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SUMMARY

The response distribution is the distribution of the observed outcomes given the respondent set and sample units. We
study the response and nonresponse distributions under nonignorable nonresponse. We give some new results that further favor
the use of the response and nonresponse distributions for analytical inference of complex survey data under nonignorable
nonresponse. We derive some new relationships between moments of the population distribution before sampling and the response
and nonresponse distributions. Thus provides new justification for the broad use of probability-weighted estimators (design-
based school) in estimating finite population parameters in case of ignorable nonresponse. In addition to the estimation problem
we introduce new predictors of the finite population total, under common mean population model, simple ratio population
model, and simple regression population model. These new predictors take into account the nonignorable nonresponse. Thus,
also provides new justification for the broad use of best linear unbiased predictors (model-based school) in predicting finite
population parameters in case of ignorable nonresponse. The main feature of the present estimators and predictors is their
behaviours in terms of the nonignorable nonresponse parameters. Furthermore, we introduce two new tests for testing the
ignorability of nonresponse.

Keywords: Nonignorable nonresponse, Response propensity, Response distribution.

1. INTRODUCTION items from all members of the sample. We call this
problem nonresponse or missing value problem. In
short, by nonresponse (or missing value) is meant that
the desired data are not obtained for the entire sample.
According to Sarndal er al. (1992, pp 563-364)
strategies for dealing with nonresponse can be classified
into three categories: (a) Before and during data
collection, effective measures are taken to reduce the
nonresponse to insignificant levels. (b) Special, perhaps
costly techniques for data collection and estimation are
used to permit unbiased estimation. (¢) Model
assumptions about the response mechanism and about
relations between variables are used to construct

In addition to the effect of complex sample design, estimators that “adjust” for a nonresponse that cannot
one of the major problems in the analysis of survey data be considered harmless. In this paper we consider the
is the inability to obtain useful data on all questionnaire ~ approach based on modeling.

Survey data may be viewed as the outcome of two
processes: the process that generates the values of units
in the finite population, often referred as the
superpopulation model, and the process of selecting the
sample units from the finite population, known as the
sample selection mechanism. Analytic inference from
sample survey data refers to the superpopulation model.
For more discussion under informative sampling design
and full response; see Skinner et al. (1989),
Pfeffermann et al. (1998), Pfeffermann and Sverchkov
(2003) and Eideh (2010).

E-mail address : msabdul@science.alquds.edu
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Let U = {l1, ..., N} denote a finite population
consisting of N units. Let y be the study variable of
interest and let y, be the value of y for the i" population
unit. Let x; = (x;;, ..., xl,p)’, i € U be the values of a
vector of auxiliary variables, x,, ..., x . Consider the
population values y,, ..., y,, as random variables, which
are independent realizations from a distribution with
probability density function (pdf) f (v/x,, 6) indexed by
a vector of parameters 6. A prolgability sample s is
drawn from U according to a specified sampling design.
The sample size is denoted by #. In what follows, we
consider a noninformative sampling design (hence,
distribution of y. given x, for i € s is the same as
distribution of y, given x for i € U; that is, £(y/x,, 6) =
J;(yl.lxi, 0)) with selection probabilities 7, = Pr(i € s),
and sampling weight w. = 1/7; i = 1, ..., N. Denote by
R =(R,, ..., R)) the N by 1 response indicator (vector)
variable such that R, = 1 if unit 7 € s is observed and
R, =0 if unit i € s is not observed. The response set is
defined accordingly as r = {ili € s, R, = 1} and the
nonresponse set by 7 = {ili € s, R, = 0}. The size of
the response set is denoted by m, so that the size of the
nonresponse set is # — m. We assume probability
sampling, so that 7z, = Pr(i € s) > 0 for all units i € U.
Let the response probability

v.=Pr(R. =1li€ s,x,y)=Pr(i € rli € s, X, y)
=PrieAxy) (1)

for all units i € s and ¢, = 1/y, be the response weight
for i € r. The response probabilities are theoretical
quantities and they are unknown, and its value lies
between 0 and 1. Furthermore, the response indicators
R, are observed for sample elements only. These
response probabilities can be estimated based on the
sample. By using an appropriate model based on
auxiliary information x; = (x,, ..., xip)’, for all units
i € s, we can compute sample-based estimates of the
response probabilities, that is

¥ = y(x)=Pr(R,=1lie s,x) (2

fori=1, ..., n. We refer to /; =y (X;) as the response
propensity. The response propensity is the estimated
response probability conditional on the sample and the
individual characteristics x;,. Now, we describe two
methods that can be used to compute response
propensities.

