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SUMMARY

In this paper we address the effect on the interaction from the joint misclassification of two exposure variables in three-
way contingency tables. Two types of interaction, additive and multiplicative, are used to measure the effect of misclassification.
Bias-adjusted cell proportions that account for the misclassification bias are presented. The data set of the lung cancer deaths
from the mesothelioma tumors is used as an example to illustrate the effect on workers who are jointly exposed to two types of
asbestos fibers, amphibole and chrysotile. Because no validation data are available, the theory of counterfactual is used to
construct potential true [counterfactual] tables from the misclassified observed [factual] table. Because there are various possible
true [counterfactual] tables, a study on how sensitive the effect on the interaction exerted by two misclassified exposure factors
is then conducted. The result of the sensitivity analysis shows that the effect on the interaction by the joint misclassification of
two exposure factors shouldn’t be ignored. In particular, the inference of no interaction could be dramatically changed under

either the additive or multiplicative criterion if the data are misclassified.

Keywords: Additive/ multiplicative interaction, Asbestos, Counterfactuals, Misclassification, Mesothelioma cancers.

1. INTRODUCTION

In epidemiological research some earlier authors
were merely interested in what the joint effect from two
exposure factors on the disease outcome is, while some
recent authors were more interested in determining if
the interaction effect between the two exposure factors
is synergistic. On the one hand, Cornfield (1962)
investigated the joint dependence on coronary heart
disease of serum cholesterol and systolic blood
pressure; Vincent and Marchetta (1963) and Keller and
Terris (1965) studied the joint effect of alcohol and
tobacco on the cancer of mouth, pharynx or larynx;
Saracci (1977) investigated the epidemiologic evidence
on the asbestos-smoking interaction on the lung cancer.
In addition, see works also done by Berry et al. (1972),
Rothman and Keller (1972), Ottman (1996), Lee
(2001), Okamoto and Horisawa (2007), and Boffetta
et al. (2012). On the other hand, in 1974 Rothman
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introduced the concept of synergy and antagonism in
studying the cause-effect relationship and then in 1976
proposed a statistical method to evaluate the synergy
and antagonism in order to complete the description of
cause-effect relationship; Kupper and Hogan (1978)
provided a review on the notion of interaction for a
quantification of the joint effect of two or more
potential risk factors acting in combination. However,
in observational studies, it is highly plausible that two
exposure factors are simultaneously misclassified. To
provide an illustration, we use a study on the combined
effect of two types of asbestos on the mesothelioma
lung cancer (Gardener and Munford 1980). The
specimens of asbestos were classified according to the
number of asbestos fibers seen per grid and the type of
fiber in the lung for the mesothelioma patients to
distinguish chrysotile and amphibole (Pooley 1976).
Evidently, such a procedure of classification might
involve a possible misclassification of these two types
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of asbestos fibers. Indeed, a study of the possible effect
of such a joint misclassification of asbestos types on
the mesothelioma in a case-control study will be
presented in this paper.

In fact, misclassification is a common problem in
epidemiological studies and a considerable amount of
works on the deleterious effect of misclassification on
a single exposure variable in case-control studies has
been studied by various authors (Cochran 1968,
Copeland et al. 1977, Fleagal et al. 1986, Fleiss et al.
2003, Kuha et al. 2001, Morrissey and Spiegelman
1999, Rothman and Greenland 1998, Thomas et al.
1993, Walter and Irwing 1988). Usually, only the
exposure variable is assumed to be misclassified, but
the outcome variable is measured correctly (Lagakos
1988). Some works are also published on the joint
misclassification of the exposure and the outcome
variable. For instance, Keys and Kihlberg (1963)
studied the case that both the disease variable and the
exposure variable are simultaneously subject to
misclassification, while Kristensen (1992) investigated
the scenario in which the bias comes from that the joint
misclassification between exposure and outcome is non-
differential yet dependent. Brenner et al. (1993)
investigated also the effect of joint misclassification of
exposure and disease on cumulative incidence ratio in
the context of cohort studies.

Kleinbaum et al. (1982) studied the effect of
misclassification under the assumption that the
relationship between the exposure and the outcome
variables is independent. Although Barron (1977)
investigated two jointly misclassified random variables,
he made an assumption of independence between the
two variables.

Apparently, Tzonou et al. (1986) studied the effect
of joint misclassification of two dichotomous risk
factors in case-control studies. But, what they actually
studied was the misclassification of an exposure
variable and a confounding variable. Chiacchierini and
Arnold (1977) investigated a problem in which 2 x 2
contingency tables with both margins are subject to
misclassification. But their study was limited to the case
in which among two methods of classification, one
method was error-free whereas the other was fallible.
Fung and Howe (1984) investigated the effect of joint
misclassification between a multiple-level risk factor
and a confounding factor on the estimation of the

relative risk and statistical power in case-control
studies. More recently, Garcia-Closas et al. (1999)
considered the misclassification effect of gene-
environment interaction on the assessment of bias and
sample size requirement. Tarafder e al. (2011) assessed
the impact of misclassification error on the association
of between the soil-transmitted helminth and the
incidence of schistosoma japonium infection. But, no
works has ever dealt with the misclassification of two
exposure factors simultaneously.

In this paper the issue of joint misclassification
from two binary exposure variables is addressed in the
context of a case-control study. The joint
misclassification error probabilities are first defined.
Bias-adjusted estimates for cell proportions of four cell
probabilities are then presented when two exposure
factors are jointly misclassified. Two types of
interaction criteria, additive and multiplicative, are used
to measure the effect of misclassification. Asymptotic
standard errors for the bias-adjusted estimates (or its
logarithm) are derived. The data set for the lung cancer
of mesotheliomas is used to illustrate on how to
calculate the true misclassification probabilities by
using the theory of counterfactuals if the validation data
are not available. Because there are various possible
true [counterfactual] tables, a sensitivity analysis is
carried out to study the effect on the interaction from
the joint misclassification of workers who are exposed
to two different types of asbestos fibers,

2. BACKGROUND

Consider a case-control study with two exposure
factors. Let £ and F be two binary exposure variables
(1, if yes; 0, otherwise), and D denote the disease
variable (1 if cases, 0 if controls). Suppose that under
the multinomial sampling design a simple random
sample of sizes ny and nyg are selected with respect
to both £ and F from the case and control groups,
respectively. Furthermore, assume that instead of being
classified by £ and F the collected data are classified
jointly by E* and F* which are surrogate variables for
E and F, respectively. Let o denote the collected data
as shown in Table 1 with the index i, j, k corresponding,
respectively, to the variables E, F and D. As a result,
for fixed k {n}is assumed to follow a multinomial
distribution with cell probabilities T and the fixed
sample size M-
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Table 1. Observed cell frequencies in a 2 x 2 x 2 table T = [0 ]{1 ]
. . [k] ijk 1i, j=1
which are classified by two surrogate exposure
factors E and F' =
T1k™1k  ~™1k7™10k  ~711k701k  ~711k700k
D=1 (Cases) D = 0 (Controls) | koK T0kTI0k  ~710kF01k 10k 00k
F=1 F=0 F=1 F=0 =N ~TkTO1k ~TI0KT01k  FO1KTOlk  ~T01kT00k
* * “T11k700k  ~T10k700k  ~701k700k 00k F00k
E=1ny o1 E =1 nyy  nyg
. . 4)
E =0 ny, Moo1 E =0 ng myyg _
_ _ where Ty =1—7my.
Sample size ny Sample size 01

