these
reasons, (Lim et al. 2012, 2013) developed a

preliminary test (PT) based methodology that is robust
to the underlying variance structure and for the method
to be robust against potential outliers and/or influential
observations, they used M-estimation based
methodology. PTE chooses either the ordinary
M-estimator (OME) or the weighted M-estimator
(WME) based on the results of a preliminary test for
heteroscedasticity.

In Section 2 we define three robust estimators
(OME, WME and PTE) and their asymptotic properties.
In Section 3 we illustrate the methodology described
in (Lim et al. 2012, 2013) using a data set obtained
from NIEHS quantitative high throughput screening
(qHTS) assays. The asymptotic theory developed and
used in (Lim ef al. 2012, 2013) require the asymptotic
linearity of WME, which is demonstrated in Section 4
of this paper. For clarity of exposition, we relegated all
regularity conditions and lemmas to the Appendix of
the paper.

2. ESTIMATORS

In this section we define various estimators for
estimating parameters in the model (1) and their
asymptotic covariance matrices. Note that some of the
definitions of the matrices and related quantities are
provided in the Appendix.

The ordinary M-estimator (OME) for 6 is defined
as the solution of the following minimization problem.

6, = Argmin [th(yu - f(x,0)):0€e 9?”],
i’j

where / is a suitable function such as Huber-score
function. Asymptotic covariance matrix of OME is
expressed as follows.

E[n(6,-6)(8,-6)]
1 (1 1 !
= (_ 1—‘4n (6) ) (_ 1—‘33n (6) )(_ 1—‘4n (0) ) )
n n n

k
O3 > 1w (X)) fo(x:.0) f5 (x;,6),

i=1

k
V4D nifo(x;.0) fo (x,0),

i=1

where

I'33,(0)

l—‘411 (0)
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O2w,() = By (0 (z De). Y, = By (0 (2 De),
fe (x, 0) = (0/06) f (x, 0), y(u) = (9/0u) h*(u), and
W) = @/ ).

In Lim et al. (2012), we defined WME of the
unknown parameter vector, (87, t/)” as follows.

n| . pi|l 2y ST
(fn)‘Arg’"’”l%{ ( o(:1.7)

+logo(z;,7) }:96 RP re R ] 2)

The main theory in this paper together with the
methodology described in Lim et al. (2012), legitimizes
the following asymptotic distribution of WME:

6,-0 )
- N

0,7
T, —T—v,(0,7) pia (

p+q)’

1
s w;[
where

—1
1 -1
Yy (0, T) = (ZFZIL (6’ T)J %Tzk(Zl ’T)O-T(Zi’T),
i=1
(U s o Y (1 s Y1 s )
I'= _FSn(en’Tn) _FSn(en’Tn) _FSn(en’Tn) ’
n n n

I'5,(0,7) 0
0 I'3,0.7) |

r,0,7) 0
0 r,,6,7) [

sy, (0,7) = Oyt 2 k7200 fo(x:.0) f3 (%;,0),
i=1

I'5,(0,7)

I's,(0,7)

n
T, (6,7) = Op2 2 k> (2,0)0:(2:,0)07 (2;,7),
i=1

(0/91)0(z;,7),
1/o (z,,7).

O-T (Zi ’ T)
and k(z,, 7) =
To keep the model parsimonious, as in Lim ef al.

(2012, 2013), throughout this paper we model the
standard deviation using the following log-linear model:

log 0 (z, 1) = 7, + 7)x..

We take z, = (1, x)" where x_ is the i dose. We derive
the preliminary test estimator (PTE) as was done in Lim
etal. (2012, 2013), as follows. We first fit the nonlinear
model (1) under homoscedasticity using OME. Let €, =
v, —fx, ). Using these residuals we fit the following
log-linear model using standard OLS methodology to
estimate 7, and 7,.

log [&] = 7,+ 7px, + n,
The PTE is then defined as

éPT — 9”
! 6, if T,> 1y,

it T, <ty,»

where T = £,/ /var(,,), %, is the least squares

estimator of 7, lon2 is the critical value of the t-
distribution with »-2 degrees of freedom having
probability 1—a and o is the significance level of the
preliminary test.

The following asymptotic covariance matrix for
PTE is derived in Lim et al. (2012).

E[n(é,{’T —-0) (6T -o)T }

JE[n(én -60)(6,-0)" ]

Fle, -8
N \ var (fln)
+{1-F |t N N E[n(é -9)(é -H)T:I

t| ‘a,n—2 lvar(fl,,) n n

_F, (ra,n_z —ﬁ)(inn <¢9>)_1 (r@)x

1 -1
(;F4n (9)) + {1 -k (ta,n—2 ——,—V;(lfln) J}X

1 -1 1 ~1

(—Fm@) (r@)(r.e)
n n n

where F . is the cdf of the t-distribution with n — 2

degrees of freedom. Note that the asymptotic

covariance matrix of PTE is a weighted average of the
corresponding matrices for OME and WME.

