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SUMMARY

The estimation of population mean in the presence of non-response has been considered when the sampling design is
two-stage. Considering, three different cases of nonresponse, the corresponding estimators based on sub-sampling of non-
respondents, collecting data on the sub-sample through specialized efforts, are developed. Expressions for the variances of the
estimators along with unbiased variance estimators are developed. Optimum values of sample sizes are obtained by considering
a suitable cost function. The percentage reduction in the expected cost of the proposed estimators are studied empirically.
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1. INTRODUCTION

For large or medium scale surveys we are often
faced with the scenario that the sampling frame of
ultimate stage units is not available and the cost of
construction of the frame is very high. Sometimes the
population elements are scattered over a wide area
resulting in a widely scattered sample. Therefore, not
only the cost of enumeration of units in such a sample
may be very high, the supervision of field work may
also be very difficult. For such situations, two-stage or
multi-stage sampling designs are very effective.

It is also the case that, in many human surveys,
information is not obtained from all the units in surveys.
The problem of non-response persist even after call-
backs. The estimates obtained from incomplete data
may be biased particularly when the respondents differ
from the non-respondents. Hansen and Hurwitz (1946)
proposed a technique for adjusting for non-response to
address the problem of bias. The technique consists of
selecting a sub-sample of non-respondents. Through
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specialized efforts data are collected from the non-
respondents so as to obtain an estimate of non-
responding units in the population. Tripathi and Khare
(1997) extended the sub-sampling of non-respondents
approach to multivariate case. Okafor and Lee (2000)
extended the approach to double sampling for ratio and
regression estimation. Okafor (2001, 2005) further
extended the approach in the context of element
sampling and two-stage sampling respectively on two
successive occasions. Chhikara and Sud (2009) used the
sub-sampling of non-respondents approach for
estimation of population and domain totals in the
context of item non-response.

It may be mentioned that the weighting and
imputation procedures aim at eliminating the bias
caused by non-response. However, these procedures are
based on certain assumptions on the response
mechanism. When these assumptions do not hold good
the resulting estimate may be seriously biased. Further,
when the non-response is confounded, i.e. the response
probability is dependent on the survey character, it
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becomes difficult to eliminate the bias entirely. Hansen
and Hurwitz’s sub-sampling approach although costly,
is free from any assumptions. When the bias caused by
non-response is serious this technique is very effective
i.e. one does not have to go for 100 percent response,
although this can be very expensive.

In what follows, three different cases of estimation
of the population mean have been considered based on
three different situations of non-response in two-stage
sampling design. As for example, in case of socio-
economic surveys, surveying villages can be taken as
first-stage units and the households within the villages
as the second-stage units. There may be situation, where
some households within the selected villages do not
respond at the first attempt of data collection through
mail/postal enquiry creating a nonresponse situation in
the ssus. This situation is termed as Case 1. Under Case
2, we have considered the situation where all the
persons belonging to some of the selected villages
respond at the first attempt of data collection whereas
in the remaining selected villages some households do
not responds at the first attempt. In Case 3 we have
considered the situation where there is full response in
some of the selected villages, partial non-response in
some other selected villages and complete non-response
in the remaining selected villages. The three non-
response situations are frequently encountered in the
mail surveys in the context of two-stage sampling
designs. In these surveys the first attempt to collect
information from the respondents is made through
e-mail/postal. Many of the respondents may not send
the required information through mails. To collect
information from non-respondents, a sub-sample of
non-respondents may be selected for data collection by
specialised effort, say, personal interview. In these
situations the methods available to tackle non-response
i.e. call-backs and follow-ups may prove to be very
costly and time consuming in practice and also provide
biased estimates in most of the cases. To obtain
unbiased estimates in these cases of non-response, the
sub-sampling of the non-respondents technique
developed by Hansen and Hurwitz (1946) is commonly
used. Both in theory and in practice the method of sub-
sampling of the non-respondents may provide better
results than the other available methods to tackle the
problem of nonresponse in mail surveys. Thus,
corresponding to these cases of non-response, different

estimators of population mean using two-stage sampling
designs are developed in Section 2 based on the
technique of sub-sampling the non-respondents. Also
given are expressions for variance of the estimators and
unbiased variance estimators. Optimum values of
sample sizes are obtained by minimizing the expected
cost for a fixed variance. The results are empirically
illustrated in Section 3.

