Available online at www.isas.org.in/jisas
JOURNAL OF THE INDIAN SOCIETY OF
AGRICULTURAL STATISTICS 67(2) 2013 141-150

ISAS

Statistical Analysis of Data from Quantitative High Throughput Screening (QHTS)
Assays- Methods and Challenges

Shyamal D. Peddada
Biostatistics Branch, NIEHS (NIH), RTP, NC 27709, USA

Received 16 May 2013; Accepted 23 May 2013

SUMMARY

Humans are exposed to thousands of chemicals, some of which are potentially toxic and even carcinogenic. For example,
farmers are exposed to pesticides, workers cleaning oil spills are exposed to complex mixtures of compounds, miners are exposed
to various chemicals in the dust they inhale and so on. Identification of toxins and carcinogens among such exposures and
determination of their effects on human health is a complex process. While epidemiological studies at the population level
serve an important purpose to this end, laboratory based toxicological studies play an equally important role. Despite the fact
that extrapolation from lower order animals and cell lines to humans is a challenge, a major advantage of laboratory based
toxicological studies is that one can control for various confounders when evaluating a chemical. For this reason toxicological
studies, e.g. the standard two-year rodent cancer bioassay, are widely used for evaluating toxicity and carcinogenicity of various
chemicals. Although such assays are considered to be robust and informative, they tend to be slow and expensive. Since not
every chemical humans are exposed to is a toxin or a carcinogen, performing a rodent cancer bioassay on every chemical may
not be time or cost effective. Consequently, there is considerable interest in conducting high or medium throughput screening
assays using cells or lower order animals such as nematodes (e.g. Caenorhabditiselegans). Such assays are designed to evaluate
several thousands of chemicals in a single experimental run, resulting in substantial reduction in cost and time. There are,
however, several statistical issues that need to be considered when designing and analyzing such studies. The focus of this
paper is to survey some of the statistical methods used for analyzing data obtained from the rodent cancer bioassay and those
obtained from quantitative high throughput screening (QHTS) assays. Some of the statistical challenges will also be described.

Keywords: Carcinogenicity, Epidemiology, Nonlinear regression analysis, Optimal designs, Pesticides, Quantitative high through
put screening assays, Toxicology.

1. INTRODUCTION The green revolution of the 1960’s pioneered by
the Nobel Prize winning agronomist Dr. Norman

I thank the Indian Society of Agricultural Statistics, Borlaug played a major role in modernizing agriculture
New Delhi, India, for inviting me to deliver the and feeding billions around the world. Dr. M.S.
Technical Address at its 66" Annual Conference held Swaminathan, who embraced Dr. Borlaug’s modern

in Delhi, India in December 2012. Indeed it is a great agricultural practices, brought the green revolution to
honor to be selected to give this talk. This paper  India which included the use of high yielding variety
elaborates some of the major items discussed in the talk of crops, different cropping patterns, efficient use of
as well as the material described in my discussion of fertilizers and pesticides etc. The success of the green

Professor P.K. Sen’s paper Sen (2013) appearing in this revolution in countries such as India is very evident.

also appear in the discussion paper.

*Technical Address delivered at the 66" Annual Conference of the Indian Society of Agricultural Statistics held at IASRI,
New Delhi during 18-20 December, 2012.
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chemicals, such as pesticides, on human health is still
being investigated by researchers all over the world.
Blair and Zhan (1995) discovered that compared to the
general population, farmers in their study experienced
higher rates of various cancers (e.g. leukemia, non-
Hodgkin’s lymphoma, stomach cancer, brain cancer).
They described the need for studies to systematically
characterize and evaluate the effects of various
exposures occurring on a farm and to various health
outcomes. Later in their 1998 paper (Blair and Zhan
1998) they observed that the use of insecticide lindane
increased the risk of non-Hodgkin’s lymphoma among
white men. Scientists at NIEHS, NCI and EPA
established the Agricultural Health Study (AHS) in
1993, to understand the effect of living (and working)
on a farm on various health outcomes. The study
includes about 90,000 people either living or working
on a farm. For more details regarding AHS one may
refer to NCI’s website http://www.cancer.gov/
cancertopics/factsheet/Risk/ahs. Numerous publications
have resulted from this ongoing project. As noted in my
discussion of the paper by Sen (2013) appearing in this
special issue, several pesticides have been identified to
be associated with various health outcomes. For
example, Alavanja et al. (2009) noted that herbicides
metolachlor and pendimethalin and insecticides
chlorpyrifos and diazinon may be associated with the
risk of lung cancer. Hopin et al. (2009) discovered that
high doses of herbicides such as, coumaphos,
heptachlor, parathion, 80/20 mix (carbon tetrachloride/
carbon disulfide), and ethylene dibromide are
associated with allergic asthma, while DDT is
associated with non-allergic asthma. Several other
diseases have been demonstrated to be associated with
the use of pesticides, such as Parkinson’s disease
(Kamel et al. 2007), prostate cancer (Van Maele Fabry
and Willems 2004, Meyer et al. 2007), etc. Recently
Sarkar et al. (2012) conducted a comprehensive study
of the effects of modern agriculture on public health.
This is perhaps the most comprehensive paper written
to-date on this subject from India’s perspective. More
research along these lines will be very important to
carry out, especially in developing countries where the
environmental stressors and their effects on various
health outcomes have not been fully understood.