Remark 2.1. From Lim et al. (2012, 2013) we now
have the following confidence intervals.
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(a) The 100(1— o)% confidence interval for
parameters 6, i = 1, ..., p, of a nonlinear model
(1) using OME method can be computed using the
following formula Lim et al. (2012):

N o
0, £1a12.n-p\Vii

where ¢ is the (i, i)-element of the estimated

ii

covariance matrix of @,

(Cun (@) ' Tyn @) (Tan @)

(b) The 100(1- )% confidence interval for
parameters 6, i = 1, ..., p, of a nonlinear model
(1) using WME method can be computed using
the following formula Lim ez al. (2012):

[Lw
ta/Z,n—p—q Vii

where v is the (7, i)-element of the estimated

0

I+

covariance matrix of @,

—1

(@) T3 @) 6)))

(¢) The 100(1-)% confidence interval for
parameters 6, i = 1, ..., p, of a nonlinear model
(1) using PTE method can be computed using the
following formula Lim et al. (2013):

APT 0 w
6" g2 p-g Max {\/ Vii s\ Vii }

The confidence limits for PTE use the maximum
of the standard errors of OME and WME in their
construction rather than a standard error based on the
weighted average mentioned earlier. PTE can be
expressed as a weighted average of OME and WME
which both are asymptotically normally distributed.
Therefore, the asymptotic distribution of PTE is a
mixture of normal distributions and hence the usual
confidence limits using a critical value from a
t-distribution and the standard error of PTE may not be
appropriate. That is the reason why we used the
maximum of the standard errors of OME and WME,
which is derived in Lim ef al. (2013).

3. ILLUSTRATION

For illustration purposes we consider dose-
response data for two compounds from the US National

Toxicology Program (NTP) library of 1408 compounds
that were evaluated using the quantitative high
throughput screening (qHTS) assay. The raw data are
provided in the Appendix and they are plotted against
dose in Fig. 1(a) and 1(b), respectively. A visual
inspection of Fig. 1(a) suggests that the data are perhaps
homoscedastic, whereas Fig. 1(b) suggests potential
heteroscedasticity. Indeed the Bartlett’s test for
homogeneity yields p-values of 0.817 and 0.066 for
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Fig. 1. US NTP qHTS data sets, the corresponding tted curves
using OME (solid line) and WME (dashed line) methods.
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Examples 1 and 2, respectively. As commonly done by
toxicologists, we fitted the following nonlinear
function, called the Hill function, for the two data sets:

%

f(x,9)=490 +91W'

We computed OME, WME and PTE (described in

Lim et al. (2013)) using Huber function with y= 1.5.
Note that PTE chooses either OME or WME based on
the result of the preliminary test Lim et al. (2012) and
hence the fitted curve using PTE is the same as one of
the two fitted curves using OME and WME. We
computed the 95% confidence intervals for OME,
WME and PTE using the formulae provided in the
previous section. Results are summarized in Table 1.
As expected, the performance of OME and WME
depends upon whether the data are homoscedastic or
heteroscedastic. For homoscedastic data even though

Table 1. Estimate, standard error and 95% confidence
interval for parameters of the models for US NTP qHTS
data using OME, WME and PTE methods.

95% Confidence

Parameter Method Estimate SE

Interval
OME -36.7 4.7 (—47.7, =25.8)
0, WME -37.7 8.0 (-56.5, —18.9)
PTE -36.7 6.6 (-55.6, —17.9)
OME 34.5 49 (23.1, 45.9)
0, WME 353 8.3 (16.0, 54.6)
Example 1 PTE 34.5 6.8 (15.2, 53.8)
OME 3.1 1.3 (0.1, 6.1)
0, WME 2.6 1.4 (-0.6, 5.9)
PTE 3.1 1.3 (-0.2, 6.3)
OME 28.9 5.7 (15.7, 42.2)
0, WME 299 9.1 (8.5, 51.2)
PTE 28.9 7.6 (7.5, 50.3)
OME -45.7 2.8 (-52.3, -39.1)
0, WME —45.1 6.1 (-59.3, -30.9)
PTE —45.1 6.0 (-59.3, -30.9)
OME 46.7 3.2 (39.4, 54.1)
0, WME 464 6.2 (31.9, 61.0)
PTE 46.4 6.2 (31.9, 61.0)
Example 2 OME 8.4 48.1 (-103.9, 120.8)
0, WME 4.2 2.2 (-1.0, 9.4)
PTE 4.2 9.0 (—-108.4, 116.8)
OME 18.9 8.9 (2.0, 39.8)
0, WME 17.9 2.4 (12.3, 23.4)

PTE 179 28 (3.0, 38.8)

the point estimates of OME and WME are quite similar,
the standard errors of WME are almost two times larger
than those of OME. On the other hand, for
heteroscedastic data OME for 6, and the standard errors
of OME for 6, and 6, are very large. Consequently, the
confidence intervals are also very highly affected by the
choice of the method. The PTE provides the desired
compromise between the two methods.

4. ASYMPTOTIC LINEARITY OF WEIGHTED
M-ESTIMATOR (WME)

In this section we investigate the asymptotic
linearity of WME (2) for the heteroscedastic nonlinear
regression model (1). M-estimation methods have been
well studied in the literature over the several decades
for linear models (cf. Huber 1981, Jureckova and Sen
1996, Maronna ef al. 2006). Huber (1973) proposed the
M-estimator of the regression parameters in the
univariate linear model and showed that under certain
regularity conditions the M-estimator is consistent and
asymptotically normal. The asymptotic theory for the
M-estimator has been extensively studied (see, e.g.,
Huber 1973, Klein and Yohai 1981, Relles 1968, Yohai
and Maronna 1979); for multivariate linear models one
may refer to Kent and Tyler (2001), Maronna (1976),
Maronna and Yohai (2008), Singer and Sen (1985),
Tyler (2002) among others. In the context of nonlinear
regression models, Sanhueza (2000) and Sanhueza and
Sen (2001, 2004) proposed M-estimators and studied
their asymptotic properties. More recently, Sanhueza
et al. (2009) extended these methods to nonlinear
models for repeated measures data.