2. THEORETICAL DEVELOPMENTS

Let the finite population U under consideration
consists of N known primary stage units (psus) labelled
1 through N. Let the i-th psu comprise M second stage
units (ssus). Let Y be the value of study character
pertaining to j-th ssu in the i-th psu, i = 1, 2,
j=1,2,.., M. The objective is to estimate the
population mean which is defined as

Yz_zzyu

11]1

Case 1. Let n psus be selected by Simple Random
Sampling without Replacement (srswor) design and
within each selected psu, m ssus are also selected by
srswor from M ssus. Further, let there be M, responding
and M, non-responding units in the i-th psu, Mi1+ M,
=M i=1,2, ..., N. Further, out of m ssus, m,, ssus
respond while m,, ssus do not respond, m,, + m, = m.
A sub-sample of size 4, is selected from m,, by srswor
and data are collected on the sub- sampled units through
specialized efforts. Here m, = h,, f,, i o R

Theorem 2.1 An unbiased estimator of Y is given by

I T T _
y = —2_(mi1ymi1 + M5V, )

o pm @.1)
_ 1 ;| _
where Y, =—2 Yij and Yy, = zyu
My =1 hi, j=1
The variance of y” is
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Next, an unbiased variance estimator is given by

py— 1 ’
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where,
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Proof: By definition,
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where E; represent conditional expectations of all
possible samples of size 4, drawn from a sample of size
m.,, E, is the conditional expectation of all possible
samples of size m drawn from M while E, refers to
expectation arising out of all possible samples of size
n drawn from a population of size N.

By definition,
V() =VIEE,(Y) + EVLE(Y) + E EyV5(Y)
(V,- V,. V;are defined similarly as E|, E,. E;)
where,

1 1
VIE,E;(Y) =| ——— |SZ,
\ELE5(Y) (n N)b
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To obtain an unbiased variance estimator, we
proceed as follows

Consider, 5,2 n _1)(2)’"” —ny’ ]

It can be shown that

EEEE(s’z)—SZ+i§: 1oL
17=273=4"p bNizlliM

1 5 M,, 5
+—Y 2(f, -1S
N;Mm(flz Wiy

M.
and E(sp,)=Sh ———2—(f, DSy
( lm) iM M(m—l) (f;Z ) M;,

E, represent conditional expectations of all
possible samples of size 4, drawn from a sample of size
m,,, E; is the conditional expectation of all possible
samples of size m,, m,, respectively drawn from M,

M,, respectively by keeping m,, m, fixed. Here M, and
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M, denote the number of responding and non-
responding units in the i-th psu. E, refers to conditional
expectation arising out of randomness of m,,, m,, while
E, refers to expectation arising out of all possible
samples of size n drawn from a population of size N.

Let,

1 & m;
2 §: i2 2
m n P (ftZ ) hiy

i=1

i2 .2
m+m(m_1)((ft2 s,

Substituting the above estimated values of §?

and Sl%w in (2.2) we get the required result in (2.3).

We determine the optimum values of n, m and
J;, by minimising the expected cost for a fixed variance.
To achieve this consider the following cost function

n n
C=Cn+Cy Y my+C; Y hy
i=1 i=1

where,
C: Total cost

;- Per psu travel cost

: Cost per ssu for collecting the information on
the study character in the first attempt

: Cost per ssu for collecting the information by
expensive method after the first attempt has
failed for obtaining information

It is envisioned that C; will be higher than C,; and
substantially higher than C, .

The expected cost in this case is,

mn
C'=E(C)=n|C,+C,— Y —Ly+C,—
(©=n ZN“M szz}

Consider the function ¢ =C+ AUV (y)-V,}

Here, A is the Lagrangian multiplier. Also, ¥, can
be determined by fixing the coefficient of variation, say
equal to 5%. For the sake of simplicity we assumed f,
in place of f,,. Differentiation with respect to n, m, A
and, £, equating the resultant derivatives equal to ‘0” and
simplifying gives the optimum values as,

[ C,(A+B)
T g T >_ B and
\/(A1+B1)(NSb —Mj an

2 C, LM
p ="M andA—Nngl’
C3
sz,
ZMfz 21 M

N
A= Z%U > =DSi,, and v, =0.0025%72.
i=1

Case 2. Consider the situation that a sample of #n psus
is drawn from N and within each selected psu a sample
of m ssus is drawn by srswor. Let there be no non-
response in 7, psus. In the remaining n, psus m,, ssus
respond while m, units do not respond. A sub-sample
of A, units is selected by srswor from m, and from each
selected psu data are collected through specialised
efforts, m,=h,f,, i=1, 2,..., n,, (n, + n, = n).