Method 1. Probit model

2
4

: ]dz 3)

x B
N 4 1
.= V=P (x = eX
v, =y (x)=®(xB) Lﬂ p(
where B is a p by 1 vector of coefficients, and @ is

the cumulative distribution function of the standard
normal distribution.

Method 2. Logit model

) . exp(xB
Vi _W(Xi)_L<XiB)_#M)A) 4)

The logit transformation leads to the logistic
regression model:

Lv(x)
1=y (%)

The probit and logit models are the most common
models but in fact any model with the right property
can be used. From now on, if the response probabilities
are unknown, we replace them by their estimates, the
response propensities.

1 =xp=xf++uh8 (5

A key issue that must be confronted when dealing
with missing data or nonresponse is the relationship
between the response indicator (vector) variable, the
sample selection indicator membership, the study
variable, and the auxiliary population variable. Little
and Rubin (2002) consider three types of nonresponse
mechanism or missing data mechanism:

(a) Missing completely at random (MCAR): If the
response probability does not depend on the study
variable, or the auxiliary population variable, the
missing data are MCAR. That is,

Prie rlie s, x,y)=Pr(ie rlies) (6)
for all possible values y,and x..

(b) Missing at random (MAR) given auxiliary
population variable: If the response probability
depends on the auxiliary population variable but
not on the study variable, the missing data are
MAR. That is,
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Pr(ie rlie s,x,y)=Prie rlie s,x) (7)
for all possible values y..

(c) Not missing at random (NMAR): If the response
probability depends on the value of a missing
study variable, the missing data are NMAR. That
18,

Prie rlie s,x,y)#Pri € rli€ s,x) (8)
for all possible values y..

In this paper we make distinction between
ignorable and nonignorable response mechanism.

(a) The response mechanism can be ignored
conditional on x; (or ignorable nonresponse) if:

Prie rlie s,x,y)=Pri € rli€ s, x)
for all possible values y.

(b) The response mechanism cannot be ignored
(nonignorable nonresponse) if:

Pr(i € r|s,x,y) #Pri € rli € s, x)
for all possible values y..

This distinction plays an important role when
dealing with likelihood theory under ignorable
nonresponse and nonignorable nonresponse models.

For more discussion on nonresponse; see Little and
Rubin (2002), Schafer (1997), Little (1982), Rubin
(1976), Séarndal and Swensson (1987), Cobben (2009),
and Chambers and Skinner (2003).

The plan of this paper is as follows. In Section 2
we discuss response and nonresponse distribution.
Section 3 justifies unified probability weighted
estimators via method of moments in case of
nonignorable nonresponse. In Section 4 we introduce
4 different models for the conditional expectations of
response probabilities. Section 5, 6 and 7 are devoted
to response likelihood, estimation, Fisher information,
and confidence interval under nonignorable
nonresponse. Section 8 discussed the prediction of finite
population total under nonignorable nonresponse. In
Section 9 we introduce new tests for not missing at
random mechanism or nonignorable nonresponse. We
conclude with a brief discussion in Section 10.

2. RESPONSE AND NONRESPONSE
DISTRIBUTIONS

Before defining the response and nonresponse
distribution mathematically, let us introduce the
following notations: f, and £ () denote the pdf and the
mathematical expectation of the response distribution,

respectively, and fr and E_.(-) denote the pdf and the
mathematical expectation of the nonresponse
distribution, respectively.

Eideh (2009) defined and studies the properties of
response and nonresponse distributions when the
sampling design is informative and missing value
mechanism is nonignorable. In this paper, from now on,
we assume that the sampling design is noninformative,
that is, f.(v,|x;, 6, v) =];(yl.|xl., 0). Using the results
derived in Eideh (2009), we have:

(a) The (marginal) response pdf of y, is defined as:

fr(yl,lxl,, 9, 77)=j;7()/i|xi, 99 77> Rlll = 1)

_ PrGer|x, v, mf, (1%, 0)
Prie r|x;, 0, n)

©

where 6 is the parameter of the population distribution,
1 is the parameter indexing Pr(i € r|x,, y,, 1) - response
mechanism, and

Pr(ie r|x;, 6, n)szr(ie 2 )] fp(y,-lxl-,ﬁ)dyl.