While epidemiological studies, such as AHS, are
extremely important as they provide direct information
regarding exposures and public health, they can be

expensive and may potentially be difficult to interpret
sometimes due to possible unmeasured confounders.
To this end, laboratory based toxicological studies may
provide an effective complement since they are
controlled experiments. The National Toxicology
Program (NTP) uses rodents (rats and mice) in its 2-
year cancer bioassay to evaluate the toxicity and
carcinogenicity of a chemical. These studies are very
meticulously conducted and the resulting data are
considered to be the “gold standard” by toxicologists
world-wide. Although these data are considered to be
pristine and reliable, they are very expensive and time
consuming to obtain. As a result, the NTP and other
agencies in the US, such as the NIH Chemical
Genomics Center (NCGC) (http://www.ncats.nih.gov/
research/reengineering/ncge/ncge.html) and the US
Environmental Protection Agency (EPA), started to
conduct quantitative high throughput screening (qHTS)
assays. In a given run, a qHTS assay may evaluate as
many as 10,000 chemicals. Using the data derived from
these assays researchers may prioritize chemicals for
further testing and hope to eventually be able to classify
a chemical as toxic or not toxic.

The focus of this paper is to review some of the
statistical methods currently available for analyzing
data obtained from rodent cancer bioassay as well as
the qHTS assay. The design and analysis of NTP’s 2-
year cancer bioassay data will be described in Section
2, whereas the design and analysis of qHTS assay will
be described in Section 3. Several challenges and open
research problems are also presented in each of these
sections.

2. NTP’s 2-YEAR RODENT CANCER
BIOASSAY

2.1 Experimental Design and the Data

For each chemical (e.g. a pesticide) that needs to
be evaluated for toxicity and carcinogenicity, the
National Toxicology Program conducts a 2-year
bioassay that consists of exposing male and female rats
and mice to different doses of chemical. Typically there
are four dose groups, namely, control, low-dose,
medium-dose and high-dose and n = 50 animals (of
roughly same age) are randomly assigned to each dose
group. The two rodent species and the two sexes are
treated as separate experiments. Thus, typically, there
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are 4 dose-response experiments and data from each
experiment is analyzed separately.

The route of exposure to chemical is often matched
with typical route of exposure humans experience for
that chemical. For example, if humans are exposed to
the chemical under study (i.e. test substance) through
skin contact then animals in the experiment are also
typically dermally exposed to the test substance. If the
typical route of exposure for humans is via drinking
water then the animals are also exposed to the chemical
by mixing the chemical in drinking water. The route
of exposure is very critical since tumor incidences for
a given organ may vary substantially by the route of
exposure.

Similar to the route of exposure, the vehicle used
to deliver the test substance to the animal is an
important factor. Suppose animals are exposed to the
chemical via inhalation. That is, the test substance is
mixed with ordinary air and animals are put in
inhalation chambers where they breathe the test
substance along with regular air. Then the vehicle in
this case is ordinary air. Thus the group of animals not
receiving the test substance (i.e. animals in the control
group) is called vehicle control group.

Once the route of exposure and the vehicle are
determined, animals in each dose group are exposed to
the test substance for a two year period using the route
of exposure and the vehicle. Since the natural life span
of rats and mice is approximately 2 years, the duration
of the study is typically set to 2 years (z,,. ~ 730 days).
At the end of 2 years all surviving animals are
sacrificed. All animals in the study are dissected and
all tissues are inspected for the presence or absence of
tumors.