In this context we state the estimator and its
variance as below:

Theorem 2.2. The estimator

(M) Yoy + M2 Vi)
{Zm 21 S— Mz} 2.4)

is unbiased forY with variance
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Its unbiased variance estimator is
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Here,
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Proof: Consider,
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E,, E,, E; have been defined earlier.
To obtain the variance we proceed as follows:

By definition,

V(") =VIE,E;(Y) + EV,E;(Y') + E E,V3(Y)
where,

— _ 1 1 2
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By adding the above three terms we get the
required result. To obtain an unbiased variance
estimator consider,

(11 Yy, + M2 V) )} —ny”

/12 1
Sp ( _1) |:z Yim +Z

i=1 i=1 M

Taking the expectations and simplifying we get,

” 1
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Let,
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and Sty = i,
Substituting the estimated values in the variance

expression (2.5) we obtain the required result.

To determine the optimum values of n, m and f,,
we proceed as earlier i.e. minimization of expected cost
subject to fixed variance.

The relevant cost function in this case is,
) n
C=Ciny +Comm+C, Y my +C3 Y iy
i=1 i=1

where the different forms in the cost function are the
same as defined earlier.

The expected cost is,

C"=E(C)

LMym  QM,
N i=1 M i=1 MfZ
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Consider the following function
¢=C"+ MV (y") -V,

where A is the Lagrangian multiplier and ¥, which is
the fixed value of the variance can be determined by
fixing the Coefficient of Variation (CV) value to 5%.
While optimising we substituted f, in place of f,.
Differentiation with respect to n, m, A and f,, equating
the resultant derivatives equal to ‘0°, we have the
optimum values as follows:

_k _ —b*+/b? - 4ae

nopt - ’mopt - 2a

S and
V+5b
( N)

G Mi2 2
C32M12(2S +Z M SMiZ)
f20pt — i=1 i=1

C,y(N, + 2 Mll )Y M S

i=1 i=1

where,

1
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NS m MM NS Mm MR

Mg
a =NC32—’22[S,§ +
i=1 fz

134 1 1
—Y(=-—)s2
Né(m M) IM}

b= {C2N1+C22 +c32 } 25,
i=1 i=1

Ny
e==C\N, > M,y
i=1
Case 3. Here we consider the situation that a
sample of 7 psus is drawn from N, within each selected
psu a sample of m ssus is drawn by srswor design. Let
there be no non-response in 7, psus. In the n, psu m,,
ssus respond while m,, ssus do not respond, let there
be complete non-response in the n,; psus,
n, +n,+ ny;=n. A sub-sample of %, units is selected
by srswor from m,, and data are collected through
specialized efforts, further a sub-sample of /4 psus is
drawn out of 7, psus and data are collected through
specialized efforts on each of m ssus in the selected 4,
psus. Let ny = fihy and m, = hofo, i = 1, 2, ..., n,.

Assume N = N, + N, + N; where N, N, and N, are the
number of psus in the population representing the three
nonresponse categories considered here.

In this context Theorem 2.3 as below state the
estimator.

Theorem 2.3. The estimator

Zyzm}

Q.7

n {Zylm + Zm(mtlymll +m12yh12)+

i=1 i=1

is unbiased forY with the variance

—m 1 1
455 >=(;‘WJS’3

1 Ny N3
— (———j{ZS +). S +f3255‘4}
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N; 2
+—(f;-DS
Nn(f3 )Sin,

(2.8)
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and rest of the terms are defined earlier.

An unbiased estimate of variance is,

VG = (—-ﬂsb
1
+Nn(___){2Shm + Zstm +f3 % Zsltm
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where,
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1 1
Sgh3 (%_1)2(%”, )’hq) » where Vi, = hs lytm
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Proof:
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E, represent conditional expectations of all
possible samples of size 4, drawn from a sample of size
m,,, E, is the conditional expectation of all possible
samples of size m,drawn from M, E, refers to
conditional expectation arising out of selection of all
possible samples of size /4, drawn from n; while E;
refers to expectation arising out of all possible samples
of size n drawn from a population of size N.

To obtain the variance we proceed as follows:
By definition

+ E\E,V3E, ")+ E\E,E5V, 3"

where,
i 1 1.,
V,E,E;E, (") :(Z_N)Sb’
N
EV,EE,(5") =73 (fs = DSp,.
11 1A
EEVE(V)=— m M ZS;' +2S1M
i=1

Nn
N3
+f3 2551/1 )
i=1

1N2’|l-2 )
E\E,E;V ———E—’ 2 — DSy
By ESVy(V7) Nn &M (fia =DSi,,

Thus by adding all the terms we obtain the

required result.