Asymptotic linearity of M-estimators is the first
and important step to derive the asymptotic normality
of the M-estimators in nonlinear regression models
(Sanhueza 2000; Sanhueza and Sen 2001, 2004;
Sanhueza et al. 2009). Because we defined an M-
estimator of not only the regression parameter 6, but
also the variance parameter 7 for heteroscedastic
nonlinear regression model, the derivation of
asymptotic linearity of the M-estimator is nontrivial.

The estimating equation for the minimization in
(2) is given by

> A%, y5.0,.%) =0 3)

iJ
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where

k(Z[,T)l//(Eij)fg(xi,e)

k(z;, D) {y(€;)e; 110, (2;,7)
“)

We explain the derivation of the uniform
asymptotic linearity of WME very briefly as follows.
First we apply the Taylor’s expansion to A(x,, Vi 0, 7)
and decompose the first order term to several terms.
After that we take expectation on the terms which are
going to zero by the regularity conditions.

Az, Vi 0, 1,)= (

Then under the regularity conditions and lemmas
provided in the Appendix, we now state and prove the
uniform asymptotic linearity of WME defined in (2).

Theorem 4.1 Under the regularity conditions (A), (B)
and (C) described in the Appendix of this paper, for any
given C,C, >0,

H H<C H H<C T{z)‘(xz’yn9+n 172 t,T+n -1/2 )
4 s

_/,L(xi’yi’ear)}

1 T 7. 1 T T T
+—({T5 (6,1),0 t+—(O0" ,I'5 (0,7 =
n( 1,(6:0,07) n( 2, (0:0) s 1)

asn — oo, where A(x, y,, 6, 7) was defined in (4).

Proof. We consider the /th element of the vector A(x,,
V> 6, 7) denoted for

A (x;, i, 6, 7)
_ k(zi,f)l//(ei)fe[ (xi’e), l=1, o P
N k(Zi,T) {l//(ei)ei _l}o-Tl,p (Zi,T)’ l= p+1a ap+q

Using the first order term in the Taylor’s
expansion, we have for 0 <u, v <1,

Ax, yi, 0+n 2 t,T+n_1/2s)—/11(x,-,y,-,H,T)

1 V4
_ Esz{(a/aej)/l,(xi,yi,a,r)}
j=1

q

Tzs {0/07))4(x;,y;,60.7))

(0/06)4 x,,y,,6’+
AR CRRs 2

+

-
T 3

_(a/aer)ﬂ‘l(xi’ yiaeﬂ-)}

\/,zs {(a/ar )ﬂ,(x,,yneﬁL\/* \/’)

—(a/arj)/il(x,.,y,.,e,r)},
where forj = 1, ..., p,
(0/00),(x;,y,.0.7)
{k (1. 00w (€87 10606,) f (x:,6)
k7 (2, W €) fy (4:,0) fo, (4:,0) |
{6 @ 0w €D fo, (06,0005, (2:,7)

and forj=1, ..., g,

(/97 (x;,¥:,6.7)

12 (2, W) 3 (3,0) %
0r, (2,7) =k (2, 1)
VACHLES o (xi’e)o'rj(zi,f) I=1...,p
—k* (2, 7)(2p (€, €; —1}x
= O-r[_l,(xhe)o-rj(ziar)
—k* (2.0 (€;)%

€} 0, (x,0)0; (3,,7)
+k2 (2, D (E;) €; —1}x
_(az/ar,_,,ar,)a(zi,r),

l=p+1,..,p+q.

Then, we have

(i) for/=1,..,p

\/_Z{ﬂ(x v 0+n e n )~ A (x,y,.0,7)

HtH<C, HYH<C

ﬁzzfjkz(zi,r)f@ (x:,6) fp, (x:,6)

i=1 j=1

sz {(a/ae )X

i=1 j=1

< sup
lel<c; Jsl<c, 11t
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ﬂ,(x,,y,,9+\/_ T+T) (8/80 VA (X, y;,0, T}

lzn:zq:sj {(8/8Tj)><

iy =1

+ sup
lel<c, |sll<c,

ﬂ,(x,,y,,9+\/_ \/_) (0/07) 4 (x;, y;,0, T)}
sz (/904 (x;,,;,6.7)

nzl]l

+
HzH<C. Hsu<c

ZZt K2(2,,7) fo, (3.0) fo, (3,.60)

11]1

+ sup
ldl<c,, HsH<C2

22s /974 (%, y:.6.,7)|-

i=1 j=1

Using Lemma 6.1 through 6.4 provided in the
Appendix we deduce that for /=1, ..., p

\/’z{ﬂl(xpy,,9+n / t,T+n_l/2S)

\tH<Cl \sH<Cz

(%310, + 12 Zztk(z,,r)fg,(x,,é’)

i=l j=1

S0 | = o0 ©

(ii) Forl=p+1,..,.p+gq,

\/—z{iz(x,,y,,9+n 2 t,1+n—1/2s)

HzH<c1 HsH<c2

A (x;,5:,6,7))

& 2n+y3—1
A5 S

P (Zi,f) (Zi’T)O-Tj (Ziaf)

+1_—7/IT)(82 /ar,_parj)a(z,-,r)}

< sup
l<c, Jsl<c,

([t

1 &
—Z%zj{(a/aej)x

n

_(a/aej)/ll(xi’yi’e’z-)}

+ sup
ldl<c Jlsl<c, 11

ey, {@/af )

i=l j=1

N

—(a/a’[j)ﬂl(xl-,yi,e,’[)}

+ sup ZZ; (0/90)4(x;,,,6.7)
lel<c; Jsl<c, 1132 1 j=1

+ sup ZZs (/074 (%, ,,6,7)
lel<c; Jslsc, 1752 1 j=1
14 |2
_zz 7/1 Ak T,, (Zi’T)O-T-(Zi’T)
nig A o’ (2, ) ’ !