1
Note. In Table 1, 7, = .Zon,‘jk for k=0, 1.
i j=
For all possible classifications of E*and F* in the
actual study population, we define all 16 possible
jointly classified conditional probabilities of E* and F*,
conditioned on that the true £ and F are known, as
follows: for fixed k (=0 or 1)and i, j, i,j =0, 1

il . _ . .
51.»;.1»(]{)=Pr(E =i, F=j|E=i,F=j;D=k) (1)

where {g)‘l_[,;f;gk)} , for i, j'=0, 1, are required to satisfy
the following identities:

<l

1
il — L]
2 Ot =1 0 < Gy, < @)

i,j=0

Because of the constraints of equation (2), only 12
out of a total of 16 conditional probabilities of Equation
(1) are regarded as free parameters for fixed k.
Throughout this paper, we will use those 12
misclassification probabilities in equation 1 as free
parameters for either cases or controls separately. The
misclassification is said to be nondifferential if these
12 misclassification probabilities are equal one another
for case and control groups; it is said to be differential
otherwise. In this paper only the differential
misclassification is considered. Furthermore, assume
that there is no confounding or selection bias hidden
in the collected data. If no misclassification is thought
to be present in either E* or F”, the observed sample
proportions, for fixed £, given by

ﬁijk = nijk/ Mg i,j=0,1, 3)
are shown to be unbiased estimators for the true
unknown cell probabilities 7;; in Table 1 and the

variance-covariance matrix Xz of Zj;is given by
(Agresti 2002).

However, if E* and F~ are misclassified, equation
(3) is no longer unbiased and its expected values are

corrected by for fixed &,
E(7i11) = Wi (5)

where column vectors Ty, Ty, and the matrix W),
are given, respectively, by

A A ~ ~ ~ T
k) = (T ok s Boik s Fook ) (6)
= T
k) = (T ok s o1k s ook ) (7
[10] [11] [11] [11] T
-3 8 3 8
11(k) 10(k) 01(k) 00(k)
[o1] [00]
-8 -9
11(k) 11(k)
[10] \ 5[111 SUOJ 5[101
11(k) 10(k) 01(k) 00(k)
[o1] [00]
- )
10(k) 10(k)
W o=
(k] [o1] [o1] [11] [o1]
11(k) 10(k) - 01(k) 00(k)
[10] [00]
-8 -9
01(k) 01(k)
[00] [00] [00] [11]
3 3 3 1-98
11(k) 10(k) 01(k) 00(k)
[10] [o1]
- -5
- 00(k) 00(k) -4

and the superscript “7” in equations (7) and (8) denotes
the transpose of a vector/matrix. By replacing the left-
hand side of equation (5) with equation (3) and solve
for the unknown 7y, the bias-adjusted cell proportion

(BACP) estimator 7, which accounts for the

misclassification bias for the true unknown 7y , is
defined by

©

) _ “1a
T = Wi g »
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where W[;]l is the inverse of W,,., and the column

[4]°

vectors 7 is given by

2 =~ = _ T
k) = (Tyies ok > ok ook ) -
In addition, the bias-adjusted cell count estimator

(BACC) is defined by 7} =1y /Tjx), where ny, is the

sample size defined in equation (3) and 7 is given
by equation (9). Note that equation (9) depends on the

misclassification probabilities {51»[?2,()} ,fori', j'=0, 1

which can be calculated through applying the theory of
counterfactuals to the observed (or misclassified) table
available in the main study. The details of calculation
will be illustrated in the section of “Example”.

Although it is possible to find a closed form
formula for W[;]l by using the MATHEMATICA (Lee

2007), it is less messy to solve instead equation (9)
numerically as a system of linear equation for ;.
Incidentally, a set of misclassification probabilities

{81}, for i", j = 0, 1, is said to be “feasible” if all

{Q%y;gk)} , for i, j"= 0, 1 are numbers between 0 and 1

satisfying equation (2) and det(W[k]) , the determinant

of W,

" > is non-zero for the given set of 5,-[5-1'2,().

Furthermore a set of feasible {@L;ng)} fori, j'=0, 1,

is said to be “admissible” if for a set of feasible

3 11
{5,5}’/2,()}, we have 0 <7;; <1 and zzﬁijk =1 for
7=0j=0

fixed kand all 4, 7', j,j' =0, 1.
3. METHOD

In a case-control study having two exposure
variables, the conventional notion of odds ratio is no
longer applicable (Birch 1964). Instead, we need to
focus on the issue: “Whether these two exposure factors
confer their risks independently or in some interactive
fashion.” Three possible definitions for interaction, one
additive and two multiplicative, were considered by
Darroch and Borkent (1994). Here I only adopted two
of them, one is additive and the other one is

multiplicative. Two exposure variables E and F are said
to have no 2-way additive (or multiplicative) interaction
if for fixed k=0, 1

e[lcclglt_Zway =0 (OI‘ er[ri(] _1)

a ult _2way —

where 0“;,3”_”@ and O] are defined

a mult _2way

respectively by
o] =Tk — ok — Toix + 70 10
addt_2way =11k ~ 7010k ~ Toik Mook » (10)
k _ -1
er[nu]lt_Zway = ook (Tiox o1k ) - (11)

For three variables D, E and F, they are said to
have no 3-way additive (or multiplicative) interaction
(Bartlett 1935; Bhapkar and Koch 1968) if 6,
0 (or 6 = 1), where

mult_3way

ddt 3way -

0 _plll _gl0
addt _3way = Yaddt _2way addt _2way

=711+ X0 T Zoto T oot — 110 ~ Tooo — Z1o1 — Zot1

(12)
— plll [0]
9mult_3way = 9mult_2way /gmult_Zway
_ -1
= 70117001 71007010 (101701181107 000) (13)

Clearly, the naive point estimators for

okl oLk

addt _2way> “mult _2way> 9addt_3way and 9mult_3way are

given respectively, by

ALk] A . N .
9addt_2way = Tk — %ok — ok + ook » (14a)
ALk A PN (14b)
e _2way — T11kook (T1oxTouk )
Ouadr_3way = 111+ Zioo + Zoro + Zoo1 — %o
—7o00 — %101 — Zo11» (14c)

