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SUMMARY

In this paper, several predictive models based on connectionist paradigms and conventional multiple regression approach
are proposed to predict milk yield in different lactations as well as for overall data of Murrah buffaloes. The data pertaining to
various economic traits including reproductive and productive characters are utilised for this purpose. The prediction potential
of the connectionist models is compared with that of the conventional Multiple Linear Regression (MLR) models. The results
revealed that the connectionist models developed in this study seem to be suitable as plausible alternative to conventional
MLR models for predicting milk production in Murrah buffaloes.
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1. INTRODUCTION

In Animal Improvement Programme, there is a
need to develop the predictive model for prediction of
the economic traits based on which the animals are
selected or rejected for performing in the next
generation in the herd. Conventional regression models
have been used extensively for various prediction tasks
in the field of dairying (Sundaresan et al. 1954, Puri
and Sharma 1965, Schaeffer et al. 1977, Jain and Taneja
1984, Gandhi and Gurnani 1988, and Geetha er al.
2006). Generally, these models are based on certain
assumptions, which are essential for their proper
operation. However, there are some situations where
assumptions get violated in practice.

Connectionist paradigm, comparatively a new
branch of nonlinear techniques, is gaining momentum
as potential alternative to conventional regression
models for solving various real-life problems. However,
there has been relatively little research into application
of connectionist models in the field of agriculture in
general and dairying in particular, especially in India.
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The research in this field is still at developmental stage
across the globe. Majority of the studies showing
application of connectionist models to different aspects
of animal sciences and dairying have been conducted
outside the country (e.g., Salehi et al. 1998, Sanzogni
and Kerr 2001, Kominakis er al. 2002, Cveticanin 2005,
Grzesiak et al. 2006, Fernandez et al. 2006, Fernandez
et al. 2007, Craninxa et al. 2008, Edriss et al. 2008,
Cavero et al. 2009, Hassan ef al. 2009, Hettinga et al.
2009, Grzesiak et al. 2010, Njubi et al. 2010, etc.).
However, a few indigenous studies have recently been
reported in the literature. These studies mainly focused
on application of connectionist models for prediction
of the first lactation 305-day milk yield in Karan-Fries
dairy cattle (Sharma et al. 2006, Sharma et al. 2007,
Sharma et al. 2010); to predict the lifetime milk
production in Sahiwal Cattle (Gandhi et a/. 2010) and
for predicting the 305-day lactation milk yield of
Sahiwal cows using partial lactation records of test days
milk yield to rank the sires at younger age to improve
the quality of milking animals and reducing generation
intervals (Ruhil ez al. 2011).
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It is evident from the foregoing review of literature
that most of the research studies related to prediction
of milk yield in dairy cattle are based on multivariate
analysis such as multiple regression approach using
various combinations of growth, reproduction and
production traits. However, the attempt to compare the
regression model vis-a-vis connectionist model is rather
scanty and for the first time has been made in the world,
for buffaloes. Therefore, the present study was
undertaken to investigate the application potential of
such an emerging soft computing paradigm as
connectionist models in the prospective area of milk
yield prediction in Murrah buffaloes for more effective
decision- and policy-making for herd management.

1.1 Connectionist Models

The field of connectionism is a branch of cognitive
science and has originated from diverse sources,
ranging from the fascination of mankind with
understanding and emulating the human brain, to
broader issues of copying human abilities such as
speech and the use of language, to the practical
commercial, scientific, and engineering disciplines of
pattern recognition, modelling, and prediction.
Generally, connectionist models consist of layers of
interconnected neurons, each neuron producing a
nonlinear function of its input. The input to a neuron
may come from other neurons or directly from the input
data. Also, some neurons are identified with the output
of the network. The complete network, therefore,
represents a complex set of interdependencies, which
may incorporate any degree of nonlinearity, allowing
very general functions to be modelled. In the simplest
connectionist networks, the output from one neuron is
fed into another neuron in such a way so as to propagate
the inherent features through layers of interconnecting
neurons. It has been argued that connectionist models
epitomise to a certain extent the behaviour of networks
of neurons in the human brain. Connectionist modelling
approaches combine the complexity of some of the
statistical techniques with the machine learning
objective of imitating human intelligence, however, this
is done at a more ‘unconscious’ level; and hence, there
is no accompanying ability to make learned concepts
transparent to the user.

