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SUMMARY

It is known that in many of the large scale surveys, it is inevitable to adopt stratification for the purpose of preparing a
frame from which the sample can be extracted. Cochran (1977) suggested a regression estimate in stratified sampling which
he called a combined regression estimate. In the present study, situations will be considered where partial information about
the mean of the auxiliary variable is available. In order to utilize the partial information, double sampling is used and a preliminary
test is done to construct the combined regression preliminary test estimator. The bias, mean square error and relative efficiency
are obtained for the suggested estimator. Apart from analytical results, these are also obtained by numerical techniques. The
comparative study shows that the bias and mean square error function obtained by numerical methods depict similar pattern
with that obtained by analytical methods. In order to judge the performance of the suggested estimator, besides analytical results,
empirical work is also carried out with the help of both real life data as well as simulated data. Recommendation of the levels

of the preliminary test and optimum allocation of sample sizes are given.

Keywords: Double sampling, Preliminary test estimator, Regression estimator.

1. INTRODUCTION

It is a well known fact that for estimating the
population mean M, of a random variable Y, precision
of the estimator can be increased when information on
an auxiliary variable X, highly correlated with Y is
readily available on all the units of the population.
When the relationship between Y and X is found to be
approximately linear but does not pass through the
origin, linear regression estimate may be used, which
is given by (Cochran 1977) as

n=y+b,-x)
where b is an estimate of the change in y when x is

increased by unity, y and X are the sample means of

the variables ¥ and X respectively and u_ is the
population mean of X.
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2.DOUBLE SAMPLING WITH PARTIAL
INFORMATION ON AUXILIARY VARIABLES

To use the linear regression estimator ¢, it is
usually assumed that population mean u_ is known.
However, in certain practical situation, u_is not known
a prior, in which case the technique of double sampling
is applied. Under double sampling the regression
estimate 7, becomes

t2 = yn +b(fn’ _fn)
where X,/ is the mean of X in the preliminary sample

of size n” and (y,,, X,,) are the means of ¥ and X from
the sub sample of size n (< n’) and b is the least square
regression coefficient of ¥ on X which can be computed
from the sub sample.
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Han (1973) described that the precision of an
estimator can be improved if auxiliary variables are
used in a regression estimator based on double sampling
with partial information on auxiliary variable.
Sometimes there are situations where we have partial
information about the mean _ of the auxiliary variable
X. In order to utilize the partial information, Han (1973)
suggested the use of a preliminary test whereby he
constructed a preliminary test estimator using double
sampling with partial information on the auxiliary
variable as follows

<Z,/Nn'
> Zy /N1

where Z_ is the 100 (1 — a/2)% point of N(0, 1) and o
is the level of significance of the preliminary test. The
correlation coefficient p of the pair (X, ) is assumed
to be known.

(S it |5
3, +pGy X)) if [y

Sisodia and Srivastava (1982), Das and Bez
(1995), Kibria (1996), Das (2003) and others proposed
some modified regression estimator with a preliminary
test in double sampling, alternative to the usual
regression estimator for the population mean.

The present work is aimed to proceed in
accordance to further enhance the work done by Han
(1973) and Das (1995) and several other authors to find
an appropriate estimator through the use of preliminary
test estimation and double sampling procedures.

It is known that stratified sampling consists of
classifying the population units in a certain number of
groups called strata and selecting samples
independently from each group. The division of
population into strata can be done in such a way that
the values of the study variable are homogeneous within
each stratum, in that the measurement varies little from
one unit to another. A precise estimate of any stratum
mean can be obtained from a small sample in that
stratum. These estimates with best choices of sample
sizes can be combined into a precise estimate for the
whole population. When appropriately used, the
variance of the estimated mean of the study variable ¥
under stratification is usually less than that of the
variance under simple random sampling (Cochran
1977).