2] — (A A 2 2 e |
Omutr _3way = (111700181007 010)(F1017%80117110%000)
(14d)

where {7 }, i, j = 0, 1, are given respectively by
equation (3). The asymptotic standard error of equations
(14a-d) are given, respectively, by

0

~ —1 _
k T
Var Oty way) = n[k]{ijzzlﬂykﬂ'zjk +2(7y 1 ok

Tk o1k — T11kook — 1ok o1k



Tze-San Lee / Journal of the Indian Society of Agricultural Statistics 67(2) 2013 183-195

| 187

+ 10k o0k o100k ) } (15a)

ALkl —1 -1 -1 —1 —1
$.e.(In Bty _210ay)) = \/”[k](”l 1k + 1ok + o1k + ook )
(15b)

1
~ [k]
5. Buadr 3way) = \/IEVW(%M_M@), (15¢)

1
B L L L
2) = N (g + Tyor + otk + 7T
$.€. Bputt _3way)) —\/];) (k) (T 1k + ok + ok + ook )

(15d)

The details of derivation of equations (15a-d) are
given in the appendix.

If both E* and F* are jointly misclassified, the bias-

adjusted estimators for eyfic]it_Zway’
(k] .
emult_zway’ Haddt_Sway and 6mult_3way are given
respectively by
6L = Ty~ Tioe —Fox + 70 (16a)
addt _2way — i1k — ok — ok T Zook s a
Alk] 4
Opnie_2way = 1ok (TioxTork) s (16b)

Ouddr_3way = 711+ Tioo + Zoro + Zoo1 — Zio

700 — o1 — %ot (16¢)

-
Ot _3way = (T1117001100%010) (101701171107 000)
(16d)

where { Ty }, i, j, k = 0, 1, are given by equation 8.
The BACP {7 } (or BACC nyy), i, j, k=0, 1, of
equation (8) are said to be plausible if for all admissible

{5,%-];2,() } we have 0 < 7 <1 (or 7y > 0) in which

1 1
Z Tijk = | (or Z Mk = Moy 1) for fixed k.
i,j=0 i,j=0

By conditioning on that the values of g)‘l,[,J"_J,'gk) are
known and using Lemma 2.3.1 in Anderson (2003) or
the delta method described in Chapter 14 of Agresti
(2002), the asymptotic standard error of equations
(16a-d) are given respectively by

olk]
s.e. (gaddt_ 2way )

4
= \/z Wi = 2y +y3p Filogp +Usg —Uigg —Upz ) (17a)
i=1

s.e. (111 (ér[nijlt_ 2way )) = \/Vdr(ln( éIE’l]il]l[_ZWay ) ( 1 7b)

1
— -1 k]
S.e. (Haddt_way) = \/kgo[n[k] Var(aaddt_Zway )] (170)

1 —
s.e. (ln(émult_3way ) = \/];)[var(ln(er%i]lt_Zway NI,
(17d)

where {”yk} in equation (17a) and are given by
equation (A9) in the Appendix, and the details for the
derivation of equations (17a-d) are also given in the
appendix. By the way, the value under the square root
bracket in equations (17a-d) is shown to be positive in
the Appendix.

Based on the asymptotic large sample theory, the
sampling distribution for the test statistic for all the
above estimates (equations (14a-d) or (16a-d)) can be
shown to follow a standard normal distribution. Hence,
the 100% x (1 — ) confidence interval (Cl) (0 < o <
1) for any 6 is given, for no multiplicative interaction,

by
100% x (1 —a) CI for 0 :

= [exp(In(§ ) £z, x s.e.(In(§))], (18)
(or 100% x (1 —a) CI for 6 :

=[(8) 4z, 5.e.(0))]
for no additive interaction)

where z ,, is the (a/2)™ upper-tail percentile of the
standard normal distribution.

4. EXAMPLE

The data taken from Gardner and Munford (1980)
is used to illustrate the bias-adjusted method in the
previous section (Table 2). Lung tissues from 120 cases
dying of mesothelioma cancer and from 135 controls
dying from other causes were examined under electron
microscope. The lung samples were examined for the
presence of two asbestos fiber types, chrysotile and
amphibole. Here the random variable D represents
whether a subject died of mesothelioma (= 1 if yes, =
0 if the subject was a control), while £ (= 1 if yes, =0
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Table 2. Observed cell counts of the lung cancer of
mesothelioma for cases and controls were classified
according to types of asbestos fibers found in the
lung tissue

Cases Controls
Amphibole
1 0 1 0
Chrysotile 1 47 27 6 35
0 37 9 24 70
Sample size 120 135

if no) and F (= 1 if yes, = 0 if no) denote respectively
the asbestos fiber of chrysotile amphibole that were
found in the lung.

Under the assumption that there is no joint
misclassification between E* and F~ the crude point
estimators were estimated by using equations (3), (14a-

d), and (15a-d) as 64}y, 5, = —0.067 (p = 0.23),

o

mult _2way

= 0.42 (p = 0.026) for cases, while

O 2y = 0.126 (p = 0.07), 61!

mult _2way

=05 (p=
0.08) for controls. Furthermore, éaddt_3wuy =-0.193 (p

= 0.06) and 4, = 0.85 (p = 0.40). For the

2-way interaction, an inference is tentatively drawn from
their p-values: a hypothesis that the interaction is
additive is rejected neither for cases (p = 0.23) and nor
for controls (p = 0.07); however, a hypothesis that the
interaction is multiplicative is rejected for cases (p =
0.026), but not for controls (p = 0.08). For the 3-way
interaction, a hypothesis that the interaction is is rejected
neither for being multiplicative (p = 0.40), and nor for
being additive (p = 0.06).

ult _3way

Suppose that “chrysotile” and “amphibole” in
Table 2 are jointly misclassified for both cases and
controls as illustrated in the section of introduction.
Now the problem we’re facing is to calculate the value
of misclassification probability {5,-5’-1»2,() }, for i, j'= 0,
1, under the restraint that we do not have the validation
sample. Here counterfactual thinking comes into play
(Epstude and Roese 2008), that is, if only we know the
true contingency table, we’re then able to calculate the
value of misclassification probability from the observed
table which is the misclassified one and the true table

which serves as our “gold standard”. Evidently, the
potential true table, even though unknown, can be
figured out from the observed table as shown below.
Since we do not know which potential outcome table
is the genuine true table, we’re required to consider all
possible outcome tables figuring out from the observed
table. This eventually leads to the sensitivity analysis
for all possible true tables. Note that although the
observed table was misclassified, it was the factual one.
Thus, even though the true table is unknown, it was
nothing but a counterfactual one to the observed table.
Consequently, the potential true table could be
constructed from the observed table. The only thing
new is that there are many potential counterfactual
tables and we have no way to be certain that which one
of these possible counterfactual tables is the genuine
true table. Because of this difficulty, we are forced to
incorporate a sensitivity analysis on all possible
potential true tables into our study later.