2.2 Statistical Analysis

For the j” tissue in i*animal in @ dose group, let
T.,denote number of days the animal survived and let
X4 denote the binary outcome which takes a value of
1 if tumor is present otherwise it takes a value of 0.

n
Let Yy = z Xjja denote the number of animals in the

d" dose ger)lup that have tumor in the # tissue. For
animals in the d” dose group and j* tissue, let B.t)
denote the death rate of tumor free animals with
survival function, S; . let the tumor incidence rate be
denoted by?tjd(t), with the corresponding survival

Aa(t)
vid' .
Alive and . A!II_V6 and
Tumor Free v umor
Present
Bja(?) Yja(?)
Dead

Fig. 1. Three-state stochastic model

function given by S Wi and let %, (1) denote the death rate
of animals with tumors. Then the three states an animal
can be during the two year period is described in Fig.
1 (see Bailer and Portier 1988). Some other useful
references in this regard are Dinse (1985, 1988a, 1988b,
1991, 1994, 1998), Lindsey and Ryan (1993) and
references therein.

Suppose for animals in the @ dose group and j*
tissue 7, denote the life-time risk of developing tumor.
Making a simplifying assumption that the tumors are
non-lethal (i.e. time to death is independent of the
presence or absence of tumor) we obtain the following
relationship between life time risk of developing tumors
and tumor incidence rate (see Bailer and Portier 1988).

TTjg = fl[o,tm] (WA jq@)Syjq(u)S g jq (w)du.
0

As a consequence of the above relationship we
notice that /l] AD = cj(t) [i.e. not dependent on dose] is
not equivalent to =7, [i.e. not dependent on dose],
unless the mortality rates are constant across dose
groups. For each tissue, toxicologists are typically
interested in testing the null hypothesis that there is no
difference among the D dose groups in terms of tumor
incidence against the alternative that the tumor
incidence monotonically increases with dose. That is

Hoi/ljl(l‘)=/1j2(l‘)=...= jD(t)’ V't
Hy i A1) S A (1) <...< Aip (1) (1)

with at least one strict inequality. Unfortunately, since
scheduled interim sacrifice of animals is prohibitively
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expensive, therefore they are not commonly done and
hence tumor incidence cannot be properly estimated
and consequently the above hypotheses is not testable
directly. On the other hand, although lifetime risk of
developing tumor m, can be estimated using the
L ..~ Ya
standard binomial proportion, i.e., 7jq = . since 1,
is confounded by the survival of an animal it is not
appropriate to test (1) using 74 . Bailer and Portier
(1988) suggested a modification that accounted for the
number of days an animal survived. The resulting
estimator, known as the Poly-3 estimator, is obtained
as follows. For the i animal in d” dose group, if

T4 <ty and the animal did not develop tumor in the
3

Jj™ tissue then let Mjjq =| — | otherwise myg = 1.

sac
Then Poly-3 estimator of T derived in Bailer and

Portier (1988), which accounts for animals that died
without tumor but are subject to risk of developing
tumor in the j* tissue had they lived their full life of
o
- "jd
Njq = z Mijq - Bailer and Portier (1988) suggested using
i=1
the well-known Cochran—Armitage (CA) trend test
(Cochran 1954 and Armitage 1955) for testing
hypotheses (1) using the survival adjusted binomial
proportions 7%;(1 rather than using the standard binomial
proportions 7 4. It is important to note that n;d is a
random variable. Consequently, one needs to account
for variability in nj-d when computing the standard
errors of the estimate of the regression parameter.
Bieller and Willaims (1993) introduced a jackknife
based methodology that accounts for the variability in

. . A
l,,. = 730 days, is given by, %4 = where.

nj-d. The resulting CA trend test using Poly-3 survival

adjusted binomial proportions of Bailer and Portier
(1988) with jackknife variance estimator of Bieller and
Willaims (1993) is currently in use by various
researchers, including the NTP, for analyzing the 2-year
rodent cancer bioassay. The NTP calls this test as the
“Poly-3 trend test™.