Cochran (1977) suggested a regression estimate in
stratified sampling which he called a combined
regression estimator and is given by

Yire = Yy +b(U, — X, ), where

Vg = thyh’ fstZE:thh
h h

where (3, %,) are the strata means of the A" stratum
and h=1,2 ... L.

In this estimate the whole population is stratified
into different classes and samples are selected from
each stratum by simple random sampling and the strata
means are combined and used in a regression equation
to obtain the desired mean. Here b is the estimate of
combined regression coefficient and W), is the stratum
weight.

3. THE COMBINED REGRESSION
PRELIMINARY TEST ESTIMATOR (CRPTE)
IN DOUBLE SAMPLING

The combined linear regression estimator given by
Yire» can be utilized under three situations. Firstly when

the population mean i, is known, as a consequence of
which the study reduces to usual combined regression
method of estimation. Secondly in certain practical
situations W_is not known a prior, in which case the
technique of double sampling can be applied wherein
a preliminary sample is obtained to estimate u_and the
estimator of W, is given by

fg = Vo +0(%y = Xy)

Here x7 is the value of the mean of X obtained

from the preliminary sample and is utilized to estimate
u,. Thirdly when p_is partially known, then a
preliminary test estimator using double sampling
procedure can be used.

In the present study, the third case will be
considered where partial information about the mean
of the auxiliary variable will be used. The first sample
is a stratified simple random sample of size # in which
the pair (x,,, y,,) values are measured from 7, units
drawn from each stratum and consequently estimating
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of the pair (X, y,), with n=2nh. The second
h

sample is a larger simple random sample of size
n’(= n + m) obtained by supplementing m more
independent observations on X where only x, is
measured and evaluates X which is utilized to estimate

U,. In order to utilize the partial information, a
preliminary test is done about the hypothesis

Hy:w, =W, against H : u # W,

where w is the value obtained from the partial
information.

If the null hypothesis H,, is accepted, then p, is
used to replace W in the regression estimator y;,. and

if H, is rejected then the sample mean X, based on the
preliminary sample is used.

We assume that the auxiliary variable X and the
study variable Y are jointly normally distributed with
parameters given by (U,, Wy, Gi,ci, p). The marginal

distributions which is the distribution of the study
variable Y and the auxiliary variable X will also follow

normal distribution given as Y ~ N(uy, (5?}) and
X ~ N(i,, 63). The strata population (X,, ¥,) being

carved out from the parent population are also jointly
assumed to follow the bivariate normal distribution with

parameters written as (K, , Wy cﬁh, 0§h, p). Also
since the relationship between the pair (X, ¥) is always
maintained even within the stratum the strata
correlations are assumed to be equal to the population
correlation coefficient p. The regression estimator
depends on whether the covariance matrix is known or
not. If known, one may let G)ZC = (5?, =1 without loss of
generality.

Since the population is assumed to follow normal
distribution, the preliminary sample utilized to collect
information on the auxiliary variable for the estimation

of X, also assumed to follow normal distribution and
therefore X,y ~ N (MX,GJZC /n’) and under the assumption
o} = 0§ =1, we get X ~ N(u,,1/n). Further marginal
distributions of X, and Y, are also normal given as
X), ~N(u, .05 ) and ¥, ~ N(u, , o).

For each stratum, the pair of variables (X, ¥,) for
every h, follows a bivariate normal distribution with

mean (U, > Uy, ) and covariance matrix given by

2 _ 6?2% pGXh Gyh
h
pth G)’h Gih

The regression estimator depends on whether X,
is known or not. If X, is known, one may let

oih = oih =1, (without loss of generality).

Also, the stratum means are given by

& 7y
Xp= ) X lmy and 3, =Y v lm,
i-1 i=1

and are linear combinations of normally distributed
random variables (X, Y,).