Because the column/row marginal totals are
required to be fixed in case-control studies, only one
out of four cell frequencies can be regarded as a free
parameter in either cases or controls. To construct true
[counterfactual] tables, the frequency in cell (0, 0) (or
cell (1, 1)) was adopted as a free parameter for cases
(or controls). In 15 true [counterfactual] tables for
cases, the frequency in cell (0, 0) took values of 3, 4,
..., 8,10, 11, ..., 18. Frequencies in cells (1, 0) and
(0, 1) were obtained by subtracting the frequency of
cell (0, 0) from the corresponding column/row marginal
total. The frequency in cell (1, 1) was obtained by
subtracting frequencies in cell (1, 0), (0, 1), and (0, 0)
from the grand total in the observed table (Table 3a,
column 2). Another 15 true [counterfactual] tables were
similarly constructed for controls (Table 3b, column 2).
A classification procedure is said to be under- (or
over-) misclassified if the designated cell in the true
[counterfactual] table has its frequency more (or less)
than the observed [factual] table. For convenience, we
put the least under- and/or over-misclassified true
[counterfactual] tables in the middle of the first column.
For cases models #6 and #7 were the least over- and
under-misclassified, respectively, merely by one subject
in cell (0, 0), so do models #5 and #6 in cell (1, 1) for
controls. The amounts of misclassification were
increased gradually in the remaining models.

Now, by conditioning on that the true table is
known, we’re able to calculate the corresponding
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{5,-[5-1»2,() }, for i, j' = 0, 1. Before starting to compute
the misclassification probabilities, note that for each
cell frequency there are three possible ways to
misclassify cell frequencies between the true
[counterfactual] table and the misclassified observed
[factual] table. For example, the frequency in cell
(1, 1) of the true table might be misclassified into the
other three cells of the observed table, (1, 0), (0, 1) and

(0, 0). Because all three ways of misclassification are

equally likely to occur, we assume 51[183) = 51[?(113) =

1
51[?(0,3) = 5(1—51[},?) for cell (1, 1). Similar equations

were assumed to hold for other cells too.

By using the observed cell frequencies in Table 2,
we first calculated the misclassification probabilities

Table 3. (a) Fifteen models (or true [counterfactual] tables) with its misclassification probabilities for cases.

Model  (ny,, 1015 719y o) (51[}(11])’ 51[}?1]) = 51[(1)(11]) = 51[(1)(01])’ 51[5(()1])’ 51[(1)3) = 51[8(11]) = 51[(())?1])’ det(Wy,)
*) Sbich Souy =it =bicty» Fooch» Sooch = Fooch) = Sooch)
1 (41, 33, 43, 3) (0.93, 0.02, 0.9, 0.03, 0.93, 0.03, 0.5, 0.17) 0.38
2 (42, 32,42, 4) (0.94, 0.02, 0.92, 0.03, 0.94, 0.02, 0.62, 0.13) 0.49
3 (43,31,41,5) (0.96, 0.01, 0.93, 0.02, 0.95, 0.02, 0.71, 0.1) 0.60
4 (44, 30, 40 6) (0.97, 0.01, 0.95, 0.02, 0.93, 0.01, 0.8, 0.07) 0.70
5 (45,29, 39,7) (0.98, 0.01, 0.96, 0.01, 0.97, 0.01, 0.87, 0.04) 0.80
6 (46,28, 38, 8) (0.99, 0.004, 0.98, 0.01, 0.99, 0.004, 0.94, 0.02) 0.90
7 (48, 26, 36, 10) (0.99, 0.004, 0.98, 0.01, 0.99, 0.005, 0.95, 0.02) 0.91
8 (49,25, 35, 11) (0.98, 0.01, 0.96, 0.01, 0.97, 0.01, 0.9, 0.03) 0.82
9 (50,24, 34, 12) (0.97, 0.01, 0.94, 0.02, 0.96, 0.01, 0.86, 0.05) 0.75
10 (51, 23, 33, 13) (0.96, 0.01, 0.92, 0.03, 0.94, 0.02, 0.82, 0.06) 0.68
1 (52, 22, 32, 14) (0.95, 0.02, 0.90, 0.03, 0.93, 0.02, 0.78, 0.07) 0.61
12 (53, 21, 31, 15) (0.94, 0.02, 0.87, 0.04, 0.91, 0.03, 0.75, 0.08) 0.55
13 (54,20, 30, 16) (0.93, 0.02, 0.85, 0.05, 0.9, 0.03, 0.72, 0.09) 0.50
14 (55, 19,29, 17) (0.92, 0.03, 0.83, 0.06, 0.88, 0.04, 0.69, 0.1) 0.45
15 (56, 18, 28, 18) (0.91, 0.03, 0.8, 0.07, 0.86, 0.05, 0.67, 0.11) 0.41
(b) Fifteen models (or true [counterfactual] tables) with its misclassification probabilities for controls
# (1105 M100> Mo10> Mo00) (51[%(1(]))’ 51[1?3) = 51[?(1(%) = 51[?(00])’ 51[2)(()(]))’ 51[(1)}2)) = 51[(())(1(])) = 51[8?3)’ det(Wm)
10y Fo10) = F010) = Fo10)» Sooor» Soocty = octy = Fooco))
1 (1, 40, 29, 65) (0.29, 0.24, 0.93, 0.02, 0.91, 0.03, 0.96, 0.01) 0.22
2 (2, 39, 28, 66) (0.50, 0.17, 0.95, 0.02, 0.92, 0.03, 0.97, 0.01) 0.42
3 3, 38, 27, 67) (0.67, 0.11, 0.96, 0.01, 0.94, 0.02, 0.98, 0.01) 0.58
4 (4, 37, 26, 68) (0.80, 0.07, 0.97, 0.01, 0.96, 0.01, 0.986, 0.005) 0.73
5 (5, 36, 25, 69) (0.91, 0.03, 0.986, 0.005, 0.98, 0.007, 0.993, 0.002) 0.87
6 (7, 34,23, 71) (0.92, 0.03, 0.986, 0.005, 0.98, 0.007, 0.993, 0.002) 0.88
7 (8, 33,22, 72) (0.86, 0.05, 0.97, 0.01, 0.96, 0.01, 0.986, 0.005) 0.78
8 9, 32, 21, 73) (0.80, 0.07, 0.96, 0.01, 0.93, 0.02, 0.979, 0.007) 0.70
9 (10, 31, 20, 74) (0.75, 0.08, 0.94, 0.02, 0.91, 0.03, 0.97, 0.01) 0.62
10 (11, 30, 19, 75) (0.71, 0.10, 0.92, 0.03, 0.88, 0.04, 0.97, 0.01) 0.55
11 (12, 29, 18, 76) (0.67, 0.11, 0.91, 0.03, 0.86, 0.05, 0.96, 0.01) 0.49
12 (13,28, 17, 77) (0.63, 0.12, 0.89, 0.04, 0.83, 0.06, 0.95, 0.02) 0.43
13 (14, 27, 16, 78) (0.60, 0.13, 0.87, 0.04, 0.80, 0.07, 0.95, 0.02) 0.38
14 (15, 26, 15, 79) (0.57, 0.14, 0.85, 0.05, 0.77, 0.08, 0.94, 0.02) 0.33
15 (16, 25, 14, 80) (0.55, 0.15, 0.83, 0.06, 0.74, 0.09, 0.93, 0.02) 0.29
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accordingly for each true [counterfactual] table and then
used equation (2) to get the correct classification
probabilities. The way to compute the misclassification
probability is exactly the same as described in Lee