7= —L)s2
V==

N, N3
+—<———> ES +3 8%+ f5 D Sa
M i=1 =1 i=1

1 QM , N 5
—Ny 2 DS2. +-3(fi =S
N = Mm (fi2 = DS Nn(f3 ) bN3

Taking the expectations and simplifying we get,

E\E,E;E,E{E(E;(s;*)
2 1 1 1 i 2 i 2 i 2
=Sp+—| ——— Si+ Y Si+ S;
b N(m Mj ; iM ; iM fSE iM

M

LMoy s -Ds;,
N put Mm i2 Mi2 N(n—l) 3 bN3

M.
E(s2)=82 ———2 __(f,-1)S?
(lm) iM M(m—l)(flz ) M;,

1 &%

E(s§h3)=S13N3 N Z(Z—M)S,M and
3 i=1

E(siin) = Siy

where E. represents conditional expectations of all
possible samples of size 4, drawn from a sample of
sizeis m,,, E is the conditional expectation of all
possible samples of size my, m, respectively drawn
from M., M,, respectively by keeplng m,,, m, fixed.
HereM,,, Mz denote the number of responding and
nonrespondmg units in the population, E; refers to
conditional expectation arising out of randomness of
m,, m,, E, refers to conditional expectation of all
possible samples of size m drawn from M, E, refers to
conditional expectation arising out of selection of all
possible samples of size A, drawn from n,, E, refers to
expectation arising out of all possible samples of size
ny, Ny, Ny drawn from N,, N,, N, keeping ny, Ny, Ny fixed
while E| refers to expectation arising out of randornness

ofn n2, n,.
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where,
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Substituting the estimated value in the variance
expression (2.8) we get the required estimate.

To determine the optimum values of n, m, fl.2 we
make the following assumption i.e. n, = f;h, and

my=hof, i=12,..,n,

The cost function in this case,

C=C (my+h)+C mm+C, 2m,1+c (2h,2+h5m)
i=1

where C, C,, C, C; are same as defined earlier.

The expected cost is,

4 N
C"=E(C)= E{C1N2 +C =2+ C Nym
N /3

To minimize the expected cost subject to fixed
variance consider the function.

¢=C"+ V(") -V,}.

During optimisation we have substituted £, in place
of f,,. To overcome the problem arising due to
simultaneous minimization of n, m, f2 f3 we assume that
n, = f,h,. Thus minimization gives the optimum values
as

k=S;+ 3(f2 I)Squ

1 Ny N3
+— (———){25 +25§V,+f225,§4}
i=1 i=1

N

1 &M,
+— : 1S
N;Mm(flz ISt

a _CSZMzZ(NSSbN3 +2( ——)S
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b, ==C3N; ZMQSI%L-Q )
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e, =—C|N; ZMiZSI%/IiZ
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Ny M, Ny 5
1
a; =(GN +C, Z_M )EMQSM,-Q»
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N2 M
{( 12 \JZM12SM12
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Ny
[ leM2+ZS )2Mi2:|’
i=1
A M, G
2 IZSI%/Iiz)ZMiZ
i=1

i=1

M
i=1

Case 4. The following estimator was considered for
efficiency comparison purpose. Here we assume that a
srswor sample of z psus is selected from N and within
each selected psu a srswor of m ssus is selected. Data
are collected through specialised efforts i.e. there is no



U.C. Sud et al. /Journal of the Indian Society of Agricultural Statistics 66(3) 2012 447-457 455

non-response. Then we have the following theorem for
the estimator in this case.

Theorem 2.4. The estimator is unbiased for, where

(2.10)

1 &(1
V= 4L |2 [ L 2
(y) ( ) b N ; l[m M lim (212)
where
S§=( _I)Z(y,m o)’
_ 1 &
yim_ZjZ:;yij

Proof: The proof of unbiasedness of the given estimator
and its variance and unbiased variance estimator canbe
found in Cochran (1999), p. 277-278.

The cost function in this case is,
C= Cln + C’3nm
where C, C|, C, have been defined earlier.