Feed-forward connectionist models allow signals
to travel in one direction only, i.e., from input towards

output. These models can be considered as simple
straightforward networks that associate inputs with
outputs.

Connectionist models consist of the following
three principal elements:

(a) Topology — the way a connectionist network is
organised into layers and the manner in which
these layers are interconnected;

(b) Learning — the technique by which information is
stored in the network; and

(c) Recall — how the stored information is retrieved
from the network.

The basic structure of a connectionist model
consists of artificial neurons also sometimes referred
to as processing elements (Fig. 1) and are analogous
to biological neurons in the human brain, which are
grouped into layers (or slabs). The most common
connectionist structure consists of an input layer, one
or more hidden layers and an output layer.
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Fig. 1. Schematic representation of an artificial neuron.

Let the input dimension be n (n € Z,) and let the
number of hidden neurons be m (m € Z,). Z, is the set
of positive integers. The training pairs are represented
by D = {x?), /P)}, where x) and #?) denote input and
corresponding target patterns; p = 1, 2, ..., P; P € Z_,
is the number of training exemplars; and the index p is
always assumed to be present implicitly. The matrix w
denotes the input to the hidden neurons connection
strength, w is the (i, /" element of the matrix w
representing the connection strength between the j
input and the /™ hidden layer neuron. With this
nomenclature, the net input to the i hidden layer
neuron is given by

(1.1)

N (1) (1)
net, =y wyx; +6 =W, -x+6
J=1
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where g is the bias of the i hidden layer neuron.

The output from the i hidden layer neuron is given by

h(x) = £ (net) (1.2)
where £(1) () is a nonlinear activation function.

The activation function/transfer function
determines the output from a summation of the
weighted inputs of a neuron. The activation functions
for neurons in the hidden layer are often nonlinear and
they provide the nonlinearities for the network. The
choice of activation functions may strongly influence
complexity and performance of connectionist models.
Sigmoidal activation functions are most commonly
used.

The net input to the output neuron may be defined
similarly as eq. (1.1) as follows

net=ivih- +6@ =v.-h+6? (1.3)

i=1

where v, represents the connection strength between the
i" hidden layer neuron and the output neuron, while 62
is the bias of the output neuron.

Adding a bias neuron x, with input value as +1,
eq. (1.1) can be rewritten as

n
net, = wx; =W, -x (1.4)
j=0

where w, =W, = 6" and W, is the weight vector w,
(associated with the /" hidden neuron) augmented by
the 0™ column corresponding to the bias. Similarly,
introducing an auxiliary hidden neuron (i = 0) such that
hy = +1, allows us to redefine eq. (1.3) as

net = Y vh=V-h (1.5)
i=0

where v, = 6?).

The equation for the network output neuron is
given by

net, = f@X(net) = net (1.6)
where £ (-) is a linear function.

The notations are diagrammatically exemplified in
Fig. 2. This figure represents an n-input, m-hidden

neuron and one-output feed-forward connectionist
network. Such a connectionist model is trained to fit a
dataset D by minimising an error function (or
performance function) as

P P
F=E, (W)=%Zez =iz(nez§’)) —;(”))2 (1.7)
p=1 p=l1

This function is minimised using any standard
optimisation method.

Fig. 2. Schematic of a feed-forward connectionist model.