Hence it can be easily observed that X, and Yy,

also follow normal distribution with mean and
variances given by

N, ~ N, .oy /m) and 3, ~N(, oy /)

ie. Eh ~N(Mxh’1/nh) and yh ~N(Myh7l/nh)

The joint distribution of (,, y,) is bivariate
normal with mean as (uxh S My,) and covariance matrix
of the sample means is given by

oy, I,

P00y Ity | (1/n, pln,
c = =
po,, Oy, /my cih /my,

p/nh l/nh

Now when m_ is partially known, one can let
U, = 0 without loss of generality), so that the hypothesis
can be accepted, when
<Zy = |%/|<zy/0
Under the above assumptions the CRPTE in

double sampling having partial information on the
auxiliary variable X can be written as

(% —1p)/ SE(%y)

< Zg INW
>Za/\/7

where, b = p(Gy /o,) = p under the above assumptions.

O =P it e
57 _ _ _ . _
O +PEy —%,))  if [xy
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4. BIAS OF THE CRPTE IN DOUBLE
SAMPLING

To evaluate the bias of 7, we considered that the
joint distribution of (X, x;, y,,) which is a

multivariate normal with mean (u_, u,, uy) and
covariance matrix given by

Var(x,) Cov(x,, x;) Cov(xy, yg)
>=| CovTyo x) - Var(Ey)  CovE ) | g
Cov(Ty %) Cov(y, %) Vary)

The derivation of the bias of the estimator 7
involves conditional expectations, the condition being
the acceptance or rejection of the hypothesis considered
in the preliminary test. Further the expectations can be
obtained from the integrals involving probability
density functions which are assumed to be normal.

When the samples are selected with proportional
allocation then the stratum weight is given by

W, = (N,/N)= (n,/n)
Thus,

S w2 im, =Y W InW, =1/n) Y Wy, =1/n) (as Sw, =1j
h h h h

Therefore the above covariance matrix in (1)

reduces to
1/n" 1Un" pln’

22 I/n” 1/n pln
p/n" pln 1/n

The Bias of an estimator is defined as

Bias(ts) = E(f;) — I,

where E(-) is the expectation

<Zy N}
>Za/\/?}—uy

Bias(is) = E{(3y, —p%,)... if [%;

E{(3y, + 0y =Xy ) if [y
= Bias(ts) = Y Wyl =P Wyl

>Za/\/7}—uy

+E{p)_cnf/

fn,
It is given that

D Wik, =Ky and Y Wyl =My

(Cochran 1977), Thus

Bias(ts) = —pit, +pE{%, /|%/| > Z, /\n" }

After evaluating the integrals, we get

Bias(ts) = —pu {D(4) - D(B)}
+p(1/vn") {p(A) - o(B)} (2)

where ®(-) is the cumulative distribution function of
N(0, 1) and ¢@(-)is its density function and

A=Za—\/7 u., B= _Zoc_‘/? My

When the bias of the proposed estimator is
computed for different values of the mean of the
auxiliary variables W , it is noticed that the behavior of
the bias is symmetrical about p = 0. Thus it suffices
to analyze the behavior of the bias for u_ > 0. The
values of Bias(/;) can be easily computed for different
values of .. In order to get an idea about the behavior
of the bias function with respect to u,, Bias(z) is
computed for a set of values of n, #’, o and p which
are represented in Fig. 1. It is found in general that
Bias(#;) has minimum value zero at u, = 0. As u_
increases, the Bias(#;) increases to a maximum and then
decreases to zero. Fig. 1 clearly shows that when the
mean of the auxiliary variable is close to the
hypothetical value, then bias is very close to 0. Also as
u, moves away from the hypothetical value the bias
increases, but after attaining maximum again reduces
to zero. This establishes the utility of the present study
that the utilization of partial information and
preliminary test of the auxiliary variable reduces the
bias of the proposed estimator.