Note that response pdf contains the population
parameter, 6, that indexes, fp(yl.l X, 0), and the
nonignorable nonresponse parameter, 1, that indexes,
Pr(i € r|x,, ¥, 1). Thus, the response pdf may contain
more parameters than the population pdf. In addition
to that, the (marginal) response pdf is different from the
population pdf generating the finite population values,
unless Pr(i € r|x, y, n=Pr(i € r|x, n) for all possible
values y,, that is R, and y, are stochastically independent,
in which case the response mechanism can be ignored
conditional on x,. Also note that the marginal response
distribution is a function of the population distribution
and of the probability of responses or propensity score.
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(b) If the response value mechanism is ignorable, that
is

Pr(i € r|x;, y, n)=Pr(i € r|x;, 6, n)
then
LO1x, 6, m) = 1,0,1x, 6) (10)

(c) The (marginal) nonresponse pdf of is defined as:
f?(yi |Xi’0’77) zﬁy(yilxia 99 n, R,‘ = 0: I, = 1)

_ PrerIx, 3 M £, (1%, 0)
Prie7|x;, 6, n)

)

Corollary 1.
Pr(R, = 11, %) = E,(¥,1X,3)

Corollary 2. Alternative representation of the marginal
response and nonresponse pdfs of y. are given by:

E,(w; 1%, y) [, (3 1%)

|x) = 12
701 E,wi %) (2
{1-E,W; 1%, y)} £, 1%)
c (v 1x.) = 13
Jr i 1x) (-E,i %)) (13)
where

E, (ilx)=[E, (w]x. %) f, (%) dy;
=E, {Ep (l//i Ix;, ; )}
Thus, given ]; (v;1x), then £,(y;1x,) and fz(; |x;)
are determined by specifying Ep(l//l. |X,, ¥).

Corollary 3. Let ¢, = 1/y, be the response weight for 7
€ r. For vector of random variables (y, x,), the
following relationships hold:

E(@,ly) = {E(w;ly)}™ (14a)
Elx) = {E(9,|1x)}" E(9,¥,]x) (14b)
E ) = {E($)}" E(9, 1) (14c)
E(9) = {E ()} (14d)
E{(1-y)y; 1%}
E(v.|x)= -2
= 1%;) E (-y) %)
_ E{(@-Dy|x} (14e)
EA{(¢-D|x;}

It should be emphasized that, in this paper, the
proposed approach is model based.

Comment 0. Since we are assuming noninformative
sampling design, therefore the distribution of y, given
x, before sampling is the same as the distribution of y,
given x, after sampling, hence all population moments
before sampling and after sampling are the same. So
that, when fitting models to survey data, the sampling
weights are disappeared from all the formulas in the
paper. This indicates that, when the sampling design is
noninformative, we do not need to take into account the
sampling weights in the analysis of survey data. I thing
that the results obtained in this paper will raise the
concept: the role of sampling weights when the
sampling design is noninformative (or ignorable) and
the missing data mechanism is not missing at random
(or informative or nonignorable). We will leave this
issue for future research.

3. UNIFIED PROBABILITY WEIGHTED
ESTIMATORS UNDER NONIGNORABLE
NONRESPONSE

In this section, we derive known results in
probability sampling theory from the relationships given
in Sections 1, 2 and 3. Also we prove that probability
weighted estimator, in case of nonresponse, is just the
method of moments estimator based the response and
nonresponse distributions. So provides new justification
for the broad use of probability-weighted estimators
(design-based school) in estimating finite population
parameters in case of ignorable nonresponse.

3.1 Estimation of Finite Population Mean and
Finite Population Variance under
Noninformative Sampling Design and
Nonignorable Nonresponse

Let y,, ..., yy be N independent and identically
distributed random variable from a population with
finite mean Ep(yl,) = u and finite variance Var p(yl.) = 0.