1.1.1. Error Back Propagation Connectionist Model

The Error Back Propagation (EBP) algorithm ab
initio is a gradient descent algorithm in which the
network weights are moved along the negative of
gradient of performance function. The term error back
propagation refers to the manner in which the gradient
is computed for nonlinear multilayer networks. There
are a number of variations of basic algorithm that are
based on other heuristics and standard optimisation
techniques, such as variable learning rate gradient
descent, conjugate gradient and Newton methods.

The simplest implementation of EBP algorithm
updates the network weights and biases in the direction
in which the performance function decreases most
rapidly, i.e., the negative of gradient. The (k + 1)
iteration of this algorithm (Demuth and Beale 2004) is
given by:

X1 = X~ 048y (1.83)
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where x, is a vector of current weights and biases, o,
is the learning rate, and g, is the current gradient. The
EBP method used in this study is gradient descent
algorithm with variable learning rate (Vogl et al. 1988),
which is based on a heuristic technique as delineated
in the next sub-section.

1.1.1.1 Variable learning rate gradient descent
algorithm

The rules governing the algorithm are:

(a) If the squared error (over the entire training set)
increases by more than some set percentage §
(typically one to five percent) after a weight
update using eq. (1.8), then the weight update is
discarded and the learning rate is multiplied by
some factor p (0 < p <1).

(b) If the squared error decreases after a weight
update, then the weight update is accepted and the
learning rate is multiplied by some factor > 1.

(c) If the squared error increases by less than (, then
the weight update is accepted but learning rate is
unchanged.

1.1.2  Radial Basis Function Connectionist Models

A Radial Basis Function (RBF) connectionist
model is a standard three-layer feed-forward
connectionist model that comprises of an input layer, a
hidden layer of RBF neurons and output layer of linear
neurons. The input layer transfers the input vector x to
the hidden neurons. Generally, there are as many hidden
neurons as the number of input and target samples in
the training set, i.e., one hidden neuron is assigned to

each input vector, x” =(x1(”), xé”), .y xfl”)), p=1,

2, ..., P. This form of RBF connectionist model is
known as regularisation network.

As such, there will be P hidden neurons and each
input vector generates a centre vector for one hidden
neuron. Such a regularisation network becomes very
large as the number of observations or input vector
increases, and thus leading to a computation intensive
process. A clustering method can be applied to the input
vectors to reduce the size of the network. There exists
several clustering methods, e.g., fixed centres; flexible
centres. The one used in this study is a variant of the
fixed centres method and is briefly described below.

In this method, we specify a maximum number of
hidden neurons, a target error level and a spread width.
The model starts with zero hidden neurons and adds one
hidden neuron and one corresponding centre vector at
a time until either the error falls beneath the target level,
or the maximum number of hidden neurons has been
reached (Demuth and Beale 2004). At each step the
model chooses the particular input vector as its centre
that lowers the network error the most. The value of
spread constant G is determined through trial and error
in the present study.

The transformation process in Fig. 2 takes the
following form. Each hidden layer neuron, ¢, generates

a centre vector, ¢, = (cl(i), cg), ey c(i)), and calculates

n

the distance between the input vector (or clusters) and
the centre vector. As the distance measure used in this
study is Euclidean norm, therefore, the result for the
hidden neuron i, net, is given as

1/2
net, =[x—c|=| (x;—¢, ) |+ i=L2 o m (19)

J=1
where m < P is the maximum number of hidden layer
neurons.

The vector net is then transformed in the output
neuron by an activation function. The activation
function can be taken from a variety of functions on
the non-negative real numbers that takes its maximum
value of zero for a net,, and approaches zero as net,
approaches infinity. The Gaussian basis function is used
as activation function in the present study as the
computations are not that complex if a Gaussian kernel
is employed. The effective range of kernels is
determined by the values allocated to the centre and
spread width of radial basis function. The Gaussian
function used is given as

p(ner)=p(x—c )= ") (110

where 0, is the size of the spread width (or receptive
field) of the neuron i, i.e., the range of the values in
which the output has a significant response to the input
x. The radial basis function ¢ is radially symmetrical
around the centre, i.e., it takes the maximum value as
unity when the input vector x is identical to the centre
vector ¢, and decreases dramatically when x has
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diverged from the centre by as much as the spread
width. The spread width is similar to standard deviation,
and the whole activation function is analogous to a
normal probability distribution function with mean ¢
and standard deviation o,.