0.07
0.06
a=0.01
0.05 -

0.04 =0.05

Bias

0.03
0.02 4 a=N25
0.01 4

0

0.2 0.4 0.6 0.8 1 1.2

-0.01-
Mean of X

Fig. 1. Comparative behaviour of the Bias(z;) with respect to
u, for different values of o and for p = 0.8, n = 100,
n’ =200,  analytical, ------ numerical .
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It is also observed from eqn(2) that when the
parameter o and p are fixed, then the bias is inversely
proportional to the square root of the size of the
preliminary sample 7. It can be concluded that with the
increase in the sample size, the bias decreases.
However, the bias is not affected by #, the size of the
stratified random sample.

The above analytical method used for computing
the bias the proposed estimator involves the evaluation
of mathematical expectation of the random variables
and consequently results in the computation of
integrals. However, sometimes computation of integrals
analytically may become cumbersome. Therefore an
alternative method for the evaluation of the bias is also
sought with the help of numerical techniques. In the
present study, attempt is made to evaluate the bias of
the constructed estimator z; using numerical integration
with programmed written in Fortran 77. When the
results obtained numerically and that by analytical
methods are compared, it is found (Fig. 1) that the bias
function shows a similar pattern. Also, we may observe,
that the difference decreases with decrease in o, and
when o = 0.01, the bias obtained analytically and
numerically coincide.

5. MEAN SQUARE ERROR (MSE) OF THE
CRPTE IN DOUBLE SAMPLING

The derivation of MSE involves conditional
expectations, the condition being the acceptance or
rejection of the hypothesis considered in the
preliminary test. Further the expectations can be
obtained from the integrals involving probability
density functions which are assumed to be normal.

To obtain MSE of #,, we notice that
MSE(z,) = var(t,) + {Bias(z,)}*
= E(5)-{E(5)f +{Bias()f  (3)
Now,

< Zy INn")

VAINCD)

< Zy I\In'}
VANCE

E(2) = E@ if |xy

+E@3 if [xy

= {E(Vy —px, ) if |y

HE{Vy, +p(Xy + %)) if [%y

E(2) = E(32)~20E (%, Yy ) + 0°E(E2)
> Zo, NN}

The expectations on the right hand side involve
computations of integrals of the bivariate normal
probability density function. Moment generating
function and differentiating under an integral sign is
being utilized to simplify the above computations,
hence

+E{(0°Xy — 207 %%y, + 20T V) if [ Xy

E@2) = (=p>)/n+13 +p> /0’ = (2ppt, —p 1
(2 1)} (D(A) ~ D(B)} +{(2pp, /)

(@A) = @(B) + (p* /) AQ(A) - Bo(B) ~ (4)

Therefore, substituting (2) and (4) in (3), we get

MSE(t) = g, + h,,
where g, = {(1 - p?)/n + p*/n’}
and  hy = (p*/n’) {A9(4) - Bo(B)}
= p(I/n" = p2) {OA) - D(B)}

The values of MSE(;) can be easily computed for
different values of .. In order to get an idea about the
behavior of the mean square error function with respect
to ., MSE(z,) is computed for a set of values of n, 7,
oo and p which are represented in Fig. 2. The figure
shows that as . is increases, the MSE(Z,) increases to
a maximum and then decreases to a minimum and
thereafter remains constant. The figure clearly shows

that when the mean of the auxiliary variable is close to
the hypothetical value, then the MSE(%;) is minimum.

0.030
0.025 4
0.020

0.015

Bias

0.010 4

0 0'.2 O.'4 0'.6 O'.8 ; 1.'2
Mean of X
Fig. 2. Comparative behaviour of the MSE(#;) with respect to u,

for different values of acand for p = 0.8, n =100, n” = 200,
_ analytical , -------- numerical.
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Also as i, moves away from the hypothetical value the
MSE(#,) increases, but after attaining maximum again
reduces to a constant. This establishes the utility of the
present study that the utilization of partial information
and preliminary test of the auxiliary variable reduces
the MSE(¢;) of the proposed estimator.