The CA test (and hence the Poly-3 trend test) is
ideal when testing for a linear trend in the dose response
against the null hypothesis that the slope parameter is
zero. However, it is well-known that dose-response in
many toxicological studies are not necessarily linear,

although monotonic (Peddada ez al. 2005 and Peddada
and Kissling 2006). As noted in Peddada et al. (2005),
Peddada and Kissling (2006), in such situations, the
above mentioned tests can be severely under powered
in comparison to methods based on order-restricted
inference. In a series of papers, Peddada er al. (2001),
Peddada et al. (2005), Peddada and Kissling (2006),
the use of methods based on order restricted inference
to analyze such data was discussed. Specifically, in
Peddada and Kissling (2006), the authors introduced a
hybrid test that attempts to be as powerful as the Poly-
3 trend test when the dose-response is linear and
attempts to be as powerful as the isotonic trend test of
Peddada er al. (2005) when the dose-response is
monotonic but not linear. The resulting test is called the
“max-Iso-Poly-3” trend test. It takes the maximum of
isotonic regression trend test and the Poly-3 trend test
and the asymptotic p-values are derived by simulating
data from standard normal distribution.

2.3 Use of Historical Control Information

Each time a laboratory conducts a dose-response
study to evaluate the toxicity and/or carcinogenicity of
a chemical, it obtains data on the vehicle control group.
Over time, it accrues data on control groups. The
database consisting of all such historical data is often
called the historical control database. Most agencies and
pharmaceuticals maintain their own internal database
of historical control data. When evaluating the data for
a given chemical, the historical control database is used
very judiciously by matching species, sex, route of
exposure and vehicle. This is because there are
differences in tumor incidence among control animals
belonging to different species, sex, route of exposure
and vehicle. Furthermore, to avoid any bias due to
genetic drift over time, the NTP typically uses studies
conducted within a 5 year window of the time the
chemical under consideration was tested.

Once the historical control data of interest are
identified, a longstanding question has been how to use
these data and develop a formal statistical procedure to
evaluate the tumor incidence data obtained from the
current study. Often toxicologists use the range of tumor
incidence obtained from the historical control data.
Although there are no established criteria, a common
strategy is to see if the tumor incidence in the current
control (often called “concurrent control”) is within the
range of historical controls. If it is in the range and if
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the tumor incidence in one or more dose groups are
outside the range of historical controls and if the Poly-
3 trend test finds a significant dose-related trend in
tumor incidence in the current study then toxicologists
may declare a significant chemical effect. Recently
there has been a detailed discussion on this topic in
Keenan ef al. (2009). It is important to note that as the
number of studies increases, so does the range of
historical controls. Furthermore, when a new strain of
animal is introduced there may not be sufficient studies
in the historical control database to estimate the range
efficiently.

Use of historical control range as a criterion to
evaluate data from current study appears to be ad-hoc
and unsatisfactory. Consequently, several alternate
statistical methods have been proposed in the literature.
These methods range from using hierarchical models,
such as the beta-binomial model (Tarone 1982), a
variety of Bayesian methods (Ibrahim ez al. 1996, 1998,
Dunson and Dinse 2001) and most recently frequentist’s
methods using order restricted inference (Peddada et al.
2007). Comparison of historical control with the current
control group was discussed in Dinse and Peddada
(2011). An important feature of Peddada et al. (2007)
and Dinse and Peddada (2011) is that rather than
making any complicated modeling assumptions
regarding the population of controls in the historical
control database, they take a nonparametric approach
by assuming that all controls in the historical control
data under consideration come from a common
population with common mean proportion parameter 7,
(for the j tissue) and variance of the form
0']2-7rj(1—7zj), thus allowing for extra-binomial
variation without requiring the distribution to be beta-
binomial. Extensive simulation studies conducted in
Peddada et al. (2007) and Dinse and Peddada (2011)
suggest that these new procedures provided a good
control of the Type I error at the desired nominal level.

2.4 Multivariate Methods

It is well-known to toxicologists that some of the
tumors may co-exist, or alternatively, the occurrence of
one type of tumor increases the probability of
occurrence of another particular type. For example,
pituitary gland tumors in female rats are known to
trigger the increased incidence of mammary gland
tumors through the prolactin pathway (McComb ef al.
1984). Despite such associations, toxicologists typically

analyze the rodent bioassay data for each tumor type
separately using univariate methods such as those
described above. This practice is perhaps largely due
to the fact that multivariate analogs of the methods
described in the above have not been developed in the
literature until recently.

Davidov and Peddada (2012) developed
methodology for testing for multivariate stochastic
order among binary random variables. For a randomly
chosen animal from the d” dose group, X, is a
p-dimensional binary random vector, where p is the
number of tissues, and each component of X, takes a
value of 0 or 1 depending upon whether the
corresponding tissue is either tumor free or has tumor.