1-7
+ O'(Z,,l ) (0? /ar,_parj)a(z,-,r)} _

And, from Lemma 6.5 through 6.8 provided in the
Appendix we conclude that for /=p + 1, ..., p+¢q

\/—z{iz(x,,y,,9+n 2 t,1+n—1/2s)

HtH<C1 HYH<C2

_ﬂ‘l(xhyi’eaf)}

n g
122 {27“7/3 0y, (2,7)0,(2;,7)
i i=1 =1 o (Zla ) !

1-7
+ O'(Z,,l = (0? /ar,_parj)a(z,-,r)}

=o() (D

Therefore, the result of (5) follows from both (6)
and (7).

5. CONCLUDING REMARKS

We describe in this paper three recently published
robust estimators for nonlinear regression models. All
three estimators are robust to outliers and influential
observations. OME is developed for homoscedastic data
while WME is for heteroscedastic data. PTE is robust
to error variance structure by choosing either OME or
WME based on the result of a preliminary test for
heteroscedasticity. PTE is an important estimator
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because a priori one may not know whether data are
homoscedastic or heteroscedastic. Especially when
there are number of data sets as in the case of qHTS
assay PTE may be useful because of its robustness to
outliers/influential observations as well as to error
variance structure.

We illustrate these estimators by considering two
real data sets from qHTS assay. One data set is
potentially homoscedastic and the other is
heteroscedastic. We fitted the Hill function for the data
sets using the three estimators and observed that the
performance and confidence intervals are affected by
the choice of method.

We derive the uniform asymptotic linearity of
WME which is theoretically important for developing
the asymptotic normality of WME and the asymptotic
covariance matrix of PTE. Because WME is estimating
regression parameters as well as variance parameters
simultaneously the derivation is quite complicated.
However, under the suitably established regularity
conditions and lemmas we prove the asymptotic
linearity.

Optimal designs in the context of linear and
nonlinear models are well studied in the literature. Yet,
as observed in Lim et al. (2013), very little has been
done in the context of qHTS assays where a researcher
is not only interested in performing thousands of

Table 2. Estimate, standard error and 95% confidence
interval for parameters of the models for US NTP qHTS
data using OME, WME and PTE methods.

Method Estimate SE  95% Confidence Interval

Parameter

OME -76.1 77.1 (-256.0, 103.7)

0, WME -78.0 83.3 (-272.8, 116.7)
PTE  -78.0 82.0 (-272.8, 116.7)
OME 729 773 (-107.5, 253.3)
0, WME 748 83.5 (~120.6, 270.2)
PTE 748 823 (-120.6, 270.2)
OME 9.7 409.9 (-946.9, 966.4)
0, WME 42 7.1 (-12.3, 20.7)
PTE 42 873 (-954.7, 963.0)
OME  51.6 264.1 (-564.6, 667.9)
0, WME 634 562 (-68.0, 194.7)

PTE 63.4 130.5 (-554.3, 681.0)

statistical tests but is also interested in estimating
parameters of the nonlinear model corresponding to
each selected compound. Often it is a challenge to
estimate the parameters of the nonlinear model
precisely.

To illustrate this point, we considered dose-
response data for a compound (Example 3 in Appendix)
from NTP’s 1408 library of compounds. We fitted the
Hill model for these data (see Fig. 2) using both OME
and WME. Visually, both OME as well as WME seem

I N
o o
| |
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o
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| | | | T
0 20 40 60 80

Compound concentration (uM)

Fig. 2. A US NTP qHTS data set; the corresponding fitted curves
using OME (solid line) and WME (dashed line) methods.

to fit the data well (especially OME), however, as seen
from Table 2, the standard errors of all estimates appear
to be so large that all confidence intervals contain zero.
There could be several reasons for this to happen. For
example, the total sample size may not be large enough
for the amount of variability present in the data
(especially at the high dose). A second reason could be
dose-spacing. Although the chemical is tested at a large
number of low doses, the chemical was not tested at
higher doses containing the point of inflection. In fact
there is no dose between 45 and 90 (uM) where the
curve begins to drop. As consequence, it is not
surprising that OME does not provide precise estimates
for 6,, the slope parameter (standard error of 409.9),
or 6;, the EDy (standard error of 264.1). As noted in
Lim ef al. (2013), with the advent of qHTS assays,
optimal design for nonlinear models is an important
area of future research.
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Table 3. Data corresponding to three examples described in this paper. In each example we provide responses

corresponding to the three replicates for each dose.