It is seen that the analytical method of determining
the MSE(s;) involves evaluating the mathematical

expectations of the random variables like E(x,),

E(x2), E(x; X,) and E(X; X,). The derivation of
these expectation is done using moment generating
function and this involves the application of single and
double integration techniques. In the process of
evaluation which involves bivariate frequency
distributions, a tedious substitution of variables is
necessary to simplify the integrals. The above
expectation is finally obtained by differentiating under
the integral sign. As a consequence of the complexity
involved in analytical deductions and the availability
of numerical techniques, the MSE(%,) is evaluated using
the numerical methods. In the numerical methods, the
use of moment generating function and the substitutions
involved can be avoided. The results of MSE(z;)
obtained numerically shows (Fig. 2) the similar pattern
with that of the one derived by analytical methods for
increasing values of the mean p_of the auxiliary
variable. The differences in the values of MSE between
analytical and numerical methods of computations are
minimal.

6. RELATIVE EFFICIENCY

The study of the mean square error of an estimator
will not be complete unless it is compared with other
estimator(s). Without the use of real life data, relative
efficiency of an estimator can be obtained analytically
as the ratio of the variance or mean square error of one
estimator to that of the mean square error of the
proposed estimator. If the relative efficiency is greater
than 1, it can be concluded that the proposed estimator
is more efficient in comparison to the other estimator.

In the present study, the mean square error of the
proposed estimator is compared with other estimator 7,
and conclusion is drawn through the relative efficiency.
Under similar assumptions, derivation gives

MSE(z,) = (1/n)(1 — p?) + (1/n")p?

Therefore the relative efficiency of z; to 7, is given
by
e(ct, 1,) = [MSE(1,)/[MSE(t,)]

In order to get an idea about the behavior of the
relative efficiency function with respect to ., e(a, W)
is computed for a set of values of n, #’, o and p. Fig. 3
shows that, in general that e(c, u,) has a maximum at
u, = 0. This establishes the utility of the present study
that the utilization of partial information and
preliminary test increases the efficiency of the
estimator. Further Fig. 3 shows that as p_ increases
e(a, u,) decreases to a minimum and then increases
to unity. It is found that e(al, p) is very close to 1 at
u, = 1. Also, even though subjective, Fig. 3 can help
to choose o values depending on W, so as to minimize
the loss.

Relative efficiency

0 0.2 0.4 0.6 0.8 1 1.2
Mean of X

Fig. 3. Comparative behaviour of the relative efficiency of z; with
respect to ¢, against W _for different values of o and for
p=0.8,n=100, n =200.  analytical, --------
numerical.

7. OPTIMUM ALLOCATION

In planning of a sample survey, a stage is always
reached at which an important decision must be made
about the size of the sample. Too large a sample implies
a waste of resources, and too small a sample diminishes
the precision of the estimators. Thus an optimum size
of the sample is required so as to balance precision and
cost involved in the survey. The optimum allocation of
sample sizes are attained either by minimizing precision
against a given cost or minimizing cost against given
precision. In obtaining optimum allocation of sample
sizes for the proposed estimator, we consider a simple
linear cost function C given by

C=cn+cn
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where c is the cost per unit of observing the variable y
and ¢’ is the cost per unit of observing the variable X,
assuming that the cost per unit is the same for all strata.

In general the values of p are unknown, the
experimenter has partial information about it. When
u, = 0, the mean square error of / is least and the
relative efficiency is largest. Thus it would be
reasonable to let = 0 in the MSE(z) and obtain the
values of n and »n” under the optimum situation of
minimizing precision against a given cost.

For a specific cost C*, routine mathematical
derivation by the use of Lagrange’s multipliers method
gives

M (15) =[NKc +K’ Trc

In a similar way the optimum allocation for the
estimator 7, is given by

My (1) = (N Ke +NK"¢")1C
where K=1-p?, K'=p? {o.+2Z 0(Z,)} and K" = p?

Analytically it can be seen that (a0 +2Z_ ¢(Z,)) is
a decreasing function of Z  with a maximum equal to
unity at Z, = 0. Therefore we can conclude that M Opl‘(ts)
<MSE, pt(t4) with equality holding for Z = 0 in which
case the two estimators coincide.