Definition (e.g. Shaked and Shantikumar 2007): For
two px1 random vectors X and ¥, X is said to be
multivariate stochastically smaller than ¥ (denoted by
X<Y) if for all upper sets Je R, P(X € U)< P(Y € V)
with a strict inequality for at least one upper set.

Recall that a set |Je R’ is said to be an upper set,
if for all u, ve R, with y <y (inequality is defined

component wise), if ye |J then ve .

For dose-response studies such as those conducted
in the rodent cancer bioassay, Davidov and Peddada
(2012) developed a general framework to test
multivariate stochastic order for binary random vectors.
Assuming that the vector of responses is multivariate
stochastically non-decreasing in dose level (a
reasonable assumption in toxicological studies), they
developed a non-parametric test for testing the
following hypotheses:

Hy:x, =" x,= .= x,

Hg X < X, £...< X p(with at least one strict inequality).

The resulting methodology is a simple and
powerful nonparametric procedure that can be widely
used for studying multivariate dose-related trends for
not only toxicology data such as the NTP’s 2-year
cancer bioassay data but other data as well.

2.5 Concluding Remarks

The rodent cancer bioassay, such as those
conducted by the NTP, is a well-planned bioassay with
over three decades of history. The NTP alone has
evaluated hundreds of chemicals for toxicity and
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carcinogenicity. Despite an outstanding track record,
these assays take years to complete and are expensive
to conduct. Furthermore, since not every chemical (e.g.
pesticide) is likely to be a toxin at doses humans are
exposed to, it may not be cost efficient to conduct rodent
cancer bioassay on every chemical. Many of the
chemicals can be potentially filtered away using other
assays, such as those based on cell-lines and lower order
animals such as nematodes [e.g. Caenorhabditiselegans
(c. elegans)] and zebra fish etc. This idea about lower
cost pre-screening for many chemicals led to the design
and analysis of high throughput screening assays which
are briefly described in the next section of this article.

3. QUANTITATIVE HIGH THROUGHPUT
SCREENING (qHTS) ASSAYS

3.1 Experimental Design and the Data

Unlike the rodent cancer bioassay, where only one
chemical is tested at a time using 3 dose groups and a
vehicle control, the qHTS assay tests several thousands
of chemicals at a time using a large number of
concentrations ranging broadly from picomolar to
millimolar levels. The experimental design consists of
several plates, with each plate containing several
hundred wells. Each plate usually corresponds to a
single concentration of a chemical. Furthermore, on
each plate several positive and negative controls are
loaded.

For clarity of exposition, the typical study design
is illustrated using an example from Xie et al. (2008).

234 3678 910111213141516171819202122232425262728293031323334353637383040414243 4445464788
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Fig. 2. Arrangement of chemicals on a 1536 well plate consisting
of 32 rows and 48 columns. The 1408 test chemicals are placed in
the shaded grey area with each cell corresponding to one chemical.
The first 4 columns are used for positive control and vehicle control
DMSO (i.e. negative control).

In this study the cytotoxicity of 1408 chemicals are
evaluated. The design consists of 18 plates with 1536
wells per plate arranged in a matrix consisting of 32
rows and 48 columns. The vehicle control (i.e. the
negative control) used in the study was Dimethyl
Sulfoxide (denoted as DMSO). Each chemical that is
to be tested in this assay is dissolved in this vehicle.
The plates were numbered 1 through 18 with plates 1,
2 and 17, 18 containing DMSO, whereas plates 3
through 16 contained various doses of 1408 chemicals
with concentration increasing with plate number.
Typical arrangement of chemicals on each plate is as
shown in Fig. 2. The 14 doses were as follows:

0.59 nM (nano molar), 2.95 nM, 14.8 nM, 33nM,
74 nM, 0.165 uM, 0.369 uM, 0.824 uM, 1.84 uM,
4.12 uM, 9.22 uM, 20.6 uM, 46 uM, and 92 uM
(micro molar).

3.2 Statistical Analysis

Analysis of qHTS data generally relies on fitting
the following nonlinear function called the “Hill
function” (Fig. 3):

6%
f(x,0)=60y)+6————.
0 0% + 1% @)

where, for a monotonically decreasing dose-response,
6, + 0, represents the mean response at baseline
(control group, dose x = 0), 6, represents the minimum
mean response (i.e as x —eo ), 6; represents dose
corresponding to a mean response halfway from
baseline to minimum mean response. The slope of the
Hill curve is described by 0,. If the dose-response
relationship is monotonically increasing then the above
function can be suitably reparametrized. Several
methods have been proposed in the literature for
analyzing qHTS data using the Hill function.

