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SUMMARY

The Elastic Net is a variable selection and shrinkage estimation method especially designed for regression settings with
a large number of correlated predictors. Recently, a Bayesian formulation of the Elastic Net was proposed (BEN=Bayesian
Elastic Net). In this article, we extend the BEN to model the combined effects of dense molecular markers and pedigree data
and evaluate the performance of the proposed model using a barley data set and two large wheat data sets. The predictive
power of the proposed model was compared with those of two well-established models: the Bayesian LASSO and the Bayesian
Ridge Regression. Results show that the prediction assessment of BEN was as accurate as those of the other methods in all
studied cases. The number of molecular markers with significant effects detected by BEN in four data sets was compared with
those found by the Bayesian LASSO and Bayesian Ridge Regression models. An R-program that implements the proposed
model is available.

Keywords: Bayesian Elastic Net, Shrinkage methods, Genomic selection.

1. INTRODUCTION In a parametric model for GS (e.g., Meuwissen
et al. 2001, Xu 2003) phenotypes (y; i = 1, ..., n) are

Genomic selection (GS, Meuwissen et al. 2001) regressed on marker genotypes (xy'3 j=1,..,p)usinga
uses dense molecular marker genotypes and phenotypes

to predict phenotypic values of selection candidates.
Several simulation (e.g., Meuwissen ef al. 2001; Habier X; € {0, 1, 2} represents the number of copies of a
et al. 2009) and empirical studies in plants (de los diallelic marker (e.g., an SNP), and f3; is regression
Campos et al. 2009, 2010; Crossa et al. 2010, 2011;
Pérez et al. 2010; Wang ef al. 2010) and animals (e.g.,
Weigel e al. 2009; de los Campos ef al. 2009, 2010)  expressed as y = XP +&, where y = {y,}, B={6;} and
have demonstrated that GS can yield accurate g ={g;} are vectors of phenotypes, marker effects and
predictions of phenotypic values; the GS is being
implemented for commercial breeding in several
agricultural crop species.

linear model of the form y; = 2?:1 xl.j,b7 j T €, where

of y, on the J" marker. In matrix notation, the model is

model residuals, respectively, and X = {xl.j} is a matrix
of marker genotypes of dimensions nxp. With dense
molecular markers, the number of markers exceeds the
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number of records in the reference population (p>>n),
and therefore penalized regression estimation methods
and their Bayesian counterpart are commonly used.

Ridge Regression (RR, Hoerl and Kennard 1970)
is the oldest penalized estimation method that yields
shrunken estimates of regression coefficients. Tibshirani
(1996) proposed the LASSO (Least Absolute Selection
and Shrinkage Operator) method as a way of
performing variable selection and shrinkage estimation
simultaneously. The LASSO was shown to perform
well with uncorrelated predictors; however, its
predictive performance has not been always good in
settings where predictors are highly correlated. To
overcome this limitation, Zou and Hastie (2005)
proposed using the Elastic Net (EN), which is a
penalized estimation method that represents a
compromise between RR and LASSO and has been
shown to have good predictive performance in
regression settings with highly correlated predictors.
This situation also arises in models for GS.

Most penalized estimates are equivalent to
posterior modes of regression coefficients in a certain
class of Bayesian models. The Bayesian equivalents of
RR and LASSO are well known (e.g., Goldstein 1976;
Park and Casella 2008) and these models have been
shown to be effective for prediction in GS (e.g., de los
Campos et al. 2009; Crossa et al. 2010; Perez et al.
2010). Recently, Li and Lin (2010) and Kyung et al.
(2010) proposed Bayesian formulations of the EN
(hereinafter BEN, for “Bayesian Elastic Net”).

In this research, we extend the BEN to
accommodate the combined effects of dense molecular
markers and pedigree, and developed software that
implements the proposed model and compares BEN’s
predictive performance with that of the Bayesian
LASSO (BL) and Bayesian Ridge Regression (BRR).
We also discuss how estimates from the BRR, BL and
BEN can be used for QTL detection.

2. PENALIZED AND BAYESIAN SHRINKAGE
REGRESSION METHODS

Penalized Regression Methods

The RR (Hoerl and Kennard 1970) is the oldest
penalized estimation method. In RR, estimates of
regression coefficients are obtained by minimizing the
residual sum of squares,

2
RSS(.B)= X, (v -2 %8 ) . subject to the

constraint: SS(B) = 2;):1,3,2 <t;

following

equivalently:

A

Brr = arg minB{Zfl:l(yi —25’:1)(,~]~[3j)2 +/1RRZ§.’:1,B]2}
(1

where Agp =A(f)20 is a non-negative constant

controlling the trade-offs between goodness of fit,
measured by the RSS, and model complexity, measured
by the sum of squares of the regression coefficients, or

the L, norm of B. The quadratic L, penalty induces

shrinkage of estimates of marker effects towards zero;
this introduces bias but reduces the variance of
estimates.