(2009). Let’s take 51[(1,3) for Model 1 in Table 3a as an
example. This meant that the frequency in cell (1, 0)
of Model #1 was supposed to be 33, but because of
under-misclassification the frequency in cell (1, 0) of
the observed table was 27. As a result, six subjects in
cell (1, 0) were under-misclassified. Out of the total 60
(= 33 + 27) subjects, the misclassification probability
for cell (1, 0) was calculated as 0.1 (= 6/60). Since all
three ways of misclassification were equally possible

. 11 1 0.1
to occur, we thus obtained . 51[0(f) = 51[8(11) = 51[8?11) = 3

=0.0333 = 0.03. Note that all 15 true [counterfactual]
tables (Table 3a, column 2) were feasible, because all
misclassification probabilities plus their corresponding
determinants were positive (Table 3a, columns 3-4).
Similarly, all 15 true [counterfactual] tables for controls
were found to be feasible too (Table 3b, columns 2).

For k = 0 and 1, we next proceeded to calculate

the BACC iy, . Thus, for all 15 feasible { %, }, for
i’ j’=0, 1 in Tables 3a-b, we computed numerically

the values of {7} from equation (9) by using the

Table 4. A check on the admissibility of MPs for 15 true
[counterfactual] tables for cases and controls

Table 5. Admissible bias-adjusted estimates (or equation
(16)) for 2- or 3-way additive/multiplicative no-interaction
with its p-value

(a) Bias-adjusted estimates for 2-way additive/
multiplicative interaction

Model 0(21]dt _2way 0rgljlt _2way 0a[gc]lt _2way 0r£1(1)4]lt _2way
(p-value) (p-value) (p-value) (p-value)
1 -0.02 (0.44) 0.63 (0.21)  0.20(0.09) 1.30 (0.38)
2 —-0.04 (0.36) 0.53(0.12)  0.15(0.07)  0.72 (0.34)
3 —0.05 (0.31) 0.48 (0.11)  0.14(0.07)  0.58 (0.28)
4 -0.06 (0.27) 0.45(0.06)  0.13(0.07)  0.53 (0.27)
5 —0.06 (0.27) 0.44 (0.05)  0.13(0.068) 0.51 (0.25)
6 —0.07 (0.23) 0.42(0.03) 0.13(0.068) 0.50 (0.25)
7 —0.07 (0.23) 0.42(0.03) 0.12(0.089) 0.48 (0.26)
8 —0.07 (0.23) 0.42(0.04)  0.12(0.094) 0.46 (0.28)
9 —0.07 (0.24) 0.41(0.05) 0.12(0.10)  0.42 (0.30)
10 —0.08 (0.21) 0.39(0.05) 0.11(0.13)  0.38 (0.35)
11 —-0.08 (0.22) 0.37(0.06) 0.10(0.16)  0.32 (0.43)
12 —-0.09 (0.19) 0.35(0.08) 0.09(0.19)  0.25 (0.21)
13 —0.10 (0.17) 0.32(0.11)  0.07(0.25) 0.18 (0.16)
14  —0.11 (0.16) 0.28 (0.19)  0.06(0.29)  0.09 (0.01)

15 —0.12 (0.14)  0.25(0.39) * *

“not calculated because true [counterfactual] table #15 for controls is
not admissible.

(b) Bias-adjusted estimates for 3-way additive/
multiplicative interaction

Model (Case)

# Controls: Controls:
(M11s Mots Morr- Moor) | (M1os Moos Moros Moo )
1 (46.3, 25.5, 35.7, 12.4) (13.2, 32.5, 21.3, 89.5)
2 (46.7, 26.2, 36.3, 10.8) (8.2, 34.2, 23.1, 69.5)
3 (46.9, 26.6, 36.6, 9.9) (6.8, 34.7, 23.6, 69.8)
4 (47.0, 26.8, 36.8, 9.4) (6.3, 34.9, 23.9, 69.9)
5 (47.0, 26.9, 36.9, 9.2) (6.1, 35.0, 24.0, 70.0)
6 (47.0, 27.0, 37.0, 9.0) (6.0, 35.0, 24.0, 70.0)
7 (47.0, 27.0, 37.0, 9.0) (5.8, 35.1, 24.1, 70.0)
8 (47.0, 27.1, 37.1, 8.9) (5.6, 35.2, 24.2, 70.0)
9 (47.0, 27.2, 37.1, 8.7) (5.2, 35.3, 244, 70.1)
10 (47.0, 27.3, 37.2, 8.5) (4.7, 35.5, 24.7, 70.1)
11 (46.9, 27.5, 374, 8.1) (4.1, 35.7, 25.0, 70.1)
12 (46.9, 27.8, 37.6, 7.7) (3.3, 36.0, 25.5, 70.2)
13| (469,28.1,3738,7.2) (2.4, 36.4, 26.1, 70.2)
14 (46.8, 28.5, 38.1, 6.6) (1.3, 36.8, 26.8, 70.2)
15 (46.7, 29.0, 384, 5.9) (-0.1, 37.2, 27.7, 70.2)

eaddt73way (p-value) 9mu1t73way (p-value)
Model #1 #15 #1 #15
(Control)
1 —0.22 (0.13) —0.32 (0.04) 0.48 (0.24) 3.87 (0.07)
2 —0.17 (0.14) —0.27 (0.04) 0.88 (0.45) 6.99 (0.01)
3 —0.16 (0.15) —0.26 (0.04) 1.09 (0.53) 8.68 (0.01)
4 -0.15 (0.16) —0.25 (0.04) 1.19 (0.56) 9.50 (0.02)
5 —0.15 (0.16) —0.25 (0.04) 1.24 (0.57) 9.87 (0.01)
6 —0.15 (0.16) —0.25 (0.04) 1.26 (0.58) 10.1 (0.02)
7 —0.14 (0.18) —0.24 (0.05) 1.31 (0.58) 10.5 (0.02)
8 —0.14 (0.18) —0.24 (0.05) 1.37 (0.59) 10.9 (0.04)
9 —0.14 (0.18) —0.24 (0.05) 1.50 (0.59) 12.0 (0.07)
10 —0.13 (0.20) —0.23 (0.06) 1.66 (0.42) 13.3 (0.15)
11 -0.12 (0.22) —0.22 (0.07) 1.97 (0.46) 15.7 (0.34)
12 —0.11 (0.24) —0.21 (0.08) 2.52 (0.31) 20.1 (0.04)
13 —0.09 (0.29) —0.19 (0.10) 3.50 (0.25) 28.0 (0.03)
14 —0.08 (0.31) —0.18 (0.12) 7.00 (0.04) 55.9 (3.3x107)
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software of MATLAB (2010) to find the determinant
first of the misclassification matrix W[k] next, then the

matrix inverse W[;]l and finally multiplied W[;]l by 7

to get the values of { 7;;(x }. According to the definition

of admissibility of MPs, all models were admissible
except model #15 for controls which was found to be

inadmissible, because n;,, =—0.1 (Table 4, column 3).