The method of moments estimates (MME) of u
and o2 are the solutions of the method of moments
equations:

1 N

— 1
NZF;M’ =Y :ineuyi

E)

and
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which are:

i=1

N _ N
A= NNy =1, and &=N"Y -1

i=1

But ZieU Y and ZEU yiz are unknown finite

population parameters that need estimation.

Now using (14c), we have

2@)’;’

Er(qjlyi) icr
E@) = U= =
W) = H E@) Y4
and
ey

2 E (Qy?) _ ier

Ep(yiz) = G+’ = E %) = 2(])

ier

Therefore
2@)’;’
~ i€r iy
u 2 @ Yo

ier

and
2 ¢ yi2 2 @y

ier

O~.2= ier _
© o Ye | Y

ier

ier

ier _ ier

2@()’;'_/2)2 2@ (yi_y¢)2

which are the well known probability weighted

estimator.
Similarly, we can show that, the MME of

>of =nE, (3 ) is Xl
iU ier

If the nonresponse mechanism is ignorable: In this

case, E () = E,(y,). so that the MME of ¥, =N"' ) y;
ieU

is given by
Zyi
_ I€r

R 21
i€r

3.2 Estimation of the Multiple Linear Regression
Parameters under Noninformative Sampling
Design and Nonignorable Nonresponse

s Xy i=1, .., Nbe (g + 1) random

Q"<|>

Lety, x5 ...
variables such that

Ep (yilxi):Xi,B:xilﬁ Tt xiqﬂq
and
Vp()/,-|x,-) =0%i=1,..,N

Then
XiEp (yi |x; ) = Xixi/B

and
EP{XiEp(yilxi)} - Ep{EP(Xiyilxi)}

= E, (x;y)= E, (x:x)B

ier

Hence,

_ —\2
Slzj =N"! 2 ( v =Y ) under nonignorable nonresponse

€U

are
) N
I7U — ywz ier zyqj
24
and
—\2
ZQ(yi_yq))
5[2] _ _Eer 2¢

ier

D Y D Y

the MM estimators of

Solving this equation for B, we get
and
-1
B= {Ep (Xi Xz)} E, (Xi Y; )

The MME of B is

’ -1 y ’ N y
BZ{EP (Xixi)} E, (Xi yi): {inxz} in Y;
(15a) i=1 i=1

Now using equation (14c), we have

B={E, (xx)} E,(x %) ={E (@ xx)} E (9% 3)

(15b) where @, = (0, ..., ¢, ..., 0)".
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Thus MME of B is given by:

p= {2(9,- X,-X{}_ Yo%y =(ox) (xoy) (16)

i€r i€er
which is the probability weighted estimator of f.

If the nonresponse mechanism is ignorable: In this
case, E p(yl.) = E(»,), so that the MME of B is given by

~={2m;}_1zxiy,- - (%) (xy)

ier iEer

In particular if £ (y lx)=P8+Bx:i=1 .. N

and V() = 0%, then we have
XSO A WICESS CESY)
ﬁr _ _i€r ier — _ _ier > (173)
Y4 - X% 2a(x-5)
and er er ier
by = 3 -B,% (17b)
where ¥, =Zm/2w Y =2m/

3.3 Method of Moments Estimator of Census Log-
Likelihood under Noninformative Sampling
Design and Nonignorable Nonresponse

Let y,, ..., yy be a random sample from
y ~];(y; 0). The census log-likelihood is: /(0) =

zieU log f, (yl-; 9). The census MLE of 6 is the

solution of the census log-likelihood equation: U(6) =
01(6)/06 = Y _ 3 log f,(y; 0)/96 = 0. The MM
estimator of U(6) is the solution of

Ep{alog £ O 9)}=L§:a log f,(3;0) U(0)

30 N & 36 N

But using equation (14c), we have

d log f, (36 - d log f,(y: 0
Ep{ae)} {E }lEr{Wiape()}

So that the method of moment estimate of satisfies

1 0 log f (yl-; 9) 1
Yo ZQ{ a0 } N “

IEr

d log f, (i 0)
00

M=

1l
—_

i
ier

Hence the MME of U(0) is

. 0 log fp( i3 0)
U(¢9)=NZ 24 agy }

l Ier

iE€r

Thus the PML estimator of 0 satisfies

004|200 00

ier ae
Now, assume that y,, ..., y,, be a random sample
from y ~fp(y|x, 6) . The census log-likelihood is