The LASSO (Tibshirani 1996) is another
commonly used penalized estimation method that is
obtained by replacing the L, norm in (1) with the sum
of the absolute values of the regression coefficients, or
L, norm, that is

A n 2
B, =arg minﬁ {Zizl(yi_ f=1xij'81) +}‘L2f=1|ﬂj|}'

The solution to this problem may involve zeroing
out some effects; thus, LASSO performs variable
selection and shrinkage simultaneously. As the number
of available markers increases, so does the number of
markers located in regions of the genome that are not
associated with the trait of interest. Because of this, the
variable selection feature of LASSO is appealing (Usai
et al. 2009). However, empirical evidence suggests that
RR outperforms LASSO from a predictive standpoint
when predictors are highly co-linear (Hastie et al.
2009); this situation is commonly observed in GS with
dense molecular markers.

To improve the performance of LASSO in settings
with correlated predictors, Zou and Hastie (2005)
proposed a penalized method, the EN, whose penalty
function uses a compromise between the L, and L,
norms. In the EN, the optimization problem becomes

min g {(y - XB)T (y — XB)subject to

-3 |3+ a3 B <
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where ¢ is an arbitrary positive constant and « € [0,1].

Ridge Regression and the LASSO are obtained as
special cases of the above problems, with ¢ equal to
one and zero, respectively. The solution to the above
optimization problem is equivalent to

By = arg min g {2?:1()’1' - jﬂx"fﬂj)z

AT YA @)

where A, and A, are non-negative constants that control
the weight assigned to the L, and L, penalties,
respectively. The penalty used in the EN stabilizes the
LASSO solution (Zou and Hastie 2005) while keeping
the variable selection feature of LASSO; however, it
tends to shrink together the coefficients of correlated
predictors, a feature observed in RR (Hastie ef al.
2009). Zou and Hastie (2005) developed an efficient
algorithm (LARS-EN) to solve the above optimization
problem.

Bayesian Shrinkage Regression Methods

Estimates of regression coefficients derived from
penalized optimization problems such as RR or LASSO
are equivalent to posterior modes in certain classes of
Bayesian models (e.g., Goldstein 1976; Wahba 1978;
Tibshirani 1996). In the Bayesian approach, inferences
are based on the posterior distribution of the unknowns
(®), given the data (y), p(®ly). Following Bayes’ rule,
this density is proportional to the product of the
conditional distribution of the data given the unknowns,
p(y|®), or Bayesian likelihood times the prior density
assigned to model unknowns p(®). In the models we
are concerned, the conditional distribution of the data
given the parameters, [p(y|®)], is the product of
independent normal densities centered at the regression

function E(y; |Xi,|3) = 2?21 x;B;, and with common

residual variance (o-g ), that is

p(Y|Xaﬁra§)=H7:1N(yt ‘zlexlj /’O-g )
Marker effects are assigned identical and independent

normal prior densities, p(l3|0))=H?=1p(,3j|0)),

where @ represents hyper-parameters indexing the

prior density of marker effects. Following Bayes’ rule,
the posterior distribution is

p(Bly.c2.0) « p(yIX.B,07)p(Blo)
1N (3[2 0 wb02 T (B o) )

The choice of prior density, p (ﬁ j |0)), determines
whether the posterior mode of (3) is equivalent to
estimates obtained with BRR, BL or BEN. In BRR, the
prior density of marker effects, p (,3 j |0)), is Gaussian,

centered at zero and with common variance, that is,

P(ﬁj‘aé)=N(ﬁj‘0,O’fg), where 0/23 is a prior-
variance of marker effects. In BL, the prior assigned
to marker effects is Double-Exponential (DE, e.g.,
Tibshirani 1996), centered at zero and with inverse-

A

scale parameter, o2 that is,
£

p(B;14.02)= DE(,BJ- o,%).

The prior density of BEN represents a compromise
between normal and DE densities. Fig. 1 displays these
densities for a random variable with mean equal to zero
and variance equal to one. The prior corresponding to
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Fig. 1. Prior densities of Bayesian Ridge Regression (Gaussian,
dashed-line), Bayesian LASSO (double-exponential, solid line)
and Bayesian Elastic Net (BEN) derived with (dotted line).
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the BEN was obtained by setting A, = A, = 0.8. Relative
to the Gaussian density, the DE places higher mass at
zero and have thicker tails, inducing a different type of
shrinkage. In particular, relative to BRR, the prior used
in the BL induces stronger shrinkage towards zero of
estimates of effects of predictors that have a weak
association with the response, and not as much
shrinkage of estimates of effects of predictors that have
a strong association with the response.

