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SUMMARY

In this paper, a new idea of partial jackknifing to estimate the variance of the ratio type estimator of the finite
population variance due to Isaki (1983) in the presence of random non-response has been introduced. The proposed
estimator has been compared with three different estimators of the variance through an empirical study.
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1. INTRODUCTION

An excellent literature on jackknifing while
estimating population mean and variance has been well
documented by Singh er al. (2008), Arnab and Singh
(2006), Upadhyaya et al. (2004), and Quenouille
(1956); among others. Thus, any review of those papers
in not given here. Let ¥ and X be the study and auxiliary
variables, respectively, in a population ) consisting of
N units. Let y, and x, for i = 1, 2, ..., N be the ith values
of the study variable Y and the auxiliary variable X,
respectively. Motivated by Isaki (1983), by using
information on the auxiliary variable X; consider the
problem of estimation of the finite population variance

N N
oZ=2NWN-D}I'Y Y (3 —y;) (1)

i#j =1

Next consider selecting a simple random and
without replacement sample (SRSWOR) s of » units
from the population Q. Let (y, x)), i =1, 2, ..., n be
the values of the study variable and auxiliary variable
in the SRSWOR sample s of # units. Assume only
response on the study variable y, for i = 1, 2, ..., r
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respondents is available in the sub-sample s, of s, while
the information on the auxiliary variable x, i = 1, 2,
..., n is available in the entire sample s. In other words,
the sub-sample s, of the responding units consists of
data values (v, x,), i = 1, 2, ... r and the sub-sample

s, = s — s, consists of data values (T,x), =1, 2, ...
(n — r), where T denotes a missing value. Detail about

such a non-response mechanism in a real life can be
seen in Rueda et al. (2007).

Let  S=2r0-DI'E Y-y,  and

iz j=1

r r
se={2r(r=D}"Y ¥ (x,—x;)*. be the sample
i% j=1
variances of the study variable and auxiliary variable,
respectively, based on the responding units in the sub-

n n
sample s, and 57 ={(2n(n =D} Y (x;—x;), be
iz j=1
the sample variance of the auxiliary variable based on
the entire sample s. Following Isaki (1983), an
analogous of the ratio type estimator, in two-phase
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sampling, of the finite population variance 0'5 in (1)
is given by
%2
. s
O = Si[ > ] 2)

Following Cochran (1978) and applying the
concept of two-phase sampling, an approximate

variance of the ratio estimator 7% is given by

. 1 o UN-1 4
V(Og)= (;‘NI!MO_ N O-y)
2\ 2
1 1 o o,
+(—_—)[/J20 +[—§] Hoa _2[—}2 ]/ng]
ron o; o;

2(N -1 1
A1 1Yo

- Buf) 3)

where

0 _v.)4
Hyp 2N(N l)zz( Y;)

i#j =1
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40 T N /120’
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Hoy 2N(N gj‘;( x;)
_yy +3(N 1)
04 N ﬂoz’
o Y
My 2N(N l)g;g,(y, ¥ (x5 —x;)
(N-1 .
=,U22+T)(,Uzoﬂoz +247%); with
Hap 2<yl Y)“(x,—X),

N 1;

N N
= -1 v -1 2
Y =N zyi’X:N zxi’o-yzlu20’ and
i=1 i=1
o-f = l,, etc., have their usual meanings.

In section 2, the ratio estimator 0-2 in (2) is shown

as a special case of the proposed imputing method. In

section 3, the problem of estimation of variance V(63)

given in (3) of the ratio estimator 0-2 in (2) by using
partial jackknifing has been considered.

2. IMPUTATION AND RESULTANT
ESTIMATOR

A new method is suggested to impute the squares
of the differences between the consecutive values of the
sample s as follows

(yi—y;) fori,j €s

Gio =932 =1
oo B(x,-—xj)2 fori,j € s, )
where B is given by
2=’
B i* =
r r
5
ZZ(XI‘ _xi)Z ( )
iz j=1

Define a point estimator of the finite population

variance 0'5 as

2
v 1)%12;@’” Yjo) (6)
Then using (4) and (5); the point estimator & 2 in
(6) of the finite population variance 0'3 becomes
ZZ(ym 350)
i j=l1
i =y +BY Y (i —x))
2n(n 1) [E]; ! g/‘;

2
Y-y’ ]

l¢j€§‘1 (i_ )2
Sy B

i#jeEs
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S i-y)?
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ZZO@-—%)Z
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i J

i# j=1

Thus, the following theorem is proposed.

Theorem 1. The point estimator &2 of the finite

R

. . 2 .
population variance O based on imputed squares of

the differences becomes

%2
. S,
O = Si[ > ] ®)

Proof. It follows from (7).

Note that the estimator 62 in (8) is the same as

in (2) due
to Isaki (1983). In the next section, now consider the

the analogous of the ratio estimator of O'y

problem of estimation of variance V' (6‘,%) in (3) of the

ratio estimator &2 in (8) by using a new method of
partial jackknifing.