8. EMPIRICAL STUDIES AND CONCLUSION

In the present study, attempt is also made to study
the performance of the proposed estimator through
empirical data. Here, two sets of data were used : one
a real life data and another, a simulated data. Real life
data were extracted from Rapid household survey —
Reproductive and Child health (RHS-RCH project,
phase 1, 1998). The data provides district wise
percentages of the demographic indicators for the
Empowered Action Groups (EAG) states. From the data
two distinct characteristics of the population were
identified, namely complete child immunization (¥) and
female literacy rate (X). The data, on the selected
variables can be homogeneous within each state and
heterogeneous between states. The variables X and ¥V
being given in percentages can be considered to behave
like the binomial variables and as a result, arcsine
transformation is utilized to convert a binomial random
variable into one that is nearly normal. The data

corresponding to different states and also the combined
data are tested for normality by using Shapiro Wilk’s
test and it was found that both X and Y follow normal
distribution. Strata sample sizes obtained by
proportional allocation for the EAG states is shown is
Table 1.

Table 1. Strata sample sizes obtained by proportional
allocation for the EAG states.

EAG States Stratum | N, W,=W,/N) | n,
Bihar 1 30 0.19 6
Chhattisgarh 2 7 0.04 1
Jharkhand 3 13 0.08 2
Madhya Pradesh 4 38 0.24 7
Orissa 5 30 0.19 6
Rajasthan 6 30 0.19 6
Uttaranchal 7 10 0.06 2
Total 158 1 30

Source : Rapid household survey (RHS-RCH project,
phase 1, 1998).
n, is the stratum sample size

To utilize the proposed estimator 7, it is assumed
that the population mean i of the auxiliary variable is
partially known. When is unknown, alternative
information about the mean of the auxiliary variable is
obtained by the use of double sampling procedure and
in the present case, this estimate of u_ for female
literacy rate is given by x,; = 44.8%. Further suppose
that we have partial information about u_and in this
case the partial information on X is obtained from
Census of India (1991) where the mean of female
literacy rate is computed for the EAG states and given
by U, = 26.4%. In the present study the preliminary
sample is utilized to test the hypothesis

H,: W, =W, against H, - #

If the hypothesis H,, is accepted then i, obtained
from the partial information will be used in the
proposed estimator; if H, is rejected, the sample mean
X, based on the preliminary sample is used.

The mean of the auxiliary variable is considered
to be partially known as u,. We can assume that u, =0
without the loss of generality. The covariance matrix
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2 is also considered to be known, hence without loss
of generality it can be assumed that G)ZC =1 and Gi =1.
In order to compare u, with the sample mean X, in the
testing of hypothesis, the sample values of the auxiliary
variable X is transformed both in origin and scale as
(x; — U)oy, and the variable Y is transform to y/o,,
making sure that the assumptions on variances is unity.

Table 2 shows that for the proposed estimator,
X, =1.497, y, =3.347 and X, =1.438 and in terms
of the original unitx, =45.5%, y,, =46.31% and
X, =44.8%. The estimate of the combined regression
preliminary test estimator z; in double sampling, for the
percentage of complete child immunization for the EAG
states is given by 45.29%.

Table 2. Computation of the strata means X, and y, for the

EAG states.
EAG States |Stratum | W, X, Yo | Wox, | W,
Bihar 1 0.19 | 0.61 | 2.24| 0.12]| 0.42

Chhattisgarh 2 0.04 | 0.61 | 3.72| 0.03| 0.16

Uharkhand 3 0.08 [2.04(3.75] 0.17| 0.31
Madhya

Pradesh 4 024 [ 1.89 | 3.52| 046 0.85
Orissa 5 0.19 | 1.58 | 3.97| 0.30| 0.75
Rajasthan 6 0.19 | 1.53 1 2.99( 0.29( 0.57
Uttaranchal 7 0.06 222442 0.14( 0.28
Total 1 x, =| ¥y, =

1.497 | 3.347

Source : Rapid household survey (RHS-RCH project, phase
1,1998).