N
1(0)=Xlog £, (3 |-
i=1

solution of the census log-likelihood equation

}=O (18a)

0) The census MLE of 0 is the

U(0)=—"2 81(9) Ealogf (3%, 6)/00=0

Similarly, the PML estimator of g satisfies

dlog £, (y;: 0)
00

u®) = Y4

ier

where ¢, = %

4. MODELING THE CONDITIONAL
EXPECTATIONS OF RESPONSE
PROBABILITIES

}zo (18b)

According to equation (12), for a given population
distribution, the response distribution is completely
determined by the specification of the conditional
expectations of response probabilities, £ (y.|y,, X, ).
So in order to obtain the response pdf of y,, we need to
model these population conditional expectations. We
consider the following four models for this population
conditional expectation.

I. Exponential model

Suppose that the response probabilities have
conditional expectations

Ep(l//l.lyl., x)=Prie rly,x,i€ys)
=exp(a, + a,y, + h(x) (19)

for some function 4 (x), where {aj,j =0, 1} are
unknown parameters to be estimated from the
respondent set.
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Comment 1. Under (19), the marginal effect of y, on
Ep(u/il Y,» X,) is given by:

aEp (l//,| Vi Xi)
ady:

1

ZalEp (l//llyl’ Xl)

1. If a; =0, then Ep(l//l.lyl., x,) does not depend on y,,
so that the missing value mechanism is ignorable.

2. If a; > 0, then Ep(‘//,-U’p X,) is an increasing
function of y,, so that larger values are more likely
to be in the response set than smaller values.

3. Ifa, <0, then Ep(‘//[ | v,» X,) is a decreasing function
of y,, so that smaller values are more likely to be
in the response set than larger values.

II. Linear model

Suppose that the response probabilities have
conditional expectations

Ep(llf,-U/p X,‘) =
= (by+ by, + hy(x) (20)

Pr(ie r|y,x, i € s)

for some function 4,(x), where {bj,j =0, 1} are
unknown parameters to be estimated from the
respondent set.

Comment 2. Under (20), the marginal effect of y, on
Ep(lllil V> X,) is given by

aE'p (l//llyl’ Xz) —
dy:

1

b

Similarly to the situation under exponential model,
if b, = 0, so that the missing value mechanism is
ignorable, if b, > 0 larger values are more likely to be
in the response set than smaller values and vice versa
if b, <0.

Other standard ways of modeling response
probabilities are obtained by the spirit of generalized
linear models, via the logit and probit models.

III. Logit model

Suppose that the response probabilities have
conditional expectations

Ep(u/ilyi’ x)=Pr(i€ r|y,x,-i € s)

_ eXP(Co Tqy; +h3(xz))
1+exp(c0 +qy, +h3(xi))

ey

for some function /,(x), where {cj, j =0, 1} are
unknown parameters to be estimated from the response
set.

IV. Probit model

Suppose that the response probabilities have
conditional expectations

Ep(l//l.lyl., x) =Pri € rly,x, - i€ s)
=®(d, +dy, + h(x) (22)

where @ denotes the cumulative distribution function
of the standard normal distribution, for some function
hy(x) ?:md {a}, j =0, 1} and are unknown parameters to
be estimated from the response set.

An important aspect of the use of the response
model for statistical inference is its sensitivity to wrong
specification of the conditional expectations of response
probabilities, Ep(‘//[ | ,» x,). This issue is investigated as
follows: assume that response probabilities is based on
the one of the models (exponential, linear, logit or
probit) and then apply first the correct model and then
the incorrect models for estimation, and compare the
results obtained under the correct and incorrect models.
In case of full response Eideh and Nathan (2006,
Section 6.4) discussed this issue and found that: the
estimators obtained by maximizing the sample log-
likelihood functions based on the exponential and linear
inclusion probability models, are very robust with
respect to model assumptions and in fact there is no real
difference between them.