For the implementation of these Bayesian
methods, the Gaussian likelihood is a conjugate of the
normal prior; therefore, samples from the posterior
distribution of BRR can be obtained using a Gibbs
sampler. The DE prior does not conjugate with the
Gaussian likelihood; however, as proposed by Park and
Casella (2008), the DE density can be represented as a
mixture of scaled-normal densities, which allows using
a Gibbs sampler for implementing the BL. Following
a strategy similar to that followed by Park and Casella
(2008), Li and Lin (2010) and Kyung et al. (2010)
proposed representing the prior density corresponding
to BEN using a mixture of scaled normal densities. In
the model of Kyung et al. (2010), joint prior density
of the j-th marker effect and its associated scale-

parameter (77) is
p(B;-75 Ao 02 )
-N(B 0.0 (572 2) ) Ew (e a ).

2 2,2
where Exp (2'12 |ﬂl ) = % exp(_ 112 J ) is the density

function of an exponential function indexed by the
parameter A,. The marginal prior of marker effects,

p(ﬂ j |/11,/12), can then be obtained by marginalizing

with respect to the scale parameter r]2~ ,

p (ﬂ j |j1 A )
-1
= J.N(,Bj |0,O'€2 (1172 +jq) ) Exp(z'Jz. |/1| )81’/2. 4)
All the prior densities discussed above are indexed
by hyper-parameters ® = {0'123} in BRR, ®={4,02} in
the BL and @ ={4,,4,,02} in BEN. These can be dealt

with by assigning a prior density to these unknowns,
or by using empirical Bayes approaches (e.g., Park and
Casella 2008).

Bayesian Shrinkage Regression Methods Using
Markers and Pedigree

In BRR, BL and BEN, the regression function is

E(yi|Xi,ﬁ)= lexijﬁj. This can be extended by
including in the regression function a random effect
{u,} representing the regression of phenotypes on
pedigree information (denoted as P), so that
E(y; |Xi ,B,P)=u; + 25:1 x; ;- Following the standard

assumption of infinitesimal models (e.g., Henderson
1975), the vector of random effects is assigned a
multivariate-Gaussian prior, centered at zero and with

a co-variance function Cov(u,,u,)=a(i,i’yo?, where
a(i,i’) are twice kinship coefficients, computed from

the pedigree, and 2 is a variance parameter associated
with the regression on the pedigree. In matrix form
u~ N(0,62A), where u= {u} and A= {a(i, i")}. The

general form of the posterior density of a pedigree +
marker (MP) Bayesian regression model is

n
y,(o) :HN(yi|ui +2i:1xij ,-,0'52)
i=1

2 2
p(B, 0;,0,,u

)4
[1r(Bloxx?(c2|S,.df, )22 (2], .df. )«

Jj=1
N(ul0,52A) (5)

where the above variance parameters were treated as
unknowns and assigned independent scaled-inverse
Chi-square density with a degree of freedom and scale
parameter equal to df and S, respectively. In (5), it is
assumed that the parameters indexing the prior density
of marker effects (@) are known. In practice, this can
be dealt with by assigning a prior to these unknowns
or by using Empirical Bayes approaches. The
specification of the prior density of marker effects,
p(ﬂ j |0)), will define whether the above is a markers
+ pedigree BRR (MP-BRR; this occurs when

p(B;|o})=N(B;]0.03). BL (MP-BL; this occurs
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A.07)=DE| f3; o,i2 , or BEN (MP-
0-6'
BEN), which occurs in (4). Marker-based regressions

can be simply obtained by setting #, = 0 in MP-BRR,
MP-BL or MP-BEN, which yield M-BRR, M-BL and
M-BEN, respectively. On the other and a Pedigree
model (P) can be obtained by removing the markers
effects in (5) and is described in Crossa et al. (2010).

Models MP-BL, M-BL, MP-BRR and M-BRR are
fully described in Pérez ef al. (2010) and implemented
in the R package BLR (de los Campos and Pérez 2010).
In this study, we implemented MP-BEN and M-BEN;
the model and the algorithm used to implement them
are fully described in Appendix. The software is
available upon request to the first author.

when p(f;

Detection of Chromosome Regions Associated with
Quantitative Traits

Genomic selection has traditionally focused on the
problem of predicting phenotypic values; however,
estimates of marker effects derived from models from
GS can also be used to detect regions significantly
associated with a quantitative trait. Wang et al. (2005)
and Che and Xu (2010) have shown how to use the
Bayesian shrinkage methods in QTL mapping. Che and
Xu (2010) suggested using a permutation test (Fisher
1935; Churchill and Doerge 1994) to detect significant
associations. The QTL mapping process consists of
identifying molecular markers or genomic loci that
influence the variation of complex traits (Yi and Xu
2008). Once the marker effects have been estimated, the
problem is how to decide which markers are in linkage
disequilibrium with QTLs; this is a model selection
problem that can be solved using Bayesian shrinkage
methods such as those previously shown.