(%,, y,) are the strata means.

When a reliable partial information on the mean
of the auxiliary variable is not available, as in the
present case, the hypothesis is rejected, as a result of
which X is utilized in the estimation of u . Hence the
proposed estimator Z; reduces to the usual combined
regression estimator under double sampling i.e. ,. In
the computation of MSE(z;) in this case, the
contribution of 4, is highly negligible, hence the values
of the mean square error is contributed mostly by g,,
the mean square error MSE(Z;) of the usual combined
regression estimator under double sampling. Thus in

this case the two estimators 7; and /5 are equally
efficient.

In the present study an attempt is also made to
compute Z; by using simulated data set and also evaluate
the mean square error of the proposed estimator to
compare with other estimator through relative
efficiency. In order to obtain simulated data following
the assumptions of the present study, statistical software
STATA 8.0(2003) is utilized. For simulation work, the
strata population is taken as N, =35, N, =40, N, =50
and N, = 45. By propoportional allocation, samples are
selected (Table 3) with total sample size of n = 35.
Bivariate normally distributed data is generated for the
pair (X, ¥,) for A =1, 2, 3, 4 and the corresponding
input data for (Wy, Uy, Oy Oy P) are N(80, 150, 17, 16,
0.8), N(75, 140, 15, 17, 0.8), N(70, 130, 16, 16, 0.8)
and N(55, 110, 16, 16, 0.8). The stratification was done

Table 3. Strata sample sizes obtained by proportional
allocation for data generated by simulation.

Stratum N, W,=(N,/N) n,
1 35 0.21 7

2 40 0.24 8

3 50 0.29 10

4 45 0.26 9
Total 170 1 35

Source : Data generated by STATA 8.0.

according to the mean of the value of the study variable
Y and the stratum correlation coefficients are assumed
to be constant and equal to the population correlation
coefficient p. The selection of samples within each
stratum is done by simple random sampling.

When . is unknown, alternative information about
the mean of the auxiliary variable is also obtained by
the use of double sampling procedure and for the
present data this estimate is given by X,y =73.69%. In
the present study, it is considered that there exists
partial information about the mean of the auxiliary
variable and let us assume that the partial information
so obtained given by u, = 75.0.

The stratum means in terms of the transformed
values in X and Y are shown in the Table 4 which

reveals that X, =-0.1095, y, =5.022 and x,=
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Table 4. Computation of the strata means x, and y, for
data generated by simulation.

Stratum| W, X, Y, W,x, W, 5,

1 021 1.25 6.52 0.26 1.34

2 0.24| -0.07 5.15 —0.02 1.21

3 0.29( —-0.38 4.81 —0.11 1.41

4 0.26| —0.90 3.98 —0.24 1.05
x, =—0.109 y, =5.022

Source : Data generated by STATA 8.0.

—0.0602 and in terms of the previous origin and scale
X, =72.62, y;, =132.93 and X =73.69.

The preliminary sample is utilized to test the
hypothesis

H, @ W, =W against H, @ u # W,

When a reliable partial information of the mean
of the auxiliary variable is available, as in present case,
the hypothesis is accepted and the mean , is used in
the estimator ;. The combined regression preliminary
test estimator ; in double sampling, the estimate of the
mean of Y is given by 135.44. Further it is observed
that for o= 0.01, 0.05, 0.25, the MSE(;) is smaller than
the MSE(#,) and consequently this increases the
efficiency of the proposed estimator. Thus we see that
the empirical study also supports the analytical work
of the present study that under the stated assumptions
the CRPTE in double sampling i.e., Z; is more efficient
than the usual combined regression estimator, when
reliable information about the mean of the auxiliary
variable is available.