To obtain optimum values of » and m we minimize
the cost by fixing the variance. The optimum values are
as follows,

N
Iy,
NZm M

opt sz and
Vo +W)
N 2
CIZSIJ
m = i N

opt —

1 N
C3 (Slg _WZSI%VI
i=1

3. EMPIRICAL ILLUSTRATION

For the purpose of empirical illustration we
consider the population MU 284 as given in Sarndal et
al. (1992). Using this data a population with N= 18 and
M = 15 was generated by combining the adjacent 15
units and allocating them to the respective psus. The
variable P85 was used for analysis purpose. For
numerical evaluation we have used SAS software. For
empirical illustration various combinations of C,, C,,
and C; were considered. As stated earlier, we consider
C, to be much smaller than C| and C;. The percentage
reduction in expected cost of Case 1, Case 2, Case 3
over Case 4 along with optimum values of sample sizes
and C,, C,, C;are given in Table 3.1. The %RIEC in

— C’)

Case 1 is given as ( X 100 where as the %RIEC

4

: . (c-C) :
in Case 2 is given as TX 100 and the %RIEC in

— C’”
Case 3 is given as )>< 100 , where C is the total

cost for Case 4.

A close perusal of Table 3.1 reveals that the
percentage reduction in expected cost decreases with
increase in cost of data collection by expensive method.
The percentage reduction in expected cost (%RIEC) is
maximum in Case 2 followed by Case 3, and it is least
in Case 1. The percentage reduction in expected cost
remains almost same with increase in travel cost (C))
for all the three cases also it remains almost the same
with increase in data collection cost at first attempt (C,),
but it decreases with respect to the other two cases. The
percentage reduction in the expected cost (%RIEC)
increases with the increase in the cost per unit for
collecting the information by expensive method after
the first attempt fails to obtain information (C,) for
Case 1 and Case 2 but decreases for Case 3. It may be
seen that for same C| and C;, the value of n decreases
with increase in C, for Case 1 — Case 3. Interestingly,
for same C, and C, the value of m does not increases
with increase in C;. Next, for same C, and C; the value
of n and m both not change, in all the cases, with the
increase in C,. For Case 1 and Case 2 the value of f,
remains constant with the increase in C; but it slightly
varies in Case 3. With increase in the value of C, the
value of f, decreases for all the cases and with the
changes in the value of C, the value of f, remains
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Table 3.1. The percentage reduction in expected cost of Case 1, Case 2, Case 3 over Case 4 (Complete response) along
with optimum values of sample sizes

constant for all the cases. It is noteworthy that the

where f, =% and fy=—>

hy

Cost Case 4 Case 1 Case 2 Case 3
() ) )

¢ G C, n m n m 5 % n m /5 % nom f %

RIEC RIEC RIEC
55 2 70 | 18 6 23 13 3 39.01 23 23 6 57.01 | 55 12 12 5140
55 2 751 18 5 23 13 3 39.19 23 23 6 57.10 | 57 12 13 5098
55 2 80 | 18 5 24 13 3 39.34 24 23 6 57.16 | 58 12 13 50.56
55 4 70 | 18 6 21 10 2 38.70 21 20 4 4742 | 43 12 85 4477
55 4 75| 18 5 21 10 2 39.08 21 20 4 4773 | 44 12 8.8 4448
55 4 80 | 18 5 21 10 2 39.41 22 20 4 48.00 | 45 12 9.1 44.18
50 2 70 | 18 5 23 12 3 39.40 23 23 6 5622 | 55 12 12 5022
50 2 751 18 5 23 12 3 39.57 23 23 6 5631 | 57 12 13 49.77
50 2 80 | 18 5 24 12 3 39.71 24 23 6 5637 | 58 12 13 4932
50 4 70 | 18 5 21 10 2 39.02 21 20 4 4598 | 43 12 85 43.04
50 4 75| 18 5 21 9 2 39.39 21 20 4 4630 | 44 12 88 42.72
50 4 80 | 18 5 21 9 2 39.72 21 20 4 4658 | 45 12 9.1 4239
45 2 70 | 18 5 23 12 3 39.80 23 226 5527 | 55 12 12 48.79
45 2 75| 18 5 23 11 3 39.97 23 22 6 5536 | 57 12 13 4831
45 2 80 | 18 5 24 11 3 40.11 24 22 6 5542 | 58 12 13 47.82
45 4 70 | 18 5 21 9 2 39.35 21 20 4 4427 | 43 12 85 4097
45 4 751 18 5 21 9 2 39.72 21 20 4 4460 | 44 12 88 40.61
45 4 80 | 18 5 21 9 2 40.05 22 20 4 4489 | 45 12 9.1 4025

n

. Thus £, and f; pertain to

difference in the values of m for Case 1 and Case 2 are
attributable to the difference in optimum values of f,
in the two cases. Further, for the Cases 1 and Case 3
in order to obtain the closed form expression for the
optimum values n, m, f, and f; we considered f,= f;

the second and first stages respectively. In view of the
approximation f, = f; the difference between the
optimum ‘»’ values in Case 1 and Case 3 also arises
due to the difference in optimum values of £, in the two
cases.
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