Since no validation sample data were available to
determine which one out of 15 models was actually the
true table, we therefore carried out the sensitivity
analysis for all admissible models to examine the effect
of joint misclassification from two exposure factors on
the additive/multiplicative interaction parameters.

By using equations (16a-d)-(17a-d) all bias-
adjusted estimates for 2- or 3-way additive/
multiplicative interaction parameters were computed
(Tables 5(a-b)). For both cases and controls all
estimates for the 2-way additive interaction parameter
are not significantly different from zero because their
p-values are greater than 0.05 (Table 5(a), columns 2
& 4). Yet, there is a trend in the p-values. They are
increasing from that of Models #5 and #6 in either
direction of under-/over-misclassification for controls,
but the pattern for cases is a little different. The p-
values are increasing along the direction of the over-
misclassification (from models #6 to #1), whereas
decreasing along the direction of under-
misclassification (from models #7 to #15). Yet, the
pattern for estimates of the 2-way multiplicative
interaction parameter are quite different from that for
the additive scenarios. It depends on whether the group
is cases or controls. For cases, the p-values are
increasing along either direction of misclassification
from 0.03 (model #6) to 0.21 (model #1) and again
from 0.03 (model #7) to 0.39 (model #15). For
controls, the pattern is somewhat different from that of
cases. The p-values are increasing along the direction
of over-misclassification from 0.25 (model #5) to 0.38
(model #1), but along the direction of under-
misclassification it is increasing from 0.25 (model #6)
to 0.43 (model #11) and then decreasing from 0.21
(model #12) to 0.01 (model #14).

For 3-way additive/multiplicative interaction
parameter there are 210 possible models of combination
from 15 models for cases and 14 models for controls.
To calculate their estimates, we used all 14 models for
controls, but only used two models (models #1 and #15)

from cases. The p-values for all 3-way additive
interaction estimates exhibit a pattern of increasing
from 0.13 (model #1) to 0.31 (model #14) when case
model = #1 and 0.04 to 0.12 when case model = #15
(Table 5(b), columns 2 and 3). For the 3-way
multiplicative interaction estimates the p-values is
decreasing both from 0.57 (model #5) to 0.24 (model
#1) and from 0.58 (model #6) to 0.04 (model #14) when
case model = #15 (Table 5(b), columns 4 and 5).

From the above limited sensitivity analysis it is
easily seen that bias-adjusted estimates for 2- or 3-way
multiplicative interaction parameter are more sensitive
to whether the observed data are misclassified or not
than for the additive interaction.

S. DISCUSSION

Some comments seem worthy to be given as
follows:

1. By taking a quick glimpse at the data in Table 1,
the inherent feature of the data for cases is
intrinsically different from that for controls. The
proportion of subjects in cases exposed to both
types of asbestos is not low (0.39 =47/120),
whereas that exposed to none of the two types of
asbestos is low (0.08 = 9/120). In contrast, the
proportion of subjects in controls exposed to both
types of asbestos is low (0.04 = 6/135), whereas
that exposed to none of the two types of asbestos
is not low (0.52 = 70/135). For additional
discussions on this data set, see Acheson and
Gardner (1979).

2. Due to a small frequency (n,,, = 6) in the (1, 1)
cell for controls, it has two implications: (1) a
small amount of misclassification results in large
misclassification probabilities (Models #1-#3 in
Table 3(b)); and (2) it has a much limited number
of true [counterfactual] tables (it can have no
more than six [over-misclassified] models as
shown in Tables 3(b). It is likely attributed to this
matter of large misclassification probability,
model #15 is inadmissible, though feasible (Table
4).

3. Our 3-way additive interaction parameter
(equation (12)) is different from that of the
Gardner and Munford’s (GM) (1980). This is
because GM derived their 3-way additive
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interaction parameter from using the notion of
relative risk and the odds ratio was used by them
to substituted for the relative risk under the rare
disease assumption. Expressing in terms of our
notations, it is given by

i1 7ol o +7[001 (19)
Tooo

Haddt_GM =

Tiio Too Zoto

Because equation (19) is of the form of ratio of
proportions, it is intuitively clear that the GM’s
3-way additive interaction parameter must be very
sensitive to the misclassification in Table 2.
Nevertheless, the GM’s 3-way multiplicative
interaction parameter is exactly the same as
equation (13). Under the no-misclassified-data
assumption our result described in the second
paragraph of Section 4 yields the same inference
as that of the GM’s, that is, the interaction for this
data set is of being multiplicative rather than
additive. Incidentally, we notice that the 2-way
additive/multiplicative interaction parameters are
unable to be defined by the GM’s approach.
Furthermore, our definitions do not need the rare
disease assumption; hence the definition of
interaction under additive or multiplicative is
more universally applicable than the GM’s.

. Although definitions for additive/multiplicative

interaction follow from the statistical stand-point
rather than from the epidemiological perspective
(Walter and Holford 1978), equations (10) and
(11) do have an epidemiological interpretation. It
defines an exact balance between the amounts of
synergistic action and parallel action in the
population who are exposed to both exposure
factors, while equation (11) is a necessary, but not
sufficient condition for the immunity model
(Darroch and Borkent 1994).

As shown in Section 4, the inference for the
2-way multiplicative interaction for both cases and
controls could drastically be changed depending
how bad the data are misclassified. For example,
the inference for cases can change from not
multiplicative (models #6-#8) to multiplicative
(models #1-#5 and #9-#14) and for controls the
inference could change from multiplicative
(models #1-#13) to not multiplicative (model #14)

(Table 5(a), columns 3 and 5). Similarly, the
inference for both the 3-way additive and
multiplicative interaction estimate could be
changed drastically depending how bad the data
are misclassified (Table 5(b), columns 3 and 5).