Table 5. Maximum and Minimum Values of e(a,, 0), (¢ = maximum, ¢, = minimum)

. P p
o e

0.3 0.5 0.7 0.9 0.3 0.5 0.7 0.9

n=10 n'=20 n=15 n' =20
0.25 e’ 1.01 1.04 1.10 1.24 1.02 1.06 1.13 1.27
e, 0.98 0.95 0.89 0.79 0.97 0.93 0.86 0.77
0.05 e’ 1.04 1.11 1.31 1.96 1.05 1.17 1.43 2.22
e, 0.94 0.83 0.68 0.50 0.91 0.77 0.62 0.47
0.01 e’ 1.05 1.15 1.42 2.66 1.07 1.22 1.62 3.31
e, 0.88 0.71 0.52 0.34 0.84 0.64 0.46 0.32

n=10 n =30 n=15 n' =30
0.25 e’ 1.01 1.03 1.07 1.20 1.01 1.04 1.10 1.24
e, 0.99 0.96 0.92 0.82 0.98 0.95 0.89 0.79
0.05 e 1.02 1.08 1.21 1.73 1.04 1.11 1.31 1.96
e, 0.96 0.87 0.74 0.54 0.94 0.83 0.68 0.50
0.01 e’ 1.03 1.10 1.29 2.16 1.05 1.15 1.42 2.66
e, 0.92 0.78 0.60 0.38 0.88 0.72 0.53 0.35

n=10 n' =50 n=15 n' =50
0.25 e’ 1.01 1.02 1.05 1.15 1.01 1.03 1.07 1.19
e, 0.99 0.98 0.95 0.86 0.99 0.97 0.93 0.84
0.05 e’ 1.01 1.05 1.13 1.50 1.02 1.07 1.19 1.68
e, 0.97 0.92 0.81 0.60 0.96 0.88 0.75 0.55
0.01 e’ 1.02 1.06 1.17 1.73 1.03 1.09 1.26 2.06
e, 0.95 0.85 0.70 0.44 0.93 0.80 0.62 0.62
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9. RECOMMENDATIONS FOR SELECTION OF
ESTIMATORS

The experimenter usually wants to select an
estimator with high efficiency. It would be ideal if the
relative efficiency is always larger than unity. However,
the relative efficiency exceeds unity in the
neighborhood of p = 0, but it decreases below unity
as W, increases (Fig. 3). To minimize the loss in
efficiency, we shall use the criterion for selecting the
o value (Han and Bancroft 1968) and we recommend
the use of the following criterion:

If the experimenter does not know _and is willing
to accept an estimator which has a relative efficiency
of no less than e, then among the set of estimators with
o € A, where 4 = {a : e(a, W) = ¢, for all u }, the
estimator is chosen to maximize e(a, W ) over all o
and p . Since max e(a, W) = e(a, 0), he selects the
o € A (say o) which maximizes e(o., 0) (say e*). This
criterion will guarantee that the relative efficiency of
the chosen estimator is at least ¢, and it may become
as large as e”.

The Table 5 gives the values of e(a., 0) for p = 0.3,
0.5, 0.7, 0.9, and for different sets of values of » and
n’, the corresponding o to use and the maximum
relative efficiency e*. For given n and »’, one enters the
table and picks up e, which is the smallest relative
efficiency he wishes to accept. The recommended o
level is readily chosen. For example if n = 10, " = 50,
p = 0.7 and the experimenter wants to have an estimator
which has a relative efficiency no less than ¢, = 0.80,
then he would use oo = 0.05 because this maximizes
e(a, 0) and the maximum relative efficiency he can
obtain is 1.13.
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APPENDIX
N, total number of units in the A" stratum
n, number of units in the sample in the A
stratum
Vi value of the study variable obtained for

the /" unit in the A stratum

W,=N,/N stratum weight of the 4™ stratum

Gih true variance in the A stratum

X, mean of the auxiliary variable in the
preliminary sample of size n’

o is the level of significance of the

preliminary test.