Dose (uM Example 1 Example 2 Example 3
0.0005874 7327 —6.043 —-0.258 1.845  5.722 8.032 -0.428 -1.733 -5.901
0.002937 3.110 2340 2379 -5.555 4.191 -1.665 3.103  —6.491  1.196
0.01468 | —11.981 —4.885 -0.714 6.996 —0.506 5.464 —0.566 —9.442 —11.521
0.03283 —4.475 =5.747 2211 -7.108 —-1.420  9.618 -1.660 -5.877 —0.634
0.07341 -4.922 4183 1376 0.235 0.746  —0.509 —0.981 -1.986 -5.771
0.1642 6.090 —-10.287  2.455 5501 -0.156  7.133 -1.919 -10.696 —0.011
03670 | —11.767 —5.345 —0.762 -1.691 -2.403 -12.242 -7.134 -8302 -1.625
0.8207 -3.393  -2.099 2481 3.861 7364 —0.770 -4.490 -4.888  0.283
1.835 —-6.812 -5.808 —4.291 0.700  2.051 8.512 -9.666 4959  1.045
4.103 -0.600 -5.707 1912 -5.885 -1.174 5215 —-4.203 -3.499  5.638
9.175 —-4313 -8.110 -1.442 2813 4767 -9.651 0.388 -5.977 -2.008
20.52 -10.838 -22.657 —-6.074 | -11.651 -29.972 -39.837 3.820 -3.014 -8214
45.87 —34.218 -30.895 -23.375 | -51.204 -57.964 -44239 | -23.929 -24.587 -8.603
91.74 -30.911 -44.233 -34.107 | —49.969 -36.922 -23.337 | -36.776 -76.046 —83.195
6. APPENDIX
(i) Ey’ @)™ <o, Ely’ €)™ <o
6.1 The Data 16
We provide the three data sets used in the El//(e)ez| <co forsome 0 < 6< 1, and

Illustration (Table 3).

6.2 Regularity Conditions and Proofs

We shall make the following sets of regularity

Ey'(€)=1,(#0;E{Yy'(€)e}=0;

Ely'€)e®} = 132 0);

assumptions concerning (A) the score function ¥,
(B) the function £, and (C) the function ¢ . These are a

generalization of the assumption established by
Sanhneza (2000).

[A1l]. ¥ is a nonconstant, odd function which is

absolutely continuous and differentiable with respect to
0.

[A2]. Let € = {y — fix, O)}/o (2, 7)
() Ey(e)=0;E ¥ (€)= opulx) < =
E{y (e)e} =7y (# O

var{y (€)e} = g, ,(x) <o

Ey'(0(z,7)€) = y,(#0)
[A3]. Let € (6. 7) = {y ~Ax. 0)}/0 (z. D).

(i) lim limE{ sup  |w (€ (0+A,T+Ay))

208,20 |jay<5 s <6,
~y(e (9,T))|} =0

lw (€ (0+A,T+A,))x

(ii) lim lim E sup
HAI‘

5050 |1,|<8 16,5,

€(O+A,T+A) -y (e (8,7)€ (0,7)| } ~0
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<o lim lim E sup v (€ (0+A,T+A,))
(i) 550550 {Alsél,Azs($2| b

—y'(e (6,7)) } =0

) lim lim E sup v (€ (0+A,T+A,))
(V) 550,50 {Alsc?l,A2362| b

€(O+A,T+A) -y (8,7)€ (6,7)| } —0

(v) lim lim E{ sup |/ (€ (0+A,T+Ay))X

8-06,-0 |7 |<8,1A,]<8,
€? (0+A1,7+A) -y (6,7)€” (9’7)| } =0

[B1]. flx, 6) is continuous and twice differentiable with

respect to 0 € RP.

[B2]. lim,_,..n"'T},(0,7) = T'(6,7), where

[,(0.7) =7, Y. k*(2,,7) f5(x;,0) f5 (x:.,6).
i=1

[B3]. Forj, =1, ...p

(i) limg_y0 SUP|ycs|(0/96;) f (x,6+A)(9/96;)x
f(x,0+A)-(0/06,)f(x,0)0/06)) f (x,0)| =0
(if) lims_yosupjys](9°/06,06)) f (x.0+A)

—(3%/960,00) f (x,0)| =0

[C1]. o(z, 7) is continuous and twice differentiable with

respectto T e RY.

[C2]. lim,_,..n 'T,,(0,7) = T,(8,7), where

{MO-T(ZI' ’T)O-Z (Zi’T)

rzn(evT) = ; O-Z(ZI’T)

+ =n 2:(2,7) }’

0(z;,7)

and 2,(z;,7) = (3>/001")o(2;,7) -
[C3]. Forj, =1, ... q

(i) lims_osupjses|(0/07,)0(2,7+A)(D/97))x
0(z,7+A)—(9/97;)0(2,7)(0/97))0(z,7)| =0
(i) lims_ygsupyys|(0°/07,07)0(z. 7+ A)

~(0*/97,07;)0(z,7)| =0

In order to prove the uniform asymptotic linearity
of WME (8" ,#")T in (3), we need to consider the
following series of lemmas. When proving the main
theorem we decompose the first order term of the
Taylor’s expansion to A(x,, y,, 6, 7), into several sub-
terms which are partial derivatives of A(x,, y,, 6, 7) with
respect to 8 and 7. By these lemmas we put bounds on
quantities about such partial derivatives which are used
in the main theorem about the uniform asymptotic
linearity of WME.

Lemma 6.1. Let the regularity conditions in Section 6.2
hold and let A(x, y,, 6, 7) be the /th element of the
vector A(x,, y,, 0, 1), defined in (4), for / =1, ..., ptq.
Then for /=1, ..., p