Once the effects of the markers have been
estimated using the BRR, BL or BEN models, a
permutation “within Markov chains” (generated by
using Gibbs sampling) can be performed to decide
which markers have significant effects, each marker
is considered to be associated with a QTL (Wang et al.
2005). The significance of the effect of each marker can
be evaluated by using permutations. In this strategy, the

original vector with phenotypic values y = (y,, ..., y, )’

is permuted every Ath iteration within a Markov chain,
after all parameters are sampled (the residual variance
is preserved in the permuted sample). If the genotypes

do not match the phenotypes, the posterior means of
the regression coefficients are expected to be very close
to zero. In this strategy, only two chains are required,
one for the original data and the other for the permuted
sample. The reshuffled chain can be used to obtain the
empirical threshold for QTL effects, 0.5ax 100% and

(1-0.5)x 100%. Che and Xu (2010) suggested
permuting the sample at every iteration (4 = 1).

3. EXPERIMENTAL DATA

The various BRR, BL, and BEN models with
molecular markers and pedigree were evaluated using
data sets of two different crops: a barley data set
(Hordeum vulgare L.), two wheat data sets (7riticum
aestivum L.) (Wheatl and Wheat2 data sets) and a
simulated dataset. All models were fitted using
programs written in R (R Development Core Team
2010).

Barley Data Set

The barley data set is from the North American
Barley Genome Mapping Project that contains n = 145
doubled-haploid lines; each one was grown in 25
different environments. The trait analyzed was average
kernel weight. The 145 doubled-haploid individuals
were genotyped with 127 molecular markers coded as
0 (absence) or 1 (presence). This data set was
previously analyzed by Yi and Xu (2008).

Wheatl Data Set

The first wheat data set is from CIMMYT’s Global
Wheat Program and comprises 622 wheat lines
evaluated in rainfed regions of the world. The
phenotypic trait considered here was grain yield. Wheat
lines were genotyped using 1588 Diversity Array
Technology (DArT) markers generated by Triticarte Pty.
Ltd. (Canberra, Australia; http://www.triticarte.com.au).
The DArT markers may take on two values, denoted
by their presence (1) or absence (0).

A pedigree tracing back many generations was
available, and the browse application of the
International Crop Information System (ICIS), as
described in http://cropwiki.irri.org/icis/index.php/
TDM_GMS_Browse (McLaren et al. 2005), was used
for deriving the numerator relationship matrix (A)
among lines.
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Wheat2 Data Set

This data set contains a set of 599 wheat lines from
CIMMYT’s Global Wheat Program that were
genotyped for 1447 DArT and evaluated for grain yield
(GY) in four mega-environments (E1-E4). As in the
case of Wheatl, pedigree information on this data set
was available and used for deriving the matrix A
relationship among the 599 wheat lines. This data set
was also used by de los Campos et al. (2009), Crossa
et al. (2010) and Pérez et al. (2010) for evaluating the
predictive power of various models for GS.

Simulated Data Set

This data set was generated and used by Zhang and
Xu (2005) for estimating the epistatic effects of QTL.
The simulated dataset contains » = 600 individuals from
a backcross population. For this population, a single
large chromosome 1800 c¢cM long was simulated,
covered by 121 evenly spaced markers (coded as —1 and
1) with 15 ¢cM per marker interval. They simulated 9
QTLs with significant main effects at markers 1, 21,
31,51, 71,91, 101, 111 and 121.

4. DATA ANALYSIS

Prior Distributions

In the case of the Barley data set, only molecular
marker models were used because pedigree information
on the 145 barley lines was not available. The hyper-
parameters for the M-BRR and M-BL were set using
the guidelines given in Pérez et al. (2010). For the M-
RR,S; =0.076, dfg =3, df,=4, S,=1; for the BL,

A2 is assigned a Gamma prior with rate §=0.02 and
shape r = 1.1, independent Scaled Inverse Chi-squared
priors were assigned to the variance parameters, and the
scale and degree of freedom parameters were set to

S, =1 and df, =4 respectively. In the case of the M-
BEN, we used gamma priors for A?and A,, the
suggested prior given in Kyung ef al. (2010), and we
set n =r, =1;0, =0, =10. The hyper-parameters for
M-BRR and MP-BRR
Sp=0.0085,dfg=3; df,=df, =4, S,=S,=1 for
Wheatl; for MP-BL, A? was assigned a Gamma prior

were set as

with rate (d) and shape (r), with §=1x10* and

r = 0.6; independent Scaled Inverse Chi-squared priors
were assigned to the variance parameters, and the scale
and degree of freedom parameters were set to

S, =S, =1and df, =df, =4, respectively. In the case
of the Wheat2 data set, the hyper-parameters for MP-

BL and M-BL are given in Crossa et al. (2010), whereas
for the BRR models, the priors are given in Pérez et

al. (2010). The priors for 4> and 4, in both wheat data

sets were chosen as they were in the Barley data set.
Finally, in the case of the simulated data set, the hyper-
parameters for M-BRR and M-BL were fixed using the
same procedure as was used for the other data sets.