As an illustration, in this paper we shall consider
only the exponential model (19). From now on, we use
the terms ‘exponential response probabilities’ to denote
that the conditional expectation of the response
probabilities is an exponential function of the response
variable and the available auxiliary variables, i.e.
equation (19). Furthermore, as pointed out by Skinner
(1994), this exponential approximation model for first
order inclusion probabilities is appealing in the common
situation where the sample selection is carried out in
several stages so that the ultimate inclusion probabilities
are the product of the selection probabilities at the
various stages.

Now we have the following theorem, which gives
the response pdf and their moments under the
exponential response probabilities. In the following, we
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suppress the notation relating to the dependence of the
response and population pdf’s on the unknown
parameters.

Theorem 1. Under the exponential response
probabilities, we have

The response pdf y, of y. is given by

eXp(al)’i )fp ()’i |Xi)
M, (al)

where Mp(al) = Ep(exp(alyl,)lxl, is the moment
generating function (mgf) of the population pdf of y,.

Lo1x) = (23)

Also the mgf and the mean of the sample pdf of
y, are given by

M (t+a1)
M) = —t——= (24a)
and My (al)
Eilx) = alo%ap(al) (24b)
1

Proof: Using the definition of mgf and equation (12).

The following theorem gives the response
distributions of the exponential family of distributions
under the exponential response probabilities.

Theorem 2. Let the population distribution be a
member of the exponential family of distributions

0—h(0
£ol%) = exp[”T()w(yi, ¢)] (25)

where /(-) and ¢(+) are known functions. The parameter
6 is known as the natural parameter. Assume that

0= g(xl.’ﬁ) where g(-) is a known increasing
differentiable function and B = (f3,, ..., ,Bp)’ is a vector
of parameter.

Under the exponential response probabilities, we
have

Vi (al¢+0)—h(a¢§ +‘9)
¢

The moment generating function of y, is given by

fr(yi|xi)=exp[ re(n ¢)] 6)

2 - exp( h(t¢+a1¢+0)—h(9+al¢)j o

¢

and

~ oh(ap+0)
E(y|x) = BT (28)

Proof. Using Theorem 1.
5. RESPONSE LIKELIHOOD AND ESTIMATION

Having derived the response distribution, and if the
response measurements are independent, then the
response likelihood for 0 and 7 is given by

L(0.1)

Hfr(yilxi’ 0, 77)
i=1

ﬁ E, (1%, v 1)
- B, (vilx 6.77)
and the logarithm of the response likelihood for 6 and
nis

fp (yilxi’ 9)

1(6, n)= ZIOg (1%, 6, 1)
i=1

= by (9)"' Zlog E, (lllilxi’yi’n)
i=1

—2.log E, (;|x, 0, 1) (29)
where =
l@@=§@@@mﬁ» (30)

is the classical log-likelihood obtained under ignorable
nonresponse.

The function given in equation (29) can be
maximized with respect to 6 and 7 to obtain the
maximum response likelihood estimates of these
parameters. Maximum response likelihood estimators
of other parameters, which are the parameters of
interest, (e.g. the parameter 6 characterizing the
population distribution of y) are defined using the
invariance properties of the maximum likelihood (ML)
approach.

The response likelihood function, L (6, 1), can be
interpreted as a weighted likelihood, where the weights
are ratios of the population conditional expectations of
the response probabilities, given the values of y, and
their unconditional expectations.
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Standard estimation processes consider the case
where the missing value mechanism is ignored and base
the inference on the classical log-likelihood function,
[, gn(H). However, analysis using standard estimation
methods, which ignores the last two terms of (29), leads
to inconsistent estimates of 0. Thus the effect of the
missing value mechanism must be taken into account.

Theorem 3. The joint response pdf of y = (v, ..., y,)
is defined by

Pr(r|y1, vy yn)

13 =100 - Pr(r)

If

s Yalt) = S Olts s V)

Pr(r|y)=exp(a0 +a'y)=Hexp(a0 +q yi)

i=1

Then
AR I FACY GD
where i=l
Fo) = eXp(ai Y )fp (yi)

Ep (exp (ai Vi ))

Thus under exponential response probabilities, the
sample measurements are independent.

Comment 3. The response likelihood function given
in (29) is a sum of two components, the first component
is the classical likelihood function which ignores the
missing value mechanism and just treats the response
values of y as independent draws from the population
distribution of y, while the second component reflects
the effect of the mechanism of missing values.

Example 1. (