—1 SAY ut Vs
£:900/90)4 | x;,¥;,0 +—=,T+—

sup
ldi<c, lsli<c, [7 j=1
—<a/aej)ﬂl(xi,yi,9,f)} =0, (1) (®)
where
A, 3, 00 =kiz, DY (€,(6 D) fo (x, ).
I=1,.,p ©)

and  fy (x, 6)= (3/06))f(x..6).
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Proof. By the definition of derivative, we may write ,
forj,1=1,..,p < sup vle; 0+ L r+2 SAGICA))
I, Jslsc NI
(a/aej)ll(xpy,se,f)
= k(z, DY (<, (6. 1)(2°/96,96,) (x,, 6) « k(z””IJ@Z 12676,) f(xl,gﬂTf]}
~ Kz, Dy (€,(6, D) fo, (x;, 0) Jo,(x, 6) (10) "
Then + sup k zi,7+£ —k(z;,7))| x
L P <G Jslc: Jn
sup  |— Z {(8/80 )ﬂ,(x Vi, 0+—.,T+— - )
lel<cylislscy 17 i=p =1 N 2 ut
(07/06,00))f| x;,0 +— |‘//(€i(9,1’))|
Jn
—(B/aaj)/ll(xi,yi,e,f)}
+  sup {(az/ae,aej)f x,0+-L
P Zi 01962 s li<c Jshsc, Jn
<— sup X, y;,0+—F—
n S S slsc, ( \/_ T .
—(07/06,00)) f (x;,0) k(z.7)|w (€; (6.7))
_(a/aej)ﬂ’l(xiayiae’z.)
’ ut Vs ,
+  sup Ve | 0+—.7+— | |-¥'(€;,(0,7))
and tscl,sscz{ ( ( Jn'n D
su (0190) 4| x;, 1,0 +—= t
Hszcl,HIs)Hscz l( \f \f) (Zpﬂ )fe, X, 0+ ( X0+ ]}
Jn
_(a/aej)/ll(xiayi’e’r)
{kz z,,1'+— kz(z,-,r)
HtH<C1 HvH<Cz
Vs ut Vs
< sup k| z,t+— ¥ e,-(&+—,r+—) X
Hlsc sl ( JZ) ( Jn” Ao (x,,9+—)f ( B+l ] }
(82/89180j)f(x,-,9+uTt)—k(z,-,T)l//(e (0,7)) x
n ut
sup fo,| Xi,0+—F x;,0+
"t s<C2{ ? ( ) ( J;J
(9°/06,00,) f (x,,6) ‘
—Jfo (Xi,e)fej (X,',e)‘ kZ(Z,',T) V'€ (6,7)
2 vs ) , ut Vs
+ sup |k (Zi’ﬂ-T}// [ei(6+T,r+TDx
l<c Js=c; " " " Then by taking expectations on both sides we get
ut ut
ez plen) |
' n Jn Eq sup ((@/06))4 Xy, 0+ L
lil<c, Jsl<c, ! \/_ \/_

- kz(Zi,T)ll//(Ei (0,7)) fg, (xiae)fej (xi’e)‘
_(a/aej)ﬂl(xi’ yhear)

|
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<E{ sup |wle [0+ 225 v, 0,0) — (130 A (x;, y: 97)} -0
" salsdse| \ U N n T fonme
) ut Also,
X sup |kl z,T+—= |[(07/06,00,)f| x;,0 +—=
HtHSCl,HSHSCQ \/_ \/; 1L ut Vs
var[ sup —Zztj{(a/aej),l,(x,.,yl.,9+—,r+—)
Vs HxHSCl,Hsung n i=1 j=1 \/; \/;
+ sup |k| z;,T+—+= |-k(z;,7)
li<c, Islsc ( JZ)
—(a/aﬁj)ﬂl(xi,yi,ﬁ,T)
0’ ut
2] x.0+ L |E! |wee, 0,1
[ae,aej ]f( ﬁ] { v (6,7) }
_— (0/06,)4 O+ —=,T+
) TE (o)
+ sup [(0*/0600,)f| x;,0+—
ldl<c Jsl<c, Jn

_(az/80,80j)f(xi,0)Hk(zi,T) Eﬂy/ (€; (6’,2’))‘}

’ ut Vs ,
tEy sup || =t |1 (6.7)
{zsq,sscz ( ( T J;D
x sup K[zt g [ x.0+ L g [ x.04 L
Zl’ s —_—
e, Isl<c, f o [ 6 In
Vs ’
+ sup |k*| zit+— |-k (2,7
li<c, Jsl<c, ( Jn )

E{y’ e 6.0}

a0 o (022
fa (xi,9+%)f (x,,0+\7%)

I% (zi,r)‘E{ }

Thus, by conditions [A3] (i),(iii), and [B3] (i),(ii),
we have that:

E sup
{tsq,sscz J_ J‘ )

_(a/aej)/q’l(xl’ yi,e,f)} QO’VZ.’

+ sup
lel<cy JIsl<c,

_fgl (xi’e)fgj (xi’e) ‘//,(ei (0’1-))

(0/06; )ﬂ,(x,,y,,0+

and

E sup
ldl<c, lIsl<c,

liitj{(a/aej)z,

g j=1

ut Vs
xi,yi,9+T,T+TJ
n n

|

—(a/aej)ﬂl(xl-,yi,e,l')

!

< ClzKl /n —> 0 .
Therefore, we have (8).

Lemma 6.2. Let the regularity conditions in Section 6.2
hold and let A, (x,, y,. 6, 7) be the /th element of the

vector A(x,, y,, ¢, t ) defined in (4), for / =1, ..., ptq.
Then for/=1, .., p
sup ZZt (07004 (x;, y;,6.7)
ll<c, Jsl<c, |7 3= 1 j=1
ZZI k*(2.7) fy (x:,0) fo,(x;,0)| = = o0,(1) (11)
i=1 j=1

where A,(x,, y,, 6, 7) is defined in (9).