3. PARTIAL JACKKNIFED ESTIMATOR OF
THE VARIANCE

Consider the partial jackknifing of the ratio

estimator 0-2 in (8) as follows

[ 2. .
26| D e e
! s2(i, J) :

x \b»

2
si[L;’])] ifi, je s,

Sx

G2, j)=F

where

2r(r=Ds; —(y; — ;)
2r(r=1)-2

53, )= for i, je s; (10)

Note that si (i, j) in (10) is not a sample variance

after dropping two units y, and Y, from the given sample,
but it eliminates a partial effect of two units from the

sample variance si; thus it is named as a partial
jackknifed estimator of variance. It is explained with

the help of following example.

Example 1. Consider a sample consisting of 7 = 5 units
say,y, = 15,y,=17,y,=12,y,=25 and y, = 56. Now
consider a symmetric matrix of order 5 X 5 as given
in Table 1.

Table 1. Squared differences (v, — yj)2

Y1 B%) Y3 V4 Vs
¥ - 4 9 | 100 1681
Y, 4 - 25 64 1521
V3 9 25 — 169 1936
Vs 100 | 64 | 169 - 961
Vs 1681 | 1521 | 1936 961 -
Obviously
53 = 2r( 2;12;( )? 2132104 =323.50 (11)
and  53(2, 4):2;52%:338.84 (12)

Clearly sg (2, 4) is not a sample variance of
¥y, =15, V3=

s§ (2, 4) as a partial jackknifed estimator of variance.

12 and y, = 56. Thus, it has been named

It is easy to verify that

- 13
o l)zzs G, j)=s; (13)

i# j=1

Thus the average of the partial jackknifed
estimators of variance remains the same as the original
sample variance. Note that the average of the jackknifed
sample means also remains equal to the original sample
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mean, thus partial jackknifing of sample variance and
jackknifing of sample mean give similar findings.

Now in the same fashion, obtain the partial
jackknifed estimators of variances for the auxiliary
variable as follows:

2r(r=1)s; —(x; - x;)*

S2 i, N — ..
s() 212 fori,j e s, (14)
and
*2(_ ) 211(11—1)s;:2—(xi—xj)2 .
s, (4, )= ]
x I J n(n—1)-2 ori,je s
(15)
One can check that
67, )~ G
i { 2
. (yi_yj)Z_%(xi_xj)Z
(5260 55
s2(i, j) J 2r(r—1)—2
2 *2 2
sy {28, —(x; —x;
= +—y\{ © ’)}ifi,jes1
s2) 2n(n-1)-2
53 )25 — (6 —x))°) -
) »JE S
s ) 2n(n-1-2
(16)

Note that the expression (16) is exact. The
complete jackknifing of the sample variances in (10),
(14) and (15) is feasible, but that will not give the exact
expression (16). Hence, the introduction of a new idea
of partial jackknifed estimator of variance remains
useful in the present investigation.

A suggestion is being made to use an adjusted

partial jackknifed estimator of variance V(d‘,%) in (3)

of the estimator 62 as

i, (0h) ="1=D=D 8 S 536,507
(I" 1) i#j =1

1 1 ANy Ak A A
+ 2(———)(232/10% -Bad) (17)

r n

where

e I AC TN N A
n=1i3

( _1)t¢j =1

ﬂu—z( _1)22()’1 )X —x;)

i#j =1

I < — —
=- z(yi_yr)(xi_xr)‘
r=lig

Further, note that two more situations such that

ies, jes, and jes, ies, could also be

considered. The main purpose of estimating the
variance of the ratio type estimator due to Isaki (1983)
gets resolved and hence the other two cases are not
considered, but any researcher could play with these
two cases.

In the next section, three new estimators of V' (672)
as natural competitors of the proposed partial jackknife

estimator of variance ¥,(65) in (17) have been

considered.
4. NEW ESTIMATORS OF THE VARIANCE

A design-consistent linearization variance

estimator of the estimator (63) given by a standard

formula
(6% Z(%_%) 5 +(%_%)(ﬁ20 - (4]\1,\]_1) JIE )
A (% —%)(2/2%0 Bap) (18)
where
57 = 2r(r ) %; i with

— 2_p 2

) 1
Mﬁmzz‘,(yl y,)z——Z(y, ¥.)%

i#j =1
To motivate the new linearization variance

estimator of &2, at first express uj, as
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4
:U40 2N(N l)zz(yl yi)

i#] =1

ZZ[DZ- + B (x; —x;)*

2N(N &4

2
+2BDy;(x; —x;)"]

=0} + B g, +2Bo ) (19)
where
2
Op="—"—"— -,
° 2N(N %21 ’