In most instances the basic idea is to fit the Hill
function for each chemical and then based on the
estimates of various parameters different methods
arrive at different decisions regarding each chemical.
For example, researchers at the National Institute of
Health Chemical Genomic Center (NCGC) (Xia ef al.
2008) used a heuristic approach based on the ordinary

least squares estimators (OLSE) 6 =(8,,6,,6,65)
of 8=(6y,6,,6,,63) to classify if a chemical is active
(i.e. potentially toxic), inactive (i.e. non-toxic) or
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Fig. 3. Shape of a Hill function.

inconclusive. Their decision is based on the values of
the point estimates and does not take into account
underlying variability in the data, and hence in the
variability in the estimates. As a consequence, their
decision rule is not designed to control any notion of
statistical errors, let alone errors due to multiple testing.
Parham ef al. (2009) developed a decision rule that
included performing a likelihood ratio test on 6, and
then use the estimated values of the remaining
parameters without accounting for statistical
uncertainties associated with those estimates (i.e. not
taking into account their standard errors). Hence, as
with the NCGC method, the classification rule obtained
in Parham et al. (2009) is not designed to control any
notion of statistical errors. Based on an exhaustive
simulation study conducted in Lim et al. (2013), the
authors noted that the NCGC method may have a false
discovery rate (FDR) as low as 0, which results in very
small power compared to other methods. On the other
hand, the methodology of Parham et al. (2009) has an
inflated FDR, as high as 0.6 in some instances.

Recently, Shockley (2012) developed a systematic
three-stage algorithm to classify qHTS response profiles
as “active”, “inactive” or “inconclusive”. His
methodology used both unweighted and weighted least
squares to fit the Hill model and used an F-test to make
decisions regarding each chemical. Various decision
rules were developed that used information obtained
from unweighted and weighted least squares
methodologies. However, he acknowledged that overall
Type I error (associated with each chemical) and the
multiple testing issues need to be addressed for his
methodology.

Lim et al. (2013) took a more principled approach
to the problem by developing an M-estimation based

procedure that is not only robust to outliers and
influential observations, which are common to qHTS
assay, but their procedure is robust to heteroscedasticity,
which is also a serious problem to consider when
dealing with thousands of chemicals. For each
chemical, Lim ez al. (2013) perform a pre-test to
determine if the data are heteroscedastic. If the null
hypothesis is rejected then their methodology uses a
weighted M-estimator (WME) that accounts for
heteroscedasticity otherwise it uses ordinary M-
estimator (OME). Finally, their method attempts to
control the FDR. Based on their simulation studies, it
appears that their method does not sacrifice too much
power in comparison to the method of Parham et al.
(2009) while the FDR remains close to the desired
nominal level of 0.05.

3.3 Challenges and Future Research

As observed in Lim ef al. (2013) as well as in my
discussion of Sen (2013) appearing in this special
volume, there are several issues with the design and
analysis of qHTS assay that need further evaluation by
statisticians. Issues range from numerical computations,
statistical methods of analysis and experimental
designs.

3.3.1 Numerical computations and statistical errors

It is important to note that, unlike in linear models,
the information matrix in a nonlinear model is function
of unknown parameters. It is therefore important to
estimate 6 as accurately as possible since the estimated
information matrix is a function of the estimate of 6.
The challenge therefore is not only the statistical
accuracy but also numerical accuracy of the estimator
of 6. Essentially, the point estimator of 6 has two
sources or components of bias and variance. One is
statistical which can be dealt with if one is able to
increase the sample size. The second is numerical,
which requires large number of starting points whatever
be the numerical algorithm. The minimization problem
for computing the point estimator of 6, whether
weighted for heteroscedasticity or unweighted for
homoscedastic errors, is computationally intensive
because one needs to explore a very large number of
starting values for the optimization problem. Without
such an exhaustive search, there is a danger to converge
to local solutions that could result poor statistical
inference. This issue is often overlooked or minimized
in the context of nonlinear regression models. Although
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it may not be a serious issue in most other contexts,
but in the context qHTS data one needs to be cautious
since thousands of nonlinear models are fitted and the
sample sizes are not very large.