Proof. From (10), we have

sup zzt (a/ae )/ll(xlayl’ T)
l<c, Islsc, |1 32 1 j=1
e, 2
_Zzt]k (Zi’T)f@(xi’e)ij(xi’e)
i=1 j=1
_  sup 221‘ k (2, 0y (€,)(9°106,00,) f (x;,6)
HtH<C, HYH<C2 i=1 j=1

n o p
LN S R WD - 1) i (5 0) i (3:,6)

i=l j=1
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oyl

Zk(zl,rw/(e )(9°106,06;) f (x;,6)

j= =111 j=1
+612 Zk (Z DWW €)= 12} fo, (%1,0) fo, (%, 6)
Jj= =" j=1

which by using the Markov’s Weak Law of Large
Numbers (WLLN) and conditions [A2] (i)-(ii) yields

%%k(zi,r)w(ei)(aZ/aelaej)f(x,.,e) ~o,(1)

and

1< ,
;Zk%zi,r){w €)= 72} fo,(x:,6) fo,(%:,0)
i=1
=0 (1)
Therefore, we have (11).

Lemma 6.3. Let the regularity conditions in Section 6.2
hold and let A(x, y, 6, 7) be the /th element of the
vector A(x, y,, 6, 7), defined in (4), for / =1, ..., ptq.
Then for/=1, .., p

1 &
— @19t DA x1\ 31,0 +——
P LI PR e

—(a/aTj)ﬂl(xi,yi,Q,T)}

sup
lel<c, Jsl<c,

= o,(1). (12)

where A(x, y, 6, 7,) is defined in (9).

Proof. By the definition of derivative, we may write
forl=1,..p,j=1,..4¢,

(0/07))4 (%> 31,0,7) = —k*(z;, DY (€; (8,7)%
o, (31,0)0;, (21, 7) =k (2, DWW (€; (6,7)) x
€ (0.7) fo, (x:,0)0;, (2:,7) (13)

where 07, (2;,7) = (9/97;)0(z;,7). Then,

{(a/a’r )ﬂ,(x,,yl,9+\/_ T+\/_J

—(a/aTj)ﬂl(xi,yi,Q,T)}

n q

LYY,

g =1

sup
ldl<c, lIsl<c,

1 L
oS
no o j=ldsc llsl<c,

(d/97; )ﬂ,(x,,y,,0+

o)

_(a/arj)/ll('xia yhear)

and
sup (8/82’ VA, x,,y,,0+
ll<c Jsl<c, ! J_ \/_
—(0/97 )4 (x;,;.0,7)
t Vs
< sup k7 zi,1+£ vl e, o+ 4+ |k
lrisc, Jslc, ( Jn i n

ut Vs 2
xfo | X;,0+—= |0, | 2, T+— |-k (z;,T)X
fﬂl( \/;) 1]( \/;) ( )

v(e; (0,7)) g (x;,0)07,(2;:,7)

kz(zi,7+%}//(ei(9+%,T+%Dx

€; 0+u—t1+£f x.0+2L o T
A VRN ol G I N

— k% (2, W€, (6,7))€; (0,7) fo, (31,0007 (2:,7)

HzH<cl €<C2{V/( ( \/_ \/—D‘W(Gi(e,f))
(z,,r+ Vi )fa, (x,,9+ )O'Tj(zi,r+%]}
[

T c{
xfa,(xi,6+ )0‘, (zl,r+ ]|l//(€ (0, T))|}

ut
+ sup fo | x,0+— |- fo (x;,0)|x
tSCl,sSCZ{ QZ( Jn ) g‘

RISER) (7 <9,r)>\}

+ sup
lll<c, Jsl<c2

k2

z,,T+—) k2 (z;,7)

Vs
o;,(z,-,r+—)—cr,(zi,r)
J [n J

+ sup
lel<cy lsl<c,
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X|f g (1,0 (2, Dl w (€ <9,r>>|}

fgl(x,,9+\/;) (,,T+T]}E{|l//(€ ©6.0))|}

p ut Vs ut
+ sup W€ | O+—=,T+— | X + su X, 0+——= |- fp (x;,0)
zgq,sscz{ ( ( Jn \/;D tgcl’ggcz{fe,( \/;J fa

€ i(e+%,r+%}w'(e,- (6,7)€; (6,7) xlo, (zi,r)kz(zi,r)|}E{|y/(ei 6.0)}

e (z,,r+ Jf@( ,-,9+u—t)0'rj(2i’7+£]} +  sup
Jn Jn Jn lil<ci Jsl<c,

Vs
Zi, T+—F— k2 (z;,7)
e s<cz{ ( Jn )

Vs
n

x|, <x,-,9>k2(z,-,r>|}Eﬂw<ei ©0.7))|}

t
X\ fa | % 0+ '€ (8.7)€; (@, r)l} +E{ su o+ 7+ | Ik
’ ( ( ] Hszq,HFHscz l// \/; \/;
ut t Vs
+ su S ol Xi:0+—= |- fo (x:,0)]X . wo VS e .
sz,Esg{' 01( \/ZJ 6 | Gz(9+\/;,f+\/;) v, (0,1)¢; (6’,2’)}
|O-Tj (Ziar)kz(zia i (051))61' (9’1)|} X sup k z;, T+—F— f X; 0+
ll<c, Jslsc, \/_ o \/;

Vs Vs
+ sup o | . T+—= [-07,(z,7) o, |z 0+ 2
HtHSCl ,HSHSCQ \Vn J ’I’l

Ife (x;,0)k* (2,7l (€; (8,7)€; (e,r)l}. +  sup {k2(zi,f+%)—k2(zi,f)
n

ll<c, Jsl<c,
Vs
176 +— iT+—F— X
fgl ('x \/; ) (Z \/; ]}

By € 0.00)€; 0.0}

} + sup {fe, (xi’9+%)_f9,(xia0)‘}

lel<cy Jsl<c,

Then by taking expectations on both sides we get

E sup
lel<cy Jsli<c,

(0/07)) 4| x;, ,,9+ T+—
l(x Yi \/— \/—)