0
Hog = 2N(N DZZ(

i#=j =1

o = D.(x; —x;)?
DX2 2N(N 1)%; J( J J) and
D=y, —y)* = Blx,— x)*

Also express 1, as

2
2N(N DZZ(y, ;)

i#j

1 N
ﬂzo—ﬁig{()’i_

2N(N 1)22[D11+B(x x;)’]

i#j =1
= Buy, (20)
Similarly,
f3 =67+ B3, +2B 6, Q1)
and
o = B Aoy (22)

It follows from (19), (20), (21) and (22) that

alternative estimators of ,ugz and ,ug4, those make

more complete use of the sample data, can be obtained
by using

fo, = 22<x =3 for b =2, 4.

l¢j =1

Thus, the second linearization estimator of the

variance V(85) is considered as

A A I 1). 1 1 \ar ~x (AN-
0,6k :(7_ﬁ]0'021+(;—ﬁ)32(ﬂ04 N

-1 N
—2(N— )(l——)@Bzﬂoz Ban) (23)

1) ..2
02)

N r
where
d;;: (x;
%42 = 0 1)%2{ i
s s .
Assuming 5. . 523, ) s_2 in (16); one can obtain

from (16) and (17)

%2 A %2 DA A Ak A2
5,(6 ) sx 0'5_'_2 Sy \Bo-dxz +Bz(ﬂo4_ﬂ02)
sx r S J n n

2
1 1 A A*Z A A
+ 2(7_;)(232,“02 _Bﬂlzl)' (24)

Ignoring the finite population correction and

comparing (23) and (24), it now follows that 7, (6—1%)
s*2

is also design-consistent since s__l for large n. It

follows from (23) and (24) that another design-

consistent linearization variance estimator of V(67)
when the finite population corrections are not ignorable

is given by
*2 2 *2
1 1), s 1 1 \s.
v ———|6;+2| % | ——— |BS
720 = (SXJ(F N)d [sfln N) ax?
1 1 ) Ak 4N_1 A2
+|———|B -
(n N) (,UM N ﬂoz)

N-1)1 1
_2(7)(;__)(232;“02—3/111)' (25)

The new variance estimator (25) resembles the
robust variance estimator in single phase sampling.
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In the next section, these four estimators of the

variance V(&

z) are compared by using a simulation

study.
5. SIMULATION STUDY

In the simulation study, consider the use of the
model

M:y,=Rx,+exf (26)

where x, ~Gamma (6,,6,), R is the regression

coefficient of y on x; e, ~ N (0, 0-2) being
independent of x, and g is any real number. The IMSL
subroutine RNGAM(N, THETAI, X) has been used to

generate a Gamma variable X with single parameter 6,,

then used the subroutine SSCAL(N, THETA2, X, 1) to
convert it into a gamma variable X with two parameters

(6,,0,). The subroutine RNNOR(N, E) is used to

generate the error term from a standard normal
distribution. A similar model has been used for
generating two-phase samples by Ramasubramanian
et al. (2007) and Singh and Arnab (2010) among others.
Royal (1970) used a similar model to generate these
types of populations under which the ratio estimator is
the best among a wide class of estimators. The mean,
variance and coefficient of variation of x; are,

respectively, given by X =6,6,,6>=6,6;, and

O-x -1 .
C,.= 7 =06,". Further, the mean and variance of y, are
. = = 2_p2. 2, y2
given by Yy=RX, and O'y—R o, +tXo
respectively.

Now consider the four estimators of the variance
V(63) of the ratio estimator &7 of the finite
population variance 0'5 as b =9,(83), V=0, (6‘,% ),
vy =1, (6'1% )and $, =7,(67). Then @ =2000 samples
each of size n = 200 units have been selected from the
population of size N = 4000 units by using IMSL
subroutine RNSRI. From the given sample of n = 200
units, then a sub-sample of » = 180 (or 190) units has
been selected by using the same ISML subroutine

RNSRI. Note that the IMSL subroutine RNSRI selects
SRSWOR sample from a given population.

The empirical percent relative bias (RB) in the £

estimator v, for k=1, 2, 3, 4 was computed as

1S, >
0 Visi —V(O%)
RB(ﬁk)l = i=l

100% = RB(k), (27)
Ve “

The percent relative efficiency (RE) of the k"
estimator v,, for k = 2, 3, 4 with respect to the first

estimator ¥, was computed as

[C]
2loy =V (67 )P
RE (9,7, ), =5

20—V (67)P
i=1

x100% = RE (k),

(28)

As required by one of the reviewer, the RB has
also been computed as

(€]
RB (7, ), = —:=! x100% =RB (k), (2%

MSE
and the percent relative efficiency (RE) of the

estimator v,, for k = 2, 3, 4 with respect to the first

estimator ¥, has also been computed as

(€]

> [#,; — MSEJ?
RE (0l’ﬁk)2 = i(;l

'[9, — MSEJ?

i=1

x100% = RE (k),

(30)

(€]
where MSE = éZ(&,%,i -0;)° (31)
i=1

In addition, the ratio, R, of the approximate

variance V (6‘1%) in (3) and the simulated MSE in (31)

has also been computed as
_ MSE
v(o3) 62

The FORTRAN codes used in the simulation are
given in the Appendix. Thus, a very limited results are



Sarjinder Singh et al. / Journal of the Indian Society of Agricultural Statistics 66(3) 2012 427-440 433

presented in Table 2 and Table 3, and other results as
per desire can be obtained by using the codes if
required.