3.3.2 Estimation of p-values

Again, in the case of standard linear models, if the
model assumptions are valid, then the p-values obtained
using the F-test are accurate. However in the case of
nonlinear models, even if the model assumptions are
valid, the p-values are approximate. As noted in Lim
et al. (2013), in the context of qHTS assay, since several
thousand models are fitted and accordingly several
thousand inferences are being drawn, one needs to
perform multiple testing corrections to the p-values.
Thus, whether one uses Bonferroni corrections or
Benjamini-Hochberg procedure (Benjamini and
Hochberg 1995) the p-value threshold for significance
is often extremely small. The F-test approximation used
in nonlinear models provides a reasonable
approximation to the true tail probabilities as long as
the tails are of moderate size (e.g. tails corresponding
to 5% level of significance). However, the p-values
derived from F-distribution may not be very accurate
for far right tail probabilities, where significance is
often determined in the context of high dimensional
data (e.g. tail corresponding to small levels of
significance such as 0.000005). Since the sample sizes
used in qHTS assay are typically small, the asymptotic
approximations for such small tail probabilities are very
likely to be poor. This is particularly true under
heteroscedasticity because the F approximation in that
case may not be accurate. It is the classical Beherens-
Fisher problem and is exacerbated in nonlinear
regression models. As an alternative to the asymptotic
tests, one could possibly consider some resampling
procedure. As discussed in detail by Lim ez al. (2013),
such a strategy is numerically infeasible. A possible
alternative is to modify the denominator of the test
statistic derived in Lim et al. (2013) by exploring
shrinkage estimator of the variance, similar to the SAM
methodology of Tusher ef al. (2001).

3.3.3 Optimal designs for qgHTS assay

Theory of statistical designs for qHTS assay is
almost non-existent at present, despite the fact that a
lot of resources are spent on these assays. The only
effort in this area is due to Qu (2010) who discussed

optimal designs for qHTS assay when the goal is to
compare various chemicals. However, often the goal of
gqHTS assay is to identify chemicals that are “active”
(or toxic) and those that are “inactive” (or non-toxic)
and not necessarily to making comparisons among
chemicals. There are several issues that need to be
considered in designing these experiments.

3.3.3(a) Dose spacing

Fitting a nonlinear model such as the Hill model
requires proper dose-spacing such that different parts
of the curve are captured. For example, it will be ideal
to have doses spaced so that, for each chemical, there
are data points available at the upper asymptote, the
linear part of the curve and the lower asymptote.
Unfortunately, however, this is not an easy problem
since several thousands of chemicals are being
processed at the same time and each chemical may have
a different value of 6, which is always unknown, and
hence need different dose spacing pattern. Dose spacing
that is good for one chemical profile may not be good
for another. Perhaps one way to handle the problem is
to take a Bayesian approach so that the dose spacing is
ideal for an average chemical. Or minimize the
maximum of the objective function over a high
probability region of the prior support. In linear models,
objective functions typically used for deriving optimal
designs include, trace or generalized variance or largest
eigenvalue of the information matrix. In the present
context one may take a similar strategy except that the
information matrix is replaced by the expected value
of the information matrix where the expectation is taken
over the prior distribution of 6. One can perhaps
consider other strategies including a sequential design
where intermediate doses are predicted to optimize the
objective function. This is a wide open research area
that requires a careful thought.

3.3.3(b) Spatial effects of locations on plates

As noted earlier, each plate (e.g. 1536 well-plate)
in the assay corresponds to a particular dose.
Arrangement of the chemicals does not change from
plate to plate (i.e. dose to dose). Thus, a chemical “C”
is located at the same location (i, j), i.e. i’ row and j*
column, over all plates in the experiment. While this
is very convenient operationally for the robot, it can be
unsatisfactory since it can introduce potential bias in

the data. For example, as noted in Parham ef al. (2009)
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there are potential spatial effects. Due to the technology,
depending upon the location on the plate, some wells
may intrinsically exhibit high background intensities
than others. It is therefore important to deal with the
spatial effects either by modifying the experimental
designs suitably, which may be a non-trivial task from
a practical stand point due to the robotics, or account
for spatial effects in the nonlinear model and analyze
the data suitably. In any case, it is an important issue
that needs to be addressed in order to obtain unbiased
experimental data.

In summary, given the importance of qHTS assays,
I believe that there are numerous statistical issues, both
design as well as analysis, that need to be carefully
addressed for a better analysis and interpretation of
qHTS data.
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