Some general guidelines for selecting the hyper
parameters for BL, BRR can be found in Pérez et al.
(2010), and also in de los Campos et al. (2009). In the
case of the BEN the reader can review Kyung et al.
(2010).

Full-data Analysis for Permutation Test

Models were fitted using all available lines for
each data set in order to estimate marker effects and
variance components. The inferences were based on
30,000 samples obtained after discarding the first 5,000
samples that were taken as burn-in. The hyper-
parameters were previously described. The convergence
was checked by inspecting trace plots of variance
components.

A permutation test for QTL detection was applied
to obtain an empirical threshold and detect markers
associated with QTLs using the BL, BRR and BEN
models. A total of 10,000 permutation samples were
generated and analyzed using the same parameters as
in the original data. The inferences for each fit were
based on 5,000 samples (obtained after discarding 5,000
samples as burn-in).

Cross-validation (CV) for Prediction

In CV, data are randomly divided into disjoint
groups (10 in our case). Each of these sets can then be
used to measure predictability. For example, using the
first set, the data can be divided so that the training set
contains all the observations in {S,, ..., S} and the
testing set, those in S,. Subsequently, models are fitted
using the training data {S,, ..., S|} to obtain predictions

for observations in S|, that is, {J, :i€ S;}. Repeating
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Table 1: Estimates of the posterior means of parameters and (for M-BL and MP-BL) from the full data analysis

of Barley, Wheatl and Wheat2 data sets using various Bayesian shrinkage regression methods.

Data set Model* Parameter
" oy o} A e
Barley M-BL 0.2741 — — 5.2708 —
M-BEN 0.2289 — — 1.8393 3.645
M-BRR 0.2722 — 0.0240 — —
Wi P 0.4079 0.8614 — — —
M-BL 0.6246 — — 28.7653 —
M-BEN 0.3974 — — 6.2742 42.207
M-BRR 0.5905 — 0.0021 — —
MP-BL 0.3645 0.7077 — 39.0055 —
MP-BEN 0.2108 0.7271 — 6.2455 41.706
MP-BRR 0.3188 0.6365 0.0017 — —
W2-El P 0.5620 0.2860 — — —
M-BL 0.5536 — — 20.1885 —
M-BEN 0.4067 — — 5.6382 34.11
M-BRR 0.5346 — 0.0031 — —
MP-BL 0.4261 0.1421 — 20.0336 —
MP-BEN 0.3023 0.1519 — 5.6261 33.882
MP-BRR 0.4263 0.1343 0.0024 — —
W2-E2 P 0.5810 0.2480 — — —
M-BL 0.5742 — — 21.9920 —
M-BEN 0.4097 — — 5.6478 34.282
M-BRR 0.5627 — 0.0026 — —
MP-BL 0.4838 0.1197 — 23.3686 —
MP-BEN 0.3292 0.1228 — 5.6383 34.099
MP-BRR 0.4735 0.1063 0.0023 — —
W2-E3 P 0.4920 0.3420 — — —
M-BL 0.6711 — — 27.8291 —
M-BEN 0.4434 — — 5.6544 34.385
M-BRR 0.6492 — 0.0021 — —
MP-BL 0.4618 0.2344 — 31.8244 —
MP-BEN 0.2843 0.2419 — 5.6383 34.104
MP-BRR 0.4581 0.2090 0.0014 — —
W2-E4 P 0.5170 0.3000 — — —
M-BL 0.6122 — — 24.9169 —
M-BEN 0.4186 — — 5.6501 34.334
M-BRR 0.5841 — 0.0025 — —
MP-BL 0.4527 0.1809 — 26.1275 —
MP-BEN 0.2972 0.1875 — 5.6391 34.131
MP-BRR 0.4553 0.1613 0.0017 — —
Simulated | M-BL 0.5012 — — 14.3918 —
M-BEN 0.4517 — — 2.2101 5.556
M-BRR 0.5369 — 0.1356 — —

*The seven fitted models are: Pedigree model (P), molecular marker regression model using Bayesian LASSO (M-BL); pedigree model
plus molecular marker model regression using Bayesian LASSO (MP-BL); Bayesian elastic net model with molecular markers (M-BEN);
Bayesian elastic net model with molecular markers and pedigree (MP-BEN); Bayesian ridge regression with molecular markers (M-BRR)
and Bayesian ridge regression with molecular markers and pedigree (MP-BRR).