In Table 2, for g = 0.0, R = 0.5 and » = 180, the
value of the ratio R remains 1.02035 indicating the
simulated MSE in (32) and the approximate variance
V(oA'I%) in (3) are approximately same. The RE(2),,
RE(2), value RE(3), and RE(3),, RE(4), and RE(4),
remain approximately 107.5%, 106.7%, 162.1%,
107.6%, 106.8% and 164.7%, respectively. In this
situation, the criterion suggested in (28) and (30)
provide almost the same relative efficiency values. For
g=0.0, R=1.0 and = 180, the value of the ratio R
becomes 1.0062 which indicates the approximate

variance V(é—l%) remains almost same the simulated

MSE value. Although the rest of Table 2 can be read
in the same way, but one point is remarkable that for

g=0.5, R=0.5 and r = 180, the ratio R remains
4.8727. This value of the ratio R has been verified by
executing the FORTRAN codes several times, so it
could happen. In Table 3, for g=0.0, R=0.5and r =
180, the percent relative bias remains less than 10% in
case of all the four estimators. It is remarkable that
similar findings, as reported in Table 2 and Table 3,
have been observed for several other choices of
parameters by executing the program again and again.

6. CONCLUSION

The new imputation technique estimates the finite
population variance and the partial jackknifing
estimates the variance of the resultant ratio type
estimator. Among the four estimators of the variance
considered, the estimator based on partial jackknifing
performs better from the smaller mean squared error

Table 2. Percent relative efficiencies and the ratio values

g R r R RE(2), REQ3), RE(4), RE(2), RE(3), RE(4),
0.0 0.5 180 1.0204 107.5 106.7 162.1 107.6 106.8 164.7
190 1.0064 104.1 103.7 155.4 104.1 103.7 156.1

1.0 180 1.0652 110.7 110.6 163.8 110.5 110.5 144.2

190 1.0176 104.9 104.9 159.6 104.9 104.9 153.2

1.5 180 1.1088 110.4 110.2 208.2 110.3 110.1 183.7

190 1.0232 105.2 105.1 208.9 105.2 105.1 202.5

0.5 0.5 180 4.8727 101.8 100.4 79.1 100.4 100.4 134.2
190 1.0062 100.9 100.2 101.2 100.9 100.2 102.4

1.0 180 1.0366 105.9 104.5 159.8 106.0 104.6 164.5

190 0.9884 102.7 102.2 182.6 102.8 102.2 181.9

1.5 180 1.0454 109.5 109.8 250.1 109.5 109.7 247.2

190 0.9962 104.6 104.8 2594 104.6 104.8 260.1

1.0 0.5 180 0.9207 102.9 101.4 97.5 102.7 101.1 88.2
190 1.0742 101.5 100.7 133.8 101.6 100.9 147.0

1.0 180 1.0264 100.6 99.6 122.7 100.7 99.7 126.8

190 1.0112 100.2 99.6 173.2 100.3 99.6 175.1

1.5 180 0.9372 104.6 106.7 206.8 104.6 106.6 296.5

190 0.9625 102.3 103.4 278.4 102.3 103.4 2774
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Table 3. Percent Relative Bias Values
g R r RB(1), RB(2), RB(3), RB@#), RB(l), RB(2), RB@3), RB®4),
0.0] 05| 180 0.1326 0.5698 0.7189 6.4511  —-1.8640 -1.4356 —-1.2895 4.3283
190 —1.1118 -0.9491 —0.8838 44810 -1.7244 -1.5628 -1.4979 3.8337
1.0 | 180 —-1.2054 -0.9857 09518 -9.7537 -7.2538 -7.0476 -7.0158 —-8.1563
190 —1.3883 -1.2591 -1.2430 -8.7723  -3.0983 -2.9714 -2.9555 -9.2678
1.5 | 180 —1.4755 -1.2131  -1.1637 —-6.0900  —4.1443 -3.9077 -5.8643 -8.8339
0.5] 05| 180 2.8407 3.4229 3.6760 54548  -7.8897 -7.8775 -—7.8723 —6.8282
190 0.7556 1.0564 1.1785 4.3524 0.1314  0.43033 0.5517 4.2634
1.0 | 180 —0.0855 0.3220 0.4627 7.1605  -3.6127 -3.2196 -3.0775 6.2716
190 —-1.0800 -0.9352  —-0.8817 2.2634 0.0791 0.2256 0.2798 3.4618
1.5 | 180 —-0.6740 -0.3986 03672 -2.8920 —4.9848 —-4.7214 -4.6913 -7.1066
190 —1.4956 -1.3560 —-1.3449 -9.4950 -1.1228 -0.9825 -0.9712 -9.1523
1.0 05| 180 2.9020 3.4550 3.7103 3.8162 5.7595 83601 9.6374 7.0582
190 0.6561 0.8963 1.0227 32975 -6.3010 -6.0803 —-5.9626 8.4090
1.0 | 180 2.0373 2.4724 2.5536 2.7946  —-0.5925 -0.1685 —0.0894 2.4648
190 —0.0136 0.1708 0.2137 49601 -1.1125 -0.9304 —0.8879 3.6963
1.5] 180 0.9120 1.1449 0.9862 9.7564 7.6707 79191  7.7497 7.1073

