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SUMMARY

In a mixture experiment, the mean response is assumed to depend only on the relative proportion of ingredients or
components present in the mixture. Scheffé (1958, 1963) first systematically considered this problem and introduced different
models and designs suitable in such situations. The problem of estimating parameters in a mixture model has been considered
by many authors. However, in their studies, they assumed fixed regression coefficient models. In this paper, we consider an
additive quadratic mixture model with random regression coefficients and find the optimum design for the estimation of mean

regression coefficients using D- optimality criterion.
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1. INTRODUCTION

In a mixture experiment with ¢ components, the
response function M depends on the relative
proportions x,, x,, ..., X, of the components. The
experimental region and the response function in such
an experiment differs from the ordinary response

q
surface problem in view of the constraint zxi =1.

i=l
Scheffé (1958) first introduced models in canonical
forms of different degrees to represent the response
function in a mixture experiment.

The commonly used mixture model is the full
quadratic model of Scheffé (1958):

q q
Yy=20x+ Y Oxx; +e (1.1)
i=l

i<j=l
where € is the random error with mean 0 and variance

o?.

An additive quadratic mixture model was
introduced by Darroch and Waller (1985) for the case
of g =3 as
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q q
=2 B x5+ Bix(l-x)+e, (12)
i=1 i=1

where € has the same distribution as before.

For ¢ = 3, the models (1.1) and (1.2) are
equivalent, but for ¢ = 2 the parameters of the model
(1.2) are not uniquely determined. For g >4, (1.2) is a
special case of (1.1), with the coefficients of (1.1) being
governed by a system of linear constraints. The model
(1.2) is additive in x,, x,, ..., X, and has fewer
parameters than (1.1) when ¢ >4. It is also often found
to fit data well (see Chan 2000).

Most of the literature on mixture experiments is
concerned with finding optimum designs for estimation
of model parameters, see, for example, Kiefer (1961),
Atwood (1969), Galil and Kiefer (1977), Chan et al.
(1998), Draper and Pukelsheim (1999). The problem of
determining optimum designs for the estimation of
some non-linear functions of the regression parameters
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have been studied by Pal and Mandal (2006, 2007,
2008), Mandal and Pal (2008), Mandal et al. (2008a,
2008b). However, in all these studies, the authors
assumed the regression coefficients to be fixed. Pal
et al. (2010) studied Scheffé’s quadratic mixture model
with random regression coefficients and obtained
D-optimal designs for the estimation of mean regression
coefficients.

In this paper, we consider the problem of
determining D-optimal design for the estimation of
expected regression coefficients in the additive mixture
model due to Darroch and Waller (1985), assuming
random regression coefficients. The paper is organized
as follows. In Section 2 we formulate and investigate
the problem. In Section 3, we determine the optimum
designs under the D-optimality criterion. We conclude
with some remarks in Section 4.

2. THE PROBLEM AND ITS PERSPECTIVES

Consider a g-component mixture experiment with
response function approximated by (1.2), and the factor
space

E={x=(x, Xy . X,):X,20,i=1 2., ¢, Y, x =1}
i=1

Q2.1)

In (1.2), we assume that B =g +b,

Bi =B, +b;, i=1(1) g, where ;s and B;s are fixed
and b s and bs are independent random, with E(b,) =0,
E(b,) = 0 and Var(h)) = ¢?, Var(h,) = o2 . Also, we
assume that b;s and bl.j.s are independent of €.

Then we can write (1.2) as

q q
y=2ﬁixi +2ﬁiixi(1_xi)+8 , (2.2)
i=1 i=1

where
9 9
g = 2bx+Ybx(-x)+e,
i=1 i=1

Then, given an n point design D,, the observational
equations for the modified model can be written as

E(Y) = Xp, (2.3)

where Y is the response vector, X the coefficient matrix
and f the vector of fixed regression coefficients.

Hence,

X= Disp(¥Y) = XAX +0;1, (2.4)
with

A=Diag(c?, 63, ... Oy Of1s Oay, ooy Opy).

We shall assume that XX is non-singular. Then,
making use of the fact that under the form (2.4) of Z,
ordinary least squares estimator (OLSE) and the
generalized least squares estimator (GLSE) of g are
identical (cf. Rao, 1967), we can write

Disp(f)= o2 [ A +(XX)™'] (2.5)
where A" =(c2)"' A
3. DESIGNS AND BARYCENTRES

We shall work with the set up of a continuous
design & given by:

- X, Xy, s X,
- s
Wi, Wy, ey W,

where x s denote the support points with corresponding
weights ws.

Then, the moment matrix is given by

Xx= 2w fx)f(x,)

u=l1

3.1)

where f7(x,) = (x5, X5 ---» Xugr X1 (1= %,0),
X, (1 —xuz), s Xy (1 —xuq)), u=1,2,..n.

We shall consider the D-optimality criterion for
selection of optimal design. A design ¢ is said to be D-

optimal if it minimizes det. [Disp( ﬁ )], or equivalently,
det. [A" + (X’X)1].