**Phenotypes were standardized for each data set.
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this exercise for the 2nd, 3rd, ..., 10th sets yields a

whole set of CV predictions, {3y}, that can be

=1»
compared with actual observations, {3,}",, to assess
predictive power. The 10-fold CV scheme was used in
all the models to predict the genetic value of the missing
genotypes.

S. RESULTS

This section presents the results of the estimates
of posterior means of variance components, the
regularization parameters for the full models, QTL
mapping for the Barley and wheat data sets using the
permutation test, and the findings on the predictability
of the various models using the cross-validation
scheme.

Variance Components
Parameters

and Regularization

Table 1 shows the estimates of the posterior means
of 02,02 ,0'% and regularization parameters A,, 4,.
Since the phenotypes were standardized for each data
set, 0',92 gives an indication of the goodness-of-fit of
each model. In the Barley data set, the M-BEN model

best fits the data. In Wheatl, the P model fits the data
better than M-BL and M-BRR. In Wheat2, marker-
based models gave a better fit. It can be observed that
the M-BEN models and the MP-BEN models had good
fits. The estimated mean of the variance parameter o2
for MP-BL, MP-BEN and MP-BRR is smaller than that
obtained with the P models, indicating that the inclusion
of markers reduces the contribution of the pedigree
regression (Crossa et al. 2010).

QTL mapping

Table 2 shows the significant markers detected by
the different Bayesian shrinkage methods. The
empirical threshold was selected by setting ¢ =0.05
using the permutation test described in Che and Xu
(2010). It can be seen that more markers are detected
with the M-BL model than with the other two models;
the BEN model gave rise to the same significant
markers (4) as those found by the M-BRR model; they
are located on chromosomes 1, 3, and 7. Tinker et al.
(1996) detected significant markers using an
approximated likelihood ratio test described in Haley
and Knott (1992), with the significant thresholds
selected using the permutation test given in Churchill

Table 2. Significant markers obtained with the permutation test using three Bayesian shrinkage methods: M-BL, M-BRR
and M-BEN in Barley, Wheatl (W1), Wheat2 (W2-E1, W2-E2, W2-E3, W2-E4), and simulated data sets. Chromosome
numbers are indicated in parentheses for the Barley data set.

Bayesian shrinkage regression models
Data M-BRR M-BL M-BEN
Barley 12(1), 43(3), 12(1), 13(1), 32(2), 37(2), 43(3), 101(7), 102(7) 12(1), 43(3),
101(7), 102(7) 101(7), 102(7)
Wl — wPt.1387, wPt.5128, wPt.6780, wPt.6900, wPt.2623 wpt.1387, wPt.5128,
wPt.6900
W2-El — wpt.3462, wPt.3697, wPt.6047, wPt.4835, wPt.3922, wPt.9256, wPt.9256
wPt.3393, wPt.9422, ¢.344809, c.346134, ¢.379821
W2-E2 wPt.4706 wpt.3533, wPt.7024, wPt.6967, wPt.5506, wPt.1403, wPt.4706, wPt.4706
c.343777, ¢.381717
W2-E3 — Wpt.1272, wPt.3533, wPt.2644, wPt.9930, wPt.1708, wPt.9814, | wpt.4706
¢.345897, ¢.377964, c.378173
W2-E4 wPt.2644 wpt.2644, wPt.5590, wPt.2755, wPt.9277, - wPt.7299, wPt.1826, | wPt.2644
wPt.9401, wPt.0194, c.348464, ¢.349495, ¢.373205, c.37808,
c.378212, ¢.378288, ¢.379495, ¢.37969
Simulated | 1,9, 21,29, 31, | 1, 21, 31, 71, 101, 121 1,21, 31
65, 101, 121
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and Doerge (1994). Tinker et al. (1996) found 6 major
QTLs for kernel weight, 2 located on chromosome 1,
2 on chromosome 4, and 2 on chromosome 7 (See Fig.
2 in Tinker et al. 1996).

Fig. 2 shows the estimated marker effects for the
Barley data set and 95% confidence intervals obtained
using permutations. Those markers whose estimated
effect is not included in the interval were declared
significant. The confidence intervals obtained using
permutations in the case of M-BRR and M-BEN are
clearly wider than those obtained with M-BL.