point of views, and shows acceptable relative bias (less

Cumberland (1981a,

1981b) can be investigated in

than 10%) in all cases. In conclusion, in many situations
the proposed partial jackknifed estimator can be used
to estimate the variance of the ratio estimator of the
finite population variance due to Isaki (1983).

7. FURTHER STUDY

As pointed out by the reviewers, the proposed
estimator can be compared with the resampling variance
estimator and also conditional properties of the
proposed estimator on the lines of Royall and

future studies.
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! PARTTIAL JACKKNIFING

USE NUMERICAL_LIBRARIES

IMPLICIT NONE
INTEGERNPNSNR,LIR(5000).IT(5000).IR(5000).K.J KKKK.ISEED
INTEGERID(5000),IRS(5000).NK.JJ,JJJ.INLNITR,NITRR,I1I

INTEGER IN(5000),IM(5000), NITRP1, NITRP2,
NITRP,IP(5000)

REAL TH2, TH1, E(5000).XP(5000), G, R

DOUBLE PRECISION
YP(5000),ANP,ANS,ANR,SIGYP2,SIGXP2,YPMU40,

1
XPMUO4,YPXPMU22,VARP,YF(5000), XF(5000),YS(5000),
XS(5000)

1, XSNR(5000).RAN(5000),XSS(5000),YSS(5000),
AM20SS, AM02SS, AM40SS

1, SUMYIYJ2,SUMXIXJ2,BHAT,D(300,300),SUMDIDJ2,
SIGMDIJ2

1, VIHAT,SIGDX2,AMO2FF,AMO4FF,V2HAT,V3HAT
1, AMO02F(300,300), AM02S(300,300), AM20S(300,300)
1, VIACK(300,300),VIP1,VIP2,VIP,V4HAT

1, VARVI11.VARV21,VARV31,VARV41,RBV11,RBV21,
RBV31.RBV41

1,
RE12,RE13,RE14,ANITR,SIGXYP,RHOXYP,VARE,SUMYP,
SUMXP,YMP,XMP

DOUBLE PRECISION VARVARE, SUMXF, XFM,
VARXF, SUMYS,

SUMXS,

1 YSM, XSM, VARXS, VARYS,
RAT.VARV12,VARV22,VARV32,VARV42,

1 RBV12,RBV22,RBV32,RBV42,RE22,RE23,RE24,
AMIISS

CHARACTER*20 OUT FILE
WRITE(*,.(A).) NAME OF THE OUTPUT FILE.
READ(*..(A20).) OUT FILE

OPEN(42, FILE=OUT FILE, STATUS=.unknown.)
NP = 4000

ANP = NP

WRITE(42, 198)NP

198 FORMAT(2X.17)

DO 8888 G =10.0, 1.1, 0.5
DO 8888 R = 0.5, 1.6, 0.5
WRITE(*,345)GR

345 FORMAT(2X,.g=..,F6.3,.2X,.R=.F6.3)

THI =2.3

TH2 =35

ISEED = 13031963

CALL RNSET (ISEED)
CALL RNGAM(NP,TH1,XP)

Appendix

CALL SSCAL (NP, TH2.XP,1)
ISEED = 13031963
CALL RNSET (ISEED)
CALL RNNOR(NP.E)
DO 111 =1, NP
YP(I) = R¥XP(I)+E(I)*XP(1)**G

111 CONTINUE
SIGXYP = 0.0
SIGYP2 = 0.0
SIGXP2 = 0.0
DO 111=1,NP
DO 11 J= NP
IF(LNE.J) THEN
SIGXYP = SIGXYP+ (YP(I)-YP(J))*(XP(I)-XP(J))
SIGYP2 = SIGYP2 + (YP(I)-YP(J))**2
SIGXP2 = SIGXP2 + (XP(I)-XP(J))**2
YPMU40 = YPMU40 + (YP(I)-YP(J))**4
XPMUO4 = XPMUO4 + (XP(I)-XP(J))**4
YPXPMU22 = YPXPMU22+(YP(I)-YP(J))**2*(XP(I)-
XP(J))**2
ELSE
CONTINUE
ENDIF