A point x ¢ = is called a barycentre of depth j
(0 £j<g—-1)ifj+1 of its g coordinates are equal to

1/Aj + 1) and the remaining are equal to zero (Galil and
Kiefer 1977). The collection of all barycentres of depth

g-1
j is denoted by J. We define J = U Jj - A design which

Jj=0
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assigns a weight o7, to each point in J, (0< j<g-1)
is called a weighted centroid design (cf. Draper and
Pukelsheim 1999). By the definition of o G=1,.. 9),
it follows that C(g, 1) a, + ... + C(q, )) o+ .t
Clg, q) o, = 1, where C(q, j) denotes the binomial

!
coefficient L .
J'g=p!

4. D-OPTIMAL DESIGNS

In order to find the D-optimal design for estimation

of B we shall assume that 67 =4 and 02 =1,, for
all i. The assumption implies that the problem is
invariant with respect to the components x;s. Hence we
can find the optimum design within the class of
invariant designs.

For the second-degree Scheffé model, Draper ez al.
(2000) established that given any arbitrary symmetric
design &, there exists a weighted centroid design
(WCD) which dominates & in the Loewner order sense.
Since model (1.2) can be written as a special case of

Scheffé’s quadratic model (1.1) with 6, = and
0; =L +,le~, forall i, j=1,2, ..., q, i <j, Loewner

order of the information matrices for the Scheffé model
also holds for those of the model (1.2). Hence, using
the result of Draper et al. (2000), we may restrict our
search for the optimal design within the class of WCDs.

Remark 1: From the above argument, it follows that
the search for optimal design may be restricted to the
class of WCDs for all optimality criteria, which are
functions of the information matrix and convex with
respect to it, and are invariant with respect to its
components.

Remark 2: From (2.5), it is clear that the A-optimal
design will be same as that for the corresponding fixed
effects model.

For a g-component mixture model, it can be easily
checked that the moment matrix of a WCD is obtained
in the form

XX = al, +ayJ, bl,+bJ, ,
bl,+bJ, c¢l,+c)J,

where as, b;s and ¢ s are linear functions of the weights
os.
J

We, therefore, obtain (X’X)~! in the form

el,+e,J, dl,+d,J,

(XX)"' = :
dl,+dyJ, gl,+8,J,

where es, fs and ds are non-linear functions of os.

We have numerically computed o.s for several
combinations of (4,, 4,) and for ¢ =3, 4, ..., 10. The
following observations have been made from the study

1. For all 3<¢ <10, barycentres of depth atmost 2

form the support points of the D-optimal design.
Among these, the barycentres of depth 0 are
necessarily the support points of the optimal
design.

2. For g = 3, 4, the optimal design assigns positive
weights to barycentres of depths 0 and 1 only.
Thus, for g = 3, the D-optimal design is saturated.

3. For5<¢<7,the optimal design can assign
positive weights to barycentres of depths 0, land
2 only. However, for given A, as A, increases, the
weight at barycentres of depth 2 decreases and
tends towards zero while for given 4,, as 4,
increases, the weight at barycentres of depth 1
tends towards zero.

4. For8< ¢ <10, the optimal design assigns positive
weights to barycentres of depths 0 and 2 only.

Table 4.1 gives the D-optimal designs for ¢ = 3,
4, ..., 10 for some combinations of (4, 4,).

Table 4.1: Showing D-optimal designs for some
combinations of (4, 1,)