The final output generated by the RBF
connectionist model is a linear function of the hidden
layer outputs and is represented as

net=Yvp(x-c|)+6® (.1
i=1

The parameters of the model to be estimated are
the matrix V of weights and biases for output layer
neurons; and vectors ¢ and ¢. The values of V are
determined using a learning rule whereas the values of
o and c¢ are determined by the clustering method as
delineated above within this section.

For every training example, we can compute the
actual network output ner, and error €9, p =1, 2, ...,
P. The goal of RBF network learning is to minimise the
error function defined by eq. (1.7).

1.1.3. Generalised Regression Connectionist Model
A nonlinear regression model can be given by
) =fxPy+e® p=1,2,..,P (1.12)

where f(x) is the unknown regression function. We
know that f(x) can also be written as the conditional
mean of the 7 given x (i.e., the regression of 7 on x) as
below (Haykin 2001).

J(x) = E(|x)

The definition of the expectation of a random
variable gives

(1.13)

o

o) = [t

—oo

(1.14)

where £, is the conditional Probability Density Function
(PDF) of ¢ given x. We also know that

fxr (x.1)
fx (x)

where f((x) is the PDF of x and f; (¢|x) is the joint
PDF of x and . Using these, we can get

flt]x) = (1.15)

o

.[ t fxr (X,1)dt

f(x) (%) (1.16)

Here, the probability density functions fy ; and fy
are not known and these are to be estimated from the
training dataset. Now, following Haykin (2001) and
using the theory of kernel functions associated with
PDF, we can write

~ P _ P
fx(x):;zK[X .
p=l °

)

) for xeR" (1.17)
P-o"

and

oo

[t Fr(xt)de=

—oco

P- o

P _J»)
10" Zt(")K[X X J (1.18)
p=1

Thus,

i,(p)K{x—x(”) ]
7 (x)=T(x)=2" i (1.19)

L x—x”)
K
S0

In the present study, we have used K(x) as the
multivariate Gaussian distribution function given by

K(x)= (2 0_2)”/2 (1.20)
T
As such, we can write that
o
it(p) y 20°
r(x)=22 (1.21)
ol
20°

P
e
p=l1
The resulting regression, eq. (1.21), also known as

Nadaraya-Watson kernel regression estimator, is
directly applicable to problems involving numerical
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data. The estimate I'(x) can be visualised as an
exponentially weighted average of all the observed
values, #7), where each observed value is weighted
exponentially according to its Euclidean distance from
X.

Connectionist model implementation

General Regression (GR) connectionist model
implementation was first introduced by Specht (1991).
Generalised regression connectionist model is the
paradigm of a RBF connectionist model, which is a
feed-forward network that uses single hidden layer,
generally with a Gaussian response function that is
radially symmetric. Let w . be the desired output of the
input training vector x) and i output. Now eq. (1.21)
can be expressed as follows

P
Z%’Wij
net, = = (1.22)
P
j=1
where
)
120
g = e\’ (1.23)
and

4’ = (x—xD)(x —x0),

1

According to eq. (1.22), the topology of a GR
connectionist model (Fig. 3) can be described as per the
following points.

Numerator

net,

Denominator

Input Pattern Summation Output
Layer Layer Layer Layer

Fig. 3. Basic architecture of a generalised regression
connectionist model.