—(a/afj)(xl-,yi,g,f)

ut Vs
<E su | O+—=.7+— | |-w(; O,7)) ’
{p ‘”(e ( WA D " } o, (@ 0k Dl EY @ 0.0)e; 0.0}
X sup |k (Z T+——= )f91(x 0+— ) Tj(zi,f'f'ﬁ] + sup o. |z 1+£ -0, (z;,7)
ld=c st<c, \/; Vi Jn M si<c, || U7 Nn e

X|fo (%, Ok (2, DE{y (€ (6,7))€; (6,7)]}.

kz(zi,1'+\7_—s)—k2(zi,7)
n

+ sup
ll<c, Jlsl<c,
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Then, by conditions [A3] (i),(iv), we have that

E sup
lel<c Jsl<c,

(d/97; )ﬂl(x,,y,,0+\/_ \/_)

_(a/arj)ﬂl(xi’yhe’r)

} —0,Vi,

and

E[ sup

llli<c, lsli<c,

ut Vs
@10t A | 3,0+ = T+
zz{ . (xywzﬂﬁ)

]—>0
1}55ﬁ (@197 0+ 14
1 5oy 0+ e

isY \/; \/;

noy g

(9/97, )&(x Vis 0+f r+\/,)

—(a/aTjMi(xi,)’i’e,T)}

Also,

var[ sup

llc, ldl<c,

—(a/afj)/ll(xi’)’i’eﬂ')}

<_zvar{z r

j=1ldl<c, lsl<c,

—(a/aTj)ﬂl(xi,yi,Q,T)

} <C3K,/n— 0.

Therefore, we have (12).

Lemma 6.4. Let the regularity conditions in Section 6.2
hold and let A(x, y,, 6, 7) be the /th element of the
vector A(x,, y,, 0, 1), defined in (4), for /=1, ..., ptq.
Then for /=1, ... p

ZZS /97 ) A(x;,,,6,7)

i=l j=1
=o,(1) (14)
whered(x, y, 6, 7) is defined in (9).

sup
ld<cy st<c, 17t

Proof. From (13), we have

sup ZZs (0/07)A (%, 7:,6.7)
lel<c; Jslsc, 1152 1 j=1
= sup ZZs K (2, W€ fo (%,0)0; (2,7)
ll<cy Jsl<c, 17 3= 1 j=1

1 & ,
F= 25 K @OV €€ 5 (61,0007 (2,7)

i=l j=1

L1
<G -

> k(2 W (E) fo (%,0)07, (2,7)

j=11"" =1
q 1 n ) ,
+O 2D K (@ W €€ fo (x1,0)0¢ (21,7)
j=1" =1

which by using the WLLN and conditions [A2] (i)-(ii)
yields

1 n
;glkz(z,-,nw(e,-)fg, (%,0)07, (21,7) = o (1),

and

—Zk (ZwT)y/ (E )E le(xzae)o-T (ZwT) =0 (1)

i=1
Therefore, we have (14).
Lemma 6.5. Let the regularity conditions in Section 6.2
hold and let A(x, y, 6, 7) be the /th element of the

vector A(x, y,, 0, 7), defined in (4), for / =1, ..., ptq.
Then for/=p+1,..p+gq

;9071004 x;,y;,0 +—=,T+
IVILLOU ERAS R

sup
lfl<c, Jsl<c,
—(8/89,-)/11(xl-,yl-,9,r)} =o,(1). (15)
where
AMx,y. 0, 1) =kiz, DiyE€)e; ~l}o;_ (z, 1),
I=p+1,..p+qg. (16)

Proof. By the definition of derivative, we may write
forj=1,..p, [=p+l, .. ptq,

(0/06)) A,(x,, v, 6, 7)

=—k 2(Zp T)l// (ei) fgj (x[’ 9) O-Tl—p (Z,': T)

Rz, DY €€ fo (x, 0) o, D, (17)

Then since (17) is the same as (13), we can follow
the proof of Lemma 6.4 to obtain the result of (15).

Lemma 6.6. Let the regularity conditions in Section 6.2
hold and let A(x,, y,,6, 7) be the /th element of the vector
Mx,, y.0, 1) defined in (4), for /=1, ..., p+q. Then for
I=p+1,..p+tgqg



230 | Changwon Lim ef al. / Journal of the Indian Society of Agricultural Statistics 67(2) 2013 215-234
sup ZZr 0196)2(3.71:0.7)|= 4 (1), —(@/97))4 (%, :,0,7)
lel<cy Jslisc, 17255 j=1

where A(x, y,0, 7) is defined in (16).

Proof. We can also follow the proof of Lemma 6.4.
Lemma 6.7. Let the regularity conditions in Section 6.2
hold and let /ll(xl., 50, 7) be the /th element of the vector
Mxl., ¥,,6, 7) defined in (4), for /=1, ..., p+q. Then for

l=p+1,...,p+q
sup 5;919T A X, y,,0+—F=
Iisc Jolsc, anJE; { ! f [

_(a/arj)ﬂ,(x,-,yi,e,r)} =o0,(1). (18)

where A(x, y,.0, 1) is defined in (16).

Proof. By the denition of derivative, we may write for
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Thus we have (18).

Lemma 6.8. Let the regularity conditions in Section 6.2
hold and let A(x, y,, 6, 7) be the /th element of the

vector A(x,, y,, 0, 1), defined in (4), for /=1, ..., ptq.
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where A(x,, y,, 6, 7) is defined in (16).
Proof. From (19), we have
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Therefore, we have the result in (20).
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