6. Because the only unknown parameters are
misclassification probabilities in equations 17(a-
d) and we employed the theory of counterfactuals
to calculate the misclassification probability
exactly rather than estimating them, we have,
therefore, no need to provide the estimated
standard error. As a consequence, these formulas
are not applicable to the case when the
misclassification probabilities are estimated from
the validation data once the validation sample
dataset is available.

By the way, all numerical calculations done for
Tables 3-5 were facilitated by using the Microsoft
EXCEL spreadsheet and/or the software of MATLAB.

6. CONCLUSION

This paper presents a study on the effect of joint
misclassification of two exposure factors on the
interaction under two types of interaction, additive and
multiplicative. Bias-adjusted cell proportions are
presented to account for misclassification bias. The data
taken from persons dying of the mesothelioma tumors
were used as an example to illustrate the effect of being
jointly exposed to asbestos fibers of amphibole and
chrysotile. Since no validation data were available, the
theory of counterfactual was employed to construct the
true [counterfactual] table from the misclassified
observed [factual] table. A sensitivity analysis was then
conducted to see how sensitive the effect would be for
various counterfactual true tables. From the result of
the sensitivity analysis, it shows that the inference could
be drastically changed depending how bad the data are
misclassified.

Much research remains to be done in this area of
the joint misclassification of two exposure factors. Just
name a few: what happens if the two misclassified
factors are polytomous variables? How to handle the
issue of joint misclassification if the validation sample
data are available? How does the misclassification
affect the estimation of the attributable risk if two
exposure factors are jointly misclassified?
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APPENDIX

Let the column vector ¢ be defined as

c=[1,-1,-1, 11" (A1)
Thus, equation (14a) can be written in the form

of
Ouit_2vay = € Fii, (A2)

By using Lemma 2.3.1 in Anderson (2003), we
then have

A _ T
Var(eaddt_Zway) - c Z[k]C

4
= zaiik ~2(012 + 613 — Oax — Oz + Oy +0341) -
i=1

(A3)

Equation (15a) follows immediately from
equations (A3) and (4). Because the variance-

covariance matrix X given by equation (4) is

(k]
positive definite, the value of equation (A3) is clearly
positive.

The derivation of equation 15b is exactly the same
as equation (3.1) in Agresti (2002), p.71. By applying
the independence between cases and controls to
equation (15a), we have

1
~ [k]
VarBuar 3way) = ];)Var(eadm_zwayl (A4)

Equation (15¢) follows directly from equations
(A4) and (15a). Similarly, equation (15d) follows
directly from applying the independence between cases
and controls to equation (15b).

Let v/, be the i row of the matrix W;]. Thus, we
have

~— _ _1 A
k1 = Wi i
_ T & T 4 T 4 T A T
= Vi Vo By Vs Bk » Viai il (AS)
Let the matrix U be defined by
4 -l —INT
U=luwpli jz1 =Wz, Wiy (A6)

Again, by using Lemma 2.3.1 in Andersen (2003)
on equation (A5), we have

nlk Tyy—1 —-I\T
Var(e[d;t_Zway)zc vv[k]z[kj(vv[k]) ¢

=Uc (A7)
Equation (17a) follows directly from equations
(A1), (A6), and (A7). Since 7 is required to be

admissible, this implies that the matrix W[;]I has to be

positive. Consequently, the value of equation (A7) must
be positive.

Let g(ﬂ[k]) [ln(v[T“kﬂ'[kl), ln(V[];]kﬂ'[k]),
T T T _
In(vipaey), NGl > where 1, = [m,,, T,
T
T Toorl Thus,
dg

amyy ~ W) diag ()T (A8)

where 7, =W 7, and diag( ) is a diagonal
matrix with the entries of 7, as the diagonal entries.

Then, we have by using the delta method (or
equation (14.8) in Agresti (2002))

Var(In(6'X] ) = mih{e" W) =, Wge}

milt _2way
(A9)
* . .
where X is given by
z . =loylijz
Tk "ok Tkfoie  T1kook
*) * * * * * *
Tk 1,70k 1Kok 1k 00k
_muMior Mook TokTotk Tiox’Fook
* * *) * * * *
| ok 10k Tok o1k ok ook
Mok Mook ootk o1xTTook
1.1k Tok7Co1k o1k o1k 00k
_ ook TiokTook ook ook7Took
L T1ukook 0k 700k o1k o0k ook

After a simplification of equation (A9), we have

Var(In(6* )

mult _2way

4
= LY b = 2(bys +bi3 + by + by —byy —boy)] (A10)

i=1
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where {bl.j}, i,j=1, ..., 4 are given by a symmetric
matrix B = [bll ]?,j:l = (VV[;]I)TZE‘](]VV[;}

Equation (17b) follows directly from equation
(A10). Equations (17c-d) follows directly from applying
the independence between cases and controls to
equations (17a-b).

ACKNOWLEDGEMENT

The author is grateful to the reviewer’s comments which
greatly improved the presentation of this paper.

REFERENCES

Acheson, E.D. and Gardner, M.J. (1979). Mesothelioma and
exposure to mixtures of chrysotile and amphibole. Arch.
Env. Hith., 34, 240-242.

Agresti, A. (2002). Categorical Data Analysis. (2" ed.).
Wiley, New York. (Chapter 3).

Anderson, T.W. (2003). An Introduction to Multivariate
Statistical Analysis. (3"ed.) Wiley, New York. (Chapter
2).

Barron, B.A. (1977). The effects of misclassification on the
estimation of relative risk. Biometrics, 33, 414-418.

Bartlett, M.S. (1935). Contingency table interactions. J. Roy.
Statist. Soc. (Sup.), 2, 248-252.

Berry, G., Newhouse, M.L. and Turok, M. (1972). Combined
effect of asbestos exposure and smoking on mortality
from lung cancer in factory workers. The Lancet,
(September 2), 476-479.

Bhapkar, V.P. and Koch, G.G. (1968). On the hypothesis of
‘no interaction’ in contingency tables. Biometrics, 24,
567-594.

Birch, M.W. (1964). The detection of partial association, I:
the 2 x 2 case. J. Roy. Statist. Soc., B26, 313-324.

Boffetta, P., Winn, D.M., Ioannidis, J.P., Thomas, D.C., Little,
J., Smith, GD., Cogliano, V.J., Hecht, S.S., Seminara, D.
Vineis, P. and Khoury, M.J. (2012). Reommendations and
proposed guidelines for assessing the cumulative
evidence on joint effects of gene and environments on
cancer occurrence in humans. /nt. J. Epidemiol., 41, 1-
19.

Brenner, H., Savitz, D.A. and Gefeller, O. (1993). The effects
of joint misclassification of exposure and disease on
epidemiologic measures of association. J. Clinic.
Epidemiol., 46, 1195-1202.

Chiacchierini, R.P. and Arnold, J.C. (1977). A two sample test
for independence in 2 x 2 contingency tables with both
margins subject to misclassification. J. Amer. Statist.
Assoc., 72, 170-174.

Cochran, W.G. (1968). Errors of measurement in statistics.
Technometrics, 10, 637-666.

Copeland, K.T., Checkoway, H., McMichael A.J. and
Holbrook, R.H. (1977). Bias due to misclassification in
the estimation of relative risk. Amer. J. Epidemiol., 105,
488-495.

Cornfield, J. (1962). Join dependence of risk of coronary
heart disease on serum cholesterol and systolic blood
pressure: A discriminant function analysis. Fed. Proc.,
21, 58-61.

Darroch, J.N. and Borkent, M. (1994). Synergism, attributable
risk and interaction for two binary exposure factors.
Biometrika, 81, 259-270.

Epstude, K. and Roese, N.J. (2008). The functional theory
of counterfactual thinking. Pers. Soc. Psychol. Rev., 12,
168-192.

Flegal, K.M., Brownie, C. and Haas, J.D. (1986). The effect
of exposure misclassification on estimates of relative
risk. Amer. J. Epidemiol., 123, 736-751.

Fleiss, J., Levin, B. and Paik, M.C. (2003). Statistical
Methods for Rates and Proportions. (3"ed.), Wiley, New
York. (Chapter 17).

Fung, K.Y. and Howe, G.R. (1984). Methodological issues
in case-control studies III: The effect of joint
misclassification of risk factors and confounding factors
upon estimation and power. /nt. J. Epidemiol., 13, 366-
370.

Garcia-Closas, M., Rothman, N. and Lubin, J. (1999).
Misclassification in case-control studies of gene-
environment interactions: Assessment of bias and sample
size. Cancer Epidemiol. Biomarkers Prev., 8, 1043-1050.

Gardner M.J. and Munford, A.G. (1980). The combined effect
of two factors on disease in a case-control study. J. Roy.
Statist. Soc., C29, 276-281.

Keller, A.Z. and Terris, M. (1965). The association of alcohol
and tobacco with cancer of the mouth and pharynx. Am.
J. Public Health, 55, 1578-1585.

Keys, A. and Kihlberg, J.K. (1963). Effects of
misclassification on estimated relative prevalence of a
characteristic Part II. Errors in two variables. Amer. J.
Public Health, 53, 1661-1665.

Kleinbaum, D.G., Kupper, L.L. and Morgenstern, H. (1982).
Epidemiologic Research: Principles and Quantitative
Methods. Wiley, New York. (Chapter 12).



Tze-San Lee / Journal of the Indian Society of Agricultural Statistics 67(2) 2013 183-195

| 195

Kristensen, P. (1992). Bias from non-differential but
dependent misclassification of exposure and outcome.
Epidemiology, 3, 210-215.

Kuha, J., Skinner, C. and Palmgren, J. (2001).
Misclassification error. In: Encyclopedia of Biostatistics,
P. Armitage and T. Colton (eds), 2615-2621. Wiley,
Chichester.

Kupper, L.L. and Hogan, M.D. (1978). Interaction in
epidemiologic studies. Am. J. Epidemiolo., 108, 447-454.

Lagakos, S.W. (1988). Effects of mismodelling and
mismeasuring explanatory variables on tests of their
association with a response variable. Stat. Med., 7, 257-
274.

Lee, P.N. (2001). Relation between exposure to asbestos and
smoking jointly and the risk of lung cancer. Occup.
Environ. Med., 58, 145-153.

Lee, T-S. (2007). Correcting the estimation bias for joint
misclassification errors from two binary variables,
Proceedings of the 4" Sino-International Symposium
on Probability, Statistics, and Quantitative Management,
129-152, Taipei, Taiwan.

Lee, T-S. (2009). Bias-adjusted exposure odds ratio for
misclassified data. The Internet Journal of Epidemiology,
6(2), 1-19. Accessed from “http://www.ispub.com/
journal/the-internet-journal-of-epidemiology/volume-6-
number- 2/bias-adjusted-exposure-odds-ratio-for-
misclassified-data-1.html”.

MATLAB (2010). The Language of Technical Computing.
www.mathworks.com.

Morrissey, M.J. and Spiegelman, D. (1999). Matrix methods
for estimating odds ratios with misclassified exposure
data: extensions and comparisons. Biometrics, 55, 338-
344.

Okamoto, K. and Horisawa, R. (2007). The joint effect of
oxidative stress and antioxidants on the risk of an
aneurysmal rupture subarachnoid hemorrhage: A case-
control study in Japan. Ann. Epidemiol., 17, 359-363.

Ottman, R. (1996). Gene-environment interaction:
Definitions and study designs. Prev. Med., 25, 764-770.

Pooley, F.D. (1976). An examination of the fibrous mineral
content of asbestos lung tissue from Canadian chrysotile.
Environ. Res., 12, 281-298.

Rothman, K.J. (1974). Synergy and antagonism in cause-
effect relationship. Am. J. Epidemiol., 99, 385-388.

Rothman, K.J. (1976). The estimation of synergy or
antagonism. Am. J. Epidemiol., 103, 506-511.

Rothman, K.J. and Keller, A. (1972). The effect of joint
exposure to alcohol and tobacco on risk of cancer on the
mouth and pharynx. J. Chron. Dis., 25, 711-716.

Rothman, K.J. and Greenland, S. (1998). Modern
Epidemiology. (2™ ed.). Lippincott Williams and
Wilkins, Philadelphia, PA. (Chapter 19).

Saracci, R. (1977). Asbestos and lung cancer: an analysis of
the epidemiological evidence of the asbestos-smoking
interaction. /nt. J. Cancer, 20, 323-331.

Tarafder, M.R., Carabin, H., McGarvey, S.T., Joseph, L.,
Balolong Jr., E. and Olveda, R. (2011). Assessing the
impact of misclassification error on an epidemiological
association between two helminthic infections. PLoS
Negl. Trop. Dis., 5, 1-7.

Thomas, D., Stram, D. and Dwyer, J. (1993). Exposure
measurement error: Influence on exposure-disease
relationships and methods of correction. Ann. Rev. Public
Health, 14, 69-93.

Tzonou, A., Kaldor, J., Smith, P.G., Day, N.E. and
Trichopoulos, D. (1986). Misclassification in case-
control studies with two dichotomous risk factors. Revie
d’Epidémiologie et de Santé Publique, 34, 10-17.

Vincent, R.G. and Marchetta, F. (1963). The relationship of
the use of tobacco and alcohol to cancer of the oral
cavity, pharynx or larynx. Am. J. Surgery, 106, 501-505.

Walter, S.D. and Holford, T.R. (1978). Additive,
multiplicative, and other models for disease risks. Amer:
J. Epidemiol., 108, 341-346.

Walter, S.D. and Irwig, L.M. (1988). Estimation of test error
rates, disease prevalence, and relative risk from
misclassified data: A review. J. Clinic. Epidemiol., 41,
923-937.