(i) The input layer (input cells), which is fully
connected to the pattern layer;

(i) The pattern layer which has as many neurons as
there are input and target pairs in training set.
Specifically, the first layer weights are set to x’.
It computes the pattern functions ®; which is
obtained from eq. (1.23);

(iii) The summation layer, which has two neurons, viz.,
numerator (4) and denominator (B). The first
neuron has input weights equal to number of input
and target pairs, but in this case the weights are
set to the target vector, z. Now, it computes the
numerator by summation of the exponential terms
multiplied by the #?) associated with x?). The
second neuron has input weights equal to 1, then
the denominator is the summation of exponential
terms alone; and

(iv) Finally, the output neuron divides the numerator
by the denominator to provide the prediction result

neto.

Variable o can be adjusted to provide different
levels of function smoothing. Larger values for o cause
the estimated function to be smoother than a function
estimated using lower values of 0. Choosing the right
value for the smoothing parameter requires a certain
amount of experimentation.

2. MATERIALS AND METHODS
2.1 Data

The data pertaining to various economic traits on
Murrah buffaloes for the period 1990-2006, being
maintained at Institute Livestock Farm, NDRI, Karnal
(India), including pedigree information; economic traits:
reproductive characters — age at maturity, age at calving
(up to first six calvings), service period, gestation
period, calving interval, number of services per
conception and individual conception rate; and
production traits — lactation 305-day milk yield (1-5
lactations), lactation length and dry period were used.

2.2 Data Preprocessing

The data were subjected to Least-Squares analysis.
Further, the comparison among sub-classes within
years, seasons in each lactation and also parities for
pooled lactation was made. The constants for significant
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effects of non-genetic factors on reproduction and
production traits were used for adjusting the data.
Furthermore, regression analysis technique was
employed on the final adjusted dataset with all possible
combinations of the different economic traits (lactation
wise as well as overall) so as to isolate representative
traits affecting the milk production of Murrah buffaloes.
Based on the higher associations of predictor traits with
the predicted trait, the predictor traits have been
included in various models as shown in Table 1.

2.2.1 Design and Development of Connectionist and
Regression Models

Three feed-forward connectionist models based on
three learning paradigms, viz., EBP, RBF and GR
learning algorithms have been proposed to predict
305-day milk yield for each of the different lactations

(up to first six calvings) as well as for the overall data
on Murrah buffaloes using the datasets shown in
Table 1. Hence, there are as many as eighteen models
developed in this study.

Various combinations of several architectural
parameters such as number of hidden layers, number
of neurons in each hidden layer, transfer function for
each hidden layer, learning rate, error goal, epochs,
spread constant, regularisation constant, efc., were
empirically explored to reach an optimum configuration
for each connectionist model. Linear function was used
as transfer function for the output layer for all the
connectionist models. The Neural Network Toolbox
under MATLAB software was used to carry out all the
training and simulation experiments. Further
experimental details have been described for each
model (lactation wise) in the following Section 3.

Table 1. Traits included in the datasets for development of Connectionist models vis-a-vis Conventional Regression models
for predicting 305-day milk yield in different lactations as well as for overall data of Murrah buffaloes.

Dependent Trait Independent Traits
First Lactation 305-day Age at | First
Milk Yield (FLMY305) Maturity | Breeding
(N=415) (AAM) | Interval
(FBI)
Second Lactation 305-day | AAM FLMY | First First
Milk Yield (SLMY305) 305 Dry Lactation
(N=268) Period | Length
(FDP) | (FLL)
Third Lactation 305-day FLMY | FDP FLL Second [SLMY | Second | Second Third
Milk Yield (TLMY305) 305 Service [305 Dry Lactation | Breeding
(N=161) Period Period | Length Interval
(SSP) (SDP) | (SLL) (TBI)
Fourth Lactation 305-day | FLMY | SLMY |SLL Third TLMY | Third Third
Milk Yield (FOLMY305) 305 305 Service |305 Dry Location
(N=99) Period Period | Length
(TSP) (TDP) | (TLL)

Fifth Lactation 305-day SLMY [ TSP TLMY | TDP TLL Fourth | FoLMY | Fourth Fourth
Milk Yield (FILMY305) 305 305 Service | 305 Dry Location
(N=54) Period Period Length