11 CONTINUE
SIGXYP = SIGXYP/(2*ANP*(ANP-1))
SIGYP2 = SIGYP2/(2* ANP*(ANP-1))
SIGXP2 = SIGXP2/(2*ANP*(ANP-1))
SUMYP = 0.0
SUMXP = 0.0
DO 45 I=1, NP
SUMYP = SUMYP + YP(I)

45 SUMXP = SUMXP + XP(I)

YMP = SUMYP/ANP
XMP = SUMXP/ANP

YPMU40 = 0.0

XPMUO4 = 0.0

YPXPMU22 = 0.0

DO 43 1 =1, NP

YPMU40 = YPMU40 + (YP(I)-YMP)**4

XPMUO4 = XPMUO4 + (XP(I)-XMP)*+4

YPXPMU22 = YPXPMU22 + (YP(I)-YMP)**2*(XP(I)-
XMP)**2

43 CONTINUE

YPMU40 = YPMU40/(ANP-1)

XPMUO04 = XPMUO4/(ANP-1)

YPXPMU22 = YPXPMU22/(ANP-1)
RHOXYP = SIGXYP/SQRT(SIGYP2*SIGXP2)
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NS =200

ANS = NS

DO 5555 NR = 180, 191, 10
ANR = NR

VARP =(1/ANS-1/ANP)*(YPMU40-SIGYP2**2)

1 + (1/ANR-1/ANS)*(YPMU40+(SIGY P2/
SIGXP2)**2*XPMU04

1-2%(SIGYP2/SIGXP2)*YPXPMU22)
NITRP1 = 100

NITRP2 = 100
VARVARE = 0.0

NITRP = 0.0

DO 9999 I11=1, NITRP1
ISEED = 13031963
CALL RNSET (ISEED)
CALL RNSRI(NS,NP,IR)
DO 12 I=1.NS

YF(I) = YP(IR(I))

12 XF(I) = XP(IR(I))

SUMXF = 0.0
DO 61 I=1, NS

61 SUMXF = SUMXF + XF(I)

XFM = SUMXF/ANS
VARXF = 0.0
DO 62 I=1, NS

62 VARXF = VARXF +(XF(I)-XSM)**2

VARXF = VARXF/(ANS-1)
DO 27777 3] = 1, NITRP2
ISEED = 13031963

CALL RNSET (ISEED)
CALL RNSRI(NR, NS, IP)
DO 14 1=1, NR

YS(I) = YF(IP(I))

14 XS(I) = XF(IP(I))

SUMYS = 0.0

SUMXS = 0.0

DO 16 I=1, NR

SUMYS = SUMYS + YS(I)

16 SUMXS = SUMXS + XS(I)

YSM = SUMYS/ANR

XSM = SUMXS/ANR

VARYS = 0.0

VARXS = 0.0

DO 17 1=1, NR

VARYS = VARYS + (YS(I)-YSM)**2

17 VARXS = VARXS + (XS(I)-XSM)**2

VARYS = VARYS/(ANR-1)

VARXS = VARXS/(ANR-1)

VARE = VARYS*VARXF/VARXS

VARVARE = VARVARE + (VARE-SIGYP2)**2

NITRP = NITRP+1
27777 CONTINUE
9999 CONTINUE
VARVARE = VARVARE/DBLE(NITRP)
RAT = VARVARE/VARP
!******************
NITR = 100
VARV11 = 0.0
VARV21 = 0.0
VARV31 = 0.0
VARV41 = 0.0
VARV12 = 0.0
VARV22 = 0.0
VARV32 = 0.0
VARV42 = 0.0
RBV11 = 0.0
RBV21 = 0.0
RBV31 = 0.0
RBV41 = 0.0
RBVI2 = 0.0
RBV22 = 0.0
RBV32 = 0.0
RBV42 = 0.0
ANITR = 0.0
DO 7777 1I=1,NITR
ISEED = 13031963
CALL RNSET (ISEED)
CALL RNSRI(NS,NP,IM)
DO 31 I=1, NS
31 IR()=IM(T)
DO 223 1=1, NS
YF(I) = YP(IR(I))
223 XF(I) = XP(IR(]))
NITRR = 100
DO 6666 KKKK = 1, NITRR
ISEED = 13031963
CALL RNSET (ISEED)
CALL RNSRI(NR,NS,IN)
DO 214 I=1, NR
214 IT(1) = IN(I)
DO 34 1=1, NR
ID(I) = IM(IT(I))
YS(I) = YF(IN(I))
34 XS(I) = XF(IN(I))
K=0
DO 23 J =1, NR
DO 21 1=1, NS
IF(ID(J).EQ.IR(I)) THEN
K =K+l
YS(K) = YP(IR(I))
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XS(K) = XP(IR(I))
MR(K) = IR(])
IR(I) =0

ELSE

GO TO 21

ENDIF

21 CONTINUE
23 CONTINUE

K =NR

NK =0

13=0

DO 24 I=1, NS
IF(IR(1).GT.0.01)THEN
K =K+l

NK = NK+1

17 =103+1
IRS(JI)=IR(I)
XSNR@J) = XP(IR(I))
ENDIF

24 CONTINUE

=0

DO 28 1= 1, NS
IF(LLE.NR)THEN
XSS(I)=XS(I)
YSS(I=YS(I)
RAN(D=IIR(I)
ELSE
IF(LGT.NR)THEN
17I=113+1
XSS(I)=XSNR(JIJ)
YSS(1)=999999
RAN(I)=IRS(J1)
ENDIF

ENDIF

28 CONTINUE

| skeskesstodok ﬁles are merged okdok ok

AMI1SS = 0.0

AM20SS = 0.0

AMO2SS = 0.0

AMA40SS = 0.0

DO 36 1=1,NR

DO 36 ] =1, NR

[F(LNE.J) THEN

AMI1SS = AMI1SS + (YSS(I)-YSS(J)*(XSS(I)-XSS()))
AM20SS = AM20SS +(YSS(I)-YSS(J))**2
AMO2SS = AMO02SS +(XSS(I)-XSS(J))**2
AM40SS = AM40SS +(YSS(I)-YSS(J))**4
ELSE

CONTINUE

ENDIF

36 CONTINUE

AM11SS = AM11SS/(2*ANR*(ANR-1))
AM20SS = AM20SS/(2*ANR*(ANR-1))
AMO2SS = AM02SS/(2*ANR*(ANR-1))
AMA40SS = AM40SS/(2*ANR*(ANR-1))
BHAT = AM20SS/AM02SS

DO 38 1= 1, NR

DO 38 J=1,NR

IF(LNE.J) THEN
D(LI)=(YSS(I)-YSS(J))**2-BHAT*(XSS(I)-XSS(J))**2
ELSE

CONTINUE

ENDIF

38 CONTINUE

SUMDIDIJ2 = 0.0

DO 39 I=1, NR

DO 39 J=1, NR

IF(LNE.J)THEN

SUMDIDJ2 = SUMDIDJ2 + D(LI)*D(LJ)
ELSE

CONTINUE

ENDIF

39 CONTINUE

SIGMDIJ2 = SUMDIDJ2/(2* ANR*(ANR-1))
VIHAT = (1/ANR-1/ANS)*SIGMDIJ2

1 +(1/ANS-1/ANP)*(AM40SS-(4*ANP-1)* AM20SS**2/
ANP)

1 -2* ((ANP-1)/ANP)*(1/ANR-1/ANS)

1 #(2*AM20SS**2-BHAT*AM11SS##2)
SIGDX2 = 0.0

DO 40 1= 1, NR

DO 40 J =1, NR

IF(LNE.J)THEN

SIGDX2 = SIGDX2 + D(LJ)*(XSS(I)-XSS(J))**2
ELSE

CONTINUE

ENDIF

40 CONTINUE

SIGDX2 = SIGDX2/(2.*ANR¥(ANR-1))
AMO2FF = 0.0

AMOA4FF = 0.0

DO 44 1= 1, NS

DO 44 J= 1, NS

IF(LNE.J)THEN

AMO2FF = AMO2FF +(XSS(I)-XSS(J))**2
AMO4FF = AMO4FF +(XSS(I)-XSS(J))**4
ELSE

CONTINUE

ENDIF

44 CONTINUE
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AMO2FF = AMO02FF/(2*ANS*(ANS-1)) 48 CONTINUE
AMOAFF = AMO4FF/(2*ANS*(ANS-1)) VIP1 =0.0
V2HAT=(1/ANR-1/ANP)*SIGMDIJ2 VIP2 = 0.0
1+ (1/ANS-1/ANP)*BHAT**2*(AMO4FF-(4* ANP- DO 491=1, NS
1)*AMO2FF**2/ANP) DO 49 J =1, NS
1+2%(1/ANS-1/ANP)*BHAT*SIGDX2 IF(INE.J) THEN
1-2%((ANP-1)/ANP)*(1/ANR-1/ANS) IF((LLE.NR).AND.(J.LE.NR))THEN
1#(2*BHAT**2*AMO2FF**2-BHAT*AM1155%%2) VIP1 = VIP1 +(VJACK(I,J)-AM20SS*AMO2FF/
V3HAT = (AMO2FF/AMO02SS)**2*(1/ANR-1/ AMO02SS)*#2
ANP)*SIGMDIJ2 ELSE
1+2*(AMO2FF/AMO2SS)*(1/ANS-1/ IF ((LGT.NR).AND.(J.GT.NR))THEN
ANP)*BHAT*SIGDX2 VIP2 = VIP2 +(VJACK(LJ)-AM20SS*AMO2FF/
1+(1/ANS-1/ANP)*BHAT**2*(AMO4FF-((4* ANP-1)/ AMO02SS)**2
ANP)*AMO2FF**2) ENDIF
1-2%((ANP-1)/ANP)*(1/ANR-1/ ENDIF
ANS)*(2*BHAT**2* AMO2FF**2

ENDIF

1-BHAT*AM11SS**2)*(AMO2FF/AM02SS)**2
49 CONTINUE

DO 46 1=1,NS
DO 46 1 — 1. NS VIP = VIP1+VIP2
IF(LNE) THEN VAHAT = (ANS*(ANS-1)-1)*VIP/((ANR-1)-1)
. VARVI11 = VARV11 + (VIHAT-VARP)**2
AMO2F(LJ)=(2* ANS*(ANS-1)*AMO2FF-(X SS(1)- ( )
XSS(1))*%2)/ VARV21 = VARV21 + (V2HAT-VARP)**2
| (2*ANSHANS-1)-2) VARV31 = VARV31 + (V3HAT-VARP)**2
ELSE VARV41 = VARV41 + (VAHAT-VARP)**2
CONTINUE VARV12 = VARV 12 + (VIHAT-VARVARE)**2
ENDIF VARV22 = VARV22 + (V2HAT-VARVARE)**2
46 CONTINUE VARV32 = VARV32 + (V3HAT-VARVARE)**2
DO 47 [ =1. NR VARV42 = VARV42 + (VAHAT-VARVARE)**2
DO 47 1 =1 NR RBVI11 = RBVI1 + VIHAT
IF(INE.J)THEN RBV21 = RBV21 + V2HAT
AMO2S(LI)=(2* ANR*(ANR-1)*AM02SS-(XSS(I)- RBV3I=RBV31 + V3HAT
XSS(1))**2)/ RBV41 = RBV41 + V4AHAT
1(2*ANR*(ANR-1)-2) RBVI12 = RBV12 + VIHAT
AM20S(ILJ)=(2* ANR*(ANR-1)*AM20SS-(YSS(I)- RBV22 = RBV22 + V2HAT
YSS(1)**2)/ RBV32 = RBV32 + V3HAT
1(2*ANR*(ANR-1)-2) RBV42 = RBV42 + VAHAT
ELSE ANITR = ANITR+1
CONTINUE 6666 CONTINUE
ENDIF 7777 CONTINUE
47 CONTINUE REI2 = VARV11¥100/VARV21
DO 48 1=1, NS RE13 = VARVI11¥100/VARV31
DO 48 J =1, NS RE14 = VARV11¥100/VARV41
IF(LNE.J) THEN RE22 = VARV 12%100/VARV22
IF((ILLE.NR).AND.(J.LE.NR))THEN RE23 = VARV 12#100/VARV32
VIACK(LJ) = AM20S(LJ)* AMO2F(L,J)/ AMO02S(LJ) RE24 = VARV 12#100/VARV42
ELSE RBV11 = (RBV11/ANITR-VARP)*100/VARP
IF((LGT.NR).AND.(J.GT.NR))THEN RBV21 = (RBV21/ANITR-VARP)*100/VARP
VIACK(ILJ))=AM20SS*AMO2F(L,J)/AM02SS RBV31 = (RBV31/ANITR-VARP)*100/VARP
ENDIF RBV41 = (RBV41/ANITR-VARP)*100/VARP
ENDIF RBV12 = (RBV12/ANITR-VARVARE)*100/VARVARE

ENDIF RBV22 = (RBV22/ANITR-VARVARE)*100/VARVARE
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RBV32 = (RBV32/ANITR-VARVARE)*100/VARVARE
RBV42 = (RBV42/ANITR-VARVARE)*100/VARVARE

IF
(R(Elz.GT.100).AND.(RE13.GT.100).AND.(RE14.GT.100))
THEN
WRITE(*,128)GR.NPNS,NR.RE12,RE13,RE14,RE22,
RE23,RE24,

1 RBV11,RBV21,RBV31,RBV41,RBV12,RBV22,RBV32,
RBV42,RHOXYP,RAT
WRITE(42,128)GR,NP,NS,NR,RE12,RE13,RE14,RE22,
RE23,RE24,

1
RBV11,RBV21,RBV31,RBV41,RBV12,RBV22,RBV32,RBV42,
RHOXYP,RAT

128 FORMAT(2X,F6.2.2X,F7.2.2X.15.2X.13,2X,13,2X.F9.2,
2X,F9.2,2X,
1 F9.2,2X,F9.2,2X,F9.2,2X,F9.2,3X,F9.5,3X,F9.4,3X,
F9.4,3X,F9.4,

1 F9.4,3X,F9.4,3X,F9.4,3X,F9.4,2X . F9.4,2X F9.4)
ENDIF

5555 CONTINUE

8888 CONTINUE

STOP

END