q Al A | C@ ey | Cq 2 | Ca e
3 0 | o] 0.5000 0.5000 0.0000
1 1 0.4848 0.5152 0.0000
1 5| 0.4994 0.5006 0.0000
1| 10| 05149 0.4851 0.0000
5 1 0.4449 0.5551 0.0000
5 5| 04535 0.5465 0.0000
5 |10 | 04633 0.5367 0.0000
7] 0 [ 0 05000 0.5000 0.0000
1 1 0.4890 0.5110 0.0000
1 5| 05254 0.4746 0.0000
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1 10 0.5590 0.4410 0.0000 5. COMPARISON WITH SATURATED
s | 1| 04605 | 05395 | 0.0000 DESIGNS
2 1(5) gj;ﬁ g;z)zé ggggg From Table 4.1 we note that for 4<¢g <10, the
5 0 0 04946 04077 0.0977 D-optimal designs are not saturated. It would, therefore,
1 1 0.4882 04265 0.0853 be interesting to compare the performance of optimum
1 5 0.4994 04368 0.0638 saturated designs as against the optimum designs in the
1 10 05117 0.4440 0.0443 entire class of competing designs. Here we consider a
5 1 0.4524 03343 02133 simple sub-class of saturated designs D_ based on
5 5 0.4613 0.3524 0.1863 barycentres of depths 0 and (¢—2), for a g-component
s | 10 | 04712 | 03688 | 0.1600 mixture experiment.
> [ 200 0.6302 0.3698 0.0000 In Table 5.1 we give the efficiency factor of the
20 10 0.3647 0.0000 0.6353 D-optimum design in D, with respect to the optimum
6 (l) (l) gjzzg 8;;23 8?2? design given in Table 4.1, for4<g<6.
1 5 0.4967 0.2554 0.2479 Table 5.1: Showing the D-optimum design in D, for some
1 10 0.5076 0.2731 0.2193 combinations of (4, 4,) and its efficiency for 4<g <6
5 1 0.4538 0.0837 0.4625
5| 5 | 04616 0.1094 0.4290 A | A | Clg Day | C(q, g-2)e, , | Efficiency
5 10 0.4705 0.1343 0.3952 0 0 0.5000 0.5000 7.40 % 102
e o Lo ool | s | osie (s
vl 04903 0.0397 | 04700 1| 5] 04983 0.5017 3.87x 107!
1 5 0.4987 0.0640 0.4373 1 10 0.5111 0.4889 3.90% 107!
1 10 0.5082 0.0868 0.4050 5 1 0.4392 0.5608 4.80% 10!
S I b Il Bbasted s | 5| 04474 | 05526  |a.68x 107
s | 10 | 04748 | 00000 | 0525 51 10| 04564 0.5436 4.60x 107!
8 0 0 0.0500 0.0000 0.5000 5 0 0 0.5000 0.5000 3.63x 1073
1 1 0.4923 0.0000 0.5077 1 1 0.4798 0.5202 454%1073
AEAE: I R e I N At vy P
s 1| 04634 0.0000 0.5366 1| 10 | 04877 0.5123 6.41x 107
5 5 0.4703 0.0000 0.5297 5 1 0.4229 0.5771 7.65x 1072
5 10 0.4778 0.0000 0.5222 5 5 0.4262 0.5738 8.69 % 1072
I R O e s 10| o | oser oo
vl s 1 05005 0.0000 0.4995 5 200 | 0.5304 0.4696 1.12x 10!
1 10 0.5089 0.0000 0.4911 50 10 0.2843 0.7157 3.91x 1072
5 1 0.4667 0.0000 0.5333 6 0 0 0.5000 0.5000 7.99% 1075
| | Joome Joem | e | a1
0] o o [ 05000 0.0000 0.5000 L 5] 04843 0.5157 126 107
1 1 0.4938 0.0000 0.5062 1 10 0.4870 0.5130 1.58x 10
s | 030051 0.0000 ) 0.4995 5| 1| 04295 0.5705 1.80x 107
; l(l) ?)45123431 ggggg 3451491(1)2 5 5 0.4316 0.5684 220 107
5 5 0.4751 0.0000 0.5249 5 10 0.4341 0.5659 2.75% 107
5 10 0.4819 0.0000 0.5181 50 10 0.2785 0.7215 1.40 x 1073
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Remark 5.1: The above table shows that the optimum
design in the entire class of competing designs is highly
efficient in comparison to the optimum design in the
saturated class D

One can also consider another subclass of
saturated designs by making use of a subset of
barycentres of depth 1, and check the relative
performance of the D-optimal design in it as against the
D-optimal design in the whole class of competing
designs.

Let us consider ¢ = 4. In this case, a reasonable
choice of a subset of 4 barycentres of depth 1 can be
made by deleting two points which have either no or
only one component in common. Let D, and 2,
denote respectively the two sub-classes of designs thus
obtained. In the former situation, the information matrix
is singular. In the second case, the efficiency of the best
design in D, relative to the optimum design in the
entire class is found to be sufficiently small. The
efficiency for some combinations of (4,, 4,) is shown
in Table 5.2.

Table 5.2: Showing the D-optimal design in D,, and its
efficiency for some combinations of (4,, A,) when g = 4

A A, C(g, Dy | C(g, Doy, Efficiency
0 0 0.5928 0.4072 1.54 % 107!
1 1 0.5742 0.4258 1.75% 107!
1 5 0.5784 0.4216 1.91x 107!
1 10 0.5834 0.4166 2.13x 107!
5 1 0.5255 0.4745 2.26x% 107!
5 5 0.5287 0.4713 2.39x% 107!
5 10 0.5325 0.4675 2.55% 107!

Remark 5.2: Comparing the efficiency factors obtained
in Table 5.2 and in Table 5.1 for ¢ = 4, it is evident
that the D-optimal design in D, performs better than
that in D_.

6. CONCLUSIONS

The paper considers an additive quadratic mixture
model with random regression coefficients and attempts
to find the D-optimal design for the estimation of mean
regression coefficients, under equality of the variances
of the coefficients corresponding to the linear terms and
the quadratic terms respectively. It has been shown that

the search for the optimum design may be confined to
the sub-class of weighted centroid designs. Numerical
computation with the number of mixing components
3 < g < 10 revealed that barycentres of depth 0 are
necessarily support points of the optimal designs, and
the other support points remain confined to barycentres
of depth atmost 2. Since the optimum designs are not
saturated for ¢ = 4 , their performance has been
compared with that of the optimum designs in some
simple sub-classes of saturated designs, which showed
that the optimum designs obtained in the whole class
are highly efficient.
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