(FSP) (FoDP) | (FoLL)
Pooled Lactation 305-day | AAM Breeding | Service | Dry
Milk Yield (PLMY305) Interval | Period | Period
(N=599) (BD) (SP) (DP)
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3. RESULTS AND DISCUSSION
3.1 Predicting First Lactation 305-Day Milk Yield

Many models were developed using various
combinations of independent traits for predicting
dependent traits, i.e., 305-day milk production. Also, a
Multiple Linear Regression (MLR) model was fitted
corresponding to each set of the three connectionist
models using same dataset and data partitioning scheme
for comparing performance of the connectionist models.
The results have been summarised and presented in
Table 2.

Table 2. Performance of Connectionist models vis-a-vis
Conventional Regression models for predicting
305-day milk yield in different lactations as well
as for pooled data of Murrah Buffaloes.

RMSE (%)
Lactation Ml.lltiple Connectionist Models
Linear
Reﬁszzilon EBP | RBF | GR

First Lactation 52.49 51.49 57.64 85.71
Second Lactation | 38.94 42.78 36.25 41.36
Third Lactation 27.13 23.37 23.89 21.90
Fourth Lactation 34.22 32.16 31.88 36.79
Fifth Lactation 31.32 30.87 23.78 19.28
Pooled/Overall

Lactation 22.12 20.87 21.61 22.97

Three connectionist models using EBP, RBF and
GR learning algorithms were developed to predict
FLMY305 using various combinations of architectural
parameters. The best model (shown as bold typeface in
Table 2) was empirically established to be founded on
EBP through gradient descent method with adaptive
learning rate comprising of two hidden layers, each
containing two neurons and having log-sigmoid
function employed as the transfer function; epochs,
error goal and learning rate being arbitrarily set to 5000,
0.01 and 0.01, respectively. The dataset was split
randomly into two disjoint subsets, viz., ‘training set’
containing 80 per cent of the patterns (used for training
the connectionist model) and ‘test set’ containing
remaining 20 per cent data points (used for validating

the connectionist model). The Root Mean Square Error
(RMSE) for the best model was 51.49 per cent
(Fig. 4a). Also, an MLR model was fitted using the
same training set, which was validated on the same test
set. The resultant RMSE was as 52.49 per cent
(Fig. 4a).

3.2 Predicting Second Lactation 305-Day Milk
Yield

Three connectionist models using EBP, RBF and
GR learning algorithms were developed to predict
SLMY305 using various combinations of several
architectural parameters. The best model (shown as
bold typeface in Table 2) was empirically found to be
based on RBF learning algorithm containing four
neurons in the hidden layer; epochs, error goal and
spread constant being set to 4, 0.001 and 215,
respectively. The dataset was split randomly into two
disjoint subsets, viz., ‘training set’ containing 90 per
cent of the patterns (used for training the connectionist
model) and ‘test set’ containing remaining 10 per cent
data points (used for validating the connectionist
model). The RMSE for the best model was 36.25 per
cent (Fig. 4b). Also, an MLR model was fitted using
the same training set, which was validated on the same
test set. The resultant RMSE was as 38.94 per cent
(Fig. 4b).

3.3 Predicting Third Lactation 305-Day Milk Yield

Three connectionist models using EBP, RBF and
GR learning algorithms were developed to predict
TLMY305 using various combinations of several
architectural parameters. The best model (shown as
bold typeface in Table 2) was empirically found to be
based on GR learning algorithm containing 129 neurons
in the hidden layer; epochs and spread constant being
set to 129 and 500, respectively. The dataset was split
randomly into two disjoint subsets, viz., ‘training set’
containing 80 per cent of the patterns (used for training
the connectionist model) and ‘test set’ containing
remaining 20 per cent data points (used for validating
the connectionist model).

The RMSE for the best model was 21.90 per cent
(Fig. 4c¢). Also, an MLR model was developed using
the same training set, which was validated on the same
test set. The resultant RMSE was as 27.13 per cent
(Fig. 4c).
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Fig. 4. Performance comparison of the connectionist and conventional regression models to predict 305-day milk yield in different lactations

(up to six calvings) and in pooled lactation of Murrah buffaloes.
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3.4 Predicting Fourth Lactation 305-Day Milk
Yield

Three connectionist models using EBP, RBF and
GR learning algorithms were developed to predict
FoLMY305 using various combinations of several
architectural parameters. The best model (shown as
bold typeface in Table 2) was empirically found to be
based on RBF learning algorithm containing two
neurons in the hidden layer; epochs, learning rate and
spread constant being set to two, 0.0001 and 2200,
respectively. The dataset was split randomly into two
disjoint subsets, viz., ‘training set’ containing 80 per
cent of the patterns (used for training the connectionist
model) and ‘test set’ containing remaining 20 per cent
data points (used for validating the connectionist
model). The RMSE for the best model was 31.88 per
cent (Fig. 4d). Also, an MLR model was developed
using the same training set, which was validated on the
same test set. The resultant RMSE was as 34.22 per
cent (Fig. 4d).

3.5 Predicting Fifth Lactation 305-Day Milk Yield

The same set of three connectionist models using
EBP, RBF and GR learning algorithms were developed
to predict FILMY305 using various combinations of
several architectural parameters. The best model (shown
as bold typeface in Table 2) was empirically found to
be based on GR learning algorithm containing 44
neurons in the hidden layer; epochs and spread constant
being set to 44 and 250, respectively. The dataset was
split randomly into two disjoint subsets, viz., ‘training
set” containing 80 per cent of the patterns (used for
training the connectionist model) and ‘test set’
containing remaining 20 per cent data points (used for
validating the connectionist model). The RMSE for the
best model was 19.28 per cent (Fig. 4e). Also, an MLR
model was fitted using the same training set, which was
validated on the same test set. The resultant RMSE was
as 31.32 per cent (Fig. 4e).

3.6 Predicting Pooled Lactation 305-Day Milk
Yield

Three connectionist models using learning
algorithms as stated earlier were developed to predict
PLMY305 using various combinations of several
architectural parameters. The best model (shown as
bold typeface in Table 2) was empirically established
to be founded on EBP through Levenberg—Marquardt

method comprising of a single hidden layer containing
ten neurons and having log-sigmoid function employed
as the transfer function; epochs, error goal and learning
rate being arbitrarily set to 5000, 0.001 and 0.01,
respectively. The dataset was split randomly into two
disjoint subsets, viz., ‘training set’ containing 80 per
cent of the patterns (used for training the connectionist
model) and ‘test set’ containing remaining 20 per cent
data points (used for validating the connectionist
model). The RMSE for the best model was 20.87 per
cent (Fig. 4f). Also, an MLR model was fitted using
the same training set, which was validated on the same
test set. The resultant RMSE was as 22.12 per cent

(Fig. 4f).
4. CONCLUSION

In this paper, eighteen predictive models based on
connectionist paradigms, viz., error back propagation,
radial basis function and generalised regression learning
algorithms have been developed to predict 305-day milk
yield in different lactations (up to first six calvings) as
well as for overall data of Murrah buffaloes. Various
combinations of several architectural parameters such
as number of hidden layers, number of neurons in each
hidden layer, transfer function for each hidden layer,
learning rate, error goal, epochs, spread constant,
regularisation constant, efc., were empirically explored
so as to reach an optimum configuration for each
connectionist model. The results of this study revealed
that the connectionist models have relatively better
potential over the conventional MLR technique. Hence,
it is concluded that the connectionist models described
in this paper are found to be suitable as plausible
alternative to conventional MLR models for predicting
305-day milk production in Murrah buffaloes.
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