In the case of Wheatl and Wheat2, many of the
detected markers were previously reported (see, for
example, Quarrie et al. 2005; Crossa et al. 2007, 2010;

Huang et al. 2003; Kumar et al. 2007). For example,
marker wpt.9256 was found to be significant by the M-
BL and M-BEN models in W2-E1; marker wPt.4706
was detected to be significant by the three models (M-
BRR, M-BL, and M-BEN) in W2-E2 but was only
found to be significant by model M-BEN in W2-E3;
and marker wPt. 2644 was found to be significant by
the three models in W2-E4.

For the simulated data, with o =0.05, eight
markers were declared significant with M-BRR, but
three of them were false positives (markers 9, 29, and
65); six markers were detected to be significant with
M-BL (1, 21, 31, 71,101,121) and three with M-BEN
(1, 31, 21) (Table 2).
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Fig. 2. Significant markers of the Barley data set using different Bayesian shrinkage models:
(a) M-BRR; (b) M-BL (§ = 0.02, » = 1.1); (¢) M-BEN (r, =, = 1; §, = §, = 10).
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Predictability The three models MP-BRR, MP-BL, and MP-BEN
gave a very similar level of prediction accuracy for both
wheat data sets. For Wheat1 data set (W1), the P model
performed very well, and only two models were slightly
better predictors; the best model was MP-BEN
(0.4746), closely followed by MP-BL (0.4725) with
gains over the P model of 0.85% and 0.40%,
respectively. For Wheat2 (W2) data set with four
environments, MP-BRR gave the best correlations in
E1 (0.5181), E2 (0.4799) and E4 (0.4926), whereas
model MP-BL showed the best predictive accuracy in
E3 (0.4347). Model MP-BEN gave a similar level of
prediction accuracy as those given by the other
Bayesian shrinkage models (BL and BRR).

Table 3 shows the estimated correlations between
phenotypic outcomes and cross-validation (CV)
predictions for grain yield data in both wheat data sets.
The pedigree model (P) was included as a reference,
and the details can be found in Crossa ef al. (2010). In
general for both data sets, all models including pedigree
and molecular markers simultaneously (MP) gave better
correlations between the predicted and the observed
values than their corresponding models, which included
only molecular marker data (M) or only pedigree
information (P).

Table 3. Predictability measured as the correlation between predicted and actual phenotypes, obtained in a 10-fold cross-
validation, from data analysis of Barley, grain yield of Wheatl (W1) and Wheat2 (W2) data sets. Seven models* were fitted
to each environment (Barley, W1 and W2E1-W2E4 for the Wheatl and Wheat2 data sets, respectively). The percent (%)
change is relative to the reference pedigree model (P) model.

Data Model

P M-BL M-BRR M-BEN MP-BL MP-BRR MP-BEN

Correlation

Barley — 0.7435 0.7227 0.7264 — — —
Wl 0.4706 0.3980 0.3942 0.3941 0.4725 0.4676 0.4746
W2-El 0.4136 0.4943 0.4974 0.4963 0.5163 0.5181 0.5124
W2-E2 0.4049 0.4637 0.4708 0.4635 0.4720 0.4799 0.4730
W2-E3 0.4057 0.3756 0.3781 0.3555 0.4347 0.4342 0.4117
W2-E4 0.4326 0.4589 0.4648 0.4581 0.4894 0.4926 0.4901
Simulated — 0.6441 0.5996 0.6133 — — —

% change (relative to P)

Barley — — — — — — —
Wi — —15.43 -16.24 -16.25 0.40 —0.65 0.85
W2-El — 19.52 20.28 20.00 24.84 25.28 23.89
W2-E2 — 14.51 16.27 14.46 16.57 18.52 16.82
W2-E3 — -7.41 -6.79 -12.36 7.14 7.02 1.48
W2-E4 — 6.08 7.43 5.89 13.12 13.87 13.29
Simulated — — — — — — —

*The seven fitted models are: Pedigree model (P), molecular marker regression model using Bayesian LASSO (M-BL); pedigree
model plus molecular marker model regression using Bayesian LASSO (MP-BL); Bayesian elastic net model with molecular
markers (M-BEN); Bayesian elastic net model with molecular markers and pedigree (MP-BEN); Bayesian ridge regression
with molecular markers (M-BRR) and Bayesian ridge regression with molecular markers and pedigree (MP-BRR).
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6. DISCUSSION

We extended the BEN model using molecular
markers for GS in combination with pedigree
information on the wheat lines included in two wheat
trials. We applied the methodology developed by Che
and Xu (2010) to use the Bayesian shrinkage models
(BL, BRR and BEN) in QTL detection. Results
obtained with the Barley data set and the two wheat
data sets suggest that the M-BEN and M-BL models are
sensitive and flexible tools for detecting significant
chromosome regions. The results of this study showed
that BEN had similar prediction ability than BL and
BRR however it is necessary to design and study large
scale simulation experiments to study the power and
specificity of these models. The results also show that
BEN models with molecular markers and pedigree
increase the precision for estimating the breeding values
of missing genotypes. Theoretically the BEN model
should be preferred over the BL and BRR because it
has the good properties of BL and BRR. Furthermore,
the Elastic Net tends to encourage grouping effects
(Zou and Hastie 2005), that is a situation commonly
encountered in the case of molecular markers data. For
the two wheat data sets, BEN’s prediction assessment
was almost equal to or better than that of BL and BRR.
It has been also reported that the BEN model performs
better than BL in problems of variable selection (Li and
Lin 2010), which from the biological perspective is
related with the QTL detection.

Two theoretical sources of GS accuracy have been
reported, one originating from capturing the genetic
relationships among individuals (the RR model could
benefit from this source of variability) and the other due
to the linkage disequilibrium (LD) between the
molecular markers and the quantitative trait loci (QTL)
(the Bayesian methods could benefit from this source)
(Habier et al. 2007; Jannink et al. 2010). Results of this
study using two wheat data sets with pedigree and MM
showed that all three kinds of Bayesian shrinkage
models, BL, BRR, and BEN, did benefit from using the
pedigree alone as well as pedigree and MM information
simultaneously; in fact, models BL and BEN effectively
increase the accuracy of GS when using molecular
markers alone, or pedigree and molecular markers
simultaneously.
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Appendix: Gibbs Sampler for the MP-BEN Model

From equations (4) and (5), and applying Bayes’
theorem, the joint posterior distribution of

{B,7%,u,0%,02,A%,4,} is given by

pB.72w,02,02, 4., 4y)

n
ZHN(yi|XzTB+ui’O-§)
i=1

p
x [INB[0.02 @7 + 2™ Exp(z}|4)
j=1

x x 207 |S, . df ) (0} |S, . df)

XN (ul0,07A)xp(4)p(4,)

The conditional posterior distributions required to
implement a Gibbs sampler are given below and are
obtained using the results of Kyung et al. (2010).

I. p(B| else)

(A1)

p(ﬁ|else) o< szlN(yi |X1T B+ ui’o-g)
x H;N(ﬂj 10,02(z7% + )™

1
o< exp{ —F[(y -Xp-w)’

£

“(y-XB-w)+B'D; B} (A2)
where D} =diag((z;> + A) ™", ... (7,7 +2)7)).

From (A2), the full conditional for B is multivariate

normal with mean Z~'X’(y — u) and variance 527!,

where Z = XTX + D’!. Note that it is not necessary

to obtain Z~! to draw samples from P, since we can
apply results found in Sorensen and Gianola (2002) and
sampled from ﬁj.|else,j =1, ..,p.

2. p(t?else) (see Kyung et al. 2010, p. 404)

3. p(o?|else)

n
p(alelse) o< [Ny |x! B +u;,02)
i=1

P
<[INB;[0.02 772 + 1) )22 (02 S, .df,)
j=1

=20} |S =S, +e'e+p" D, 'B.df =df, +n),

where e=y - Xp—u.
4. p(u | else)

p(u | else)o< MN(u

0,02 T0 N X! B+,,02)

o MN(u)0,62A) [ [, Ny |u;.02) (A3)

where y =y, —x!B. From Eq. A3, it follows that the
posterior density of u is multivariate normal with co-
oXC! Cly’, where

variance and mean

(o}

u

o2
C= {I +_§A - Using results shown in Sorensen and

Gianola (2002), it follows that each of the entries of u
has a fully conditional distribution with mean

E(ui|else)=c;1(rhsi—Zk#cikuk) and variance

Var(u, | else) = c;;!

i 2

where cl-;l and rhs; are the i-th
diagonal element and the i-th entry of C and rhs =
oly”. Thus it is not necessary to invert the C matrix

to draw samples from u.
5. p(o? | else)

p(o?else) < MN((u|0,02A) x2(S,.df,)  (A4)

From Eq. A4, it follows that the fully conditional
distribution of &2 is y2 with scaling parameter

S, +uA~'u and degrees of freedom df, + r, where r
is the order of the square matrix A.
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6. p(A? | else), p(A, | else) (see Kyung et al. 2010).

The algorithm described above was implemented
in R (R Development Core Team, 2010) and to some
parts were coded in C language to speed up the entire
process, so the resulting algorithm almost as fast as the
one used in the BLR package (de los Campos and

Pérez, 2010), for example for the wheat dataset with
599 individuals and 1279 markers, in an Intel Xeon
5530 2.4 GHz and 8 Gb of RAM memory, Bayesian
Ridge regression took about 5.5 seconds for 1000
iterations, BL 12 seconds for 1000 iterations and BEN
about the same that BL, 13 seconds for 1000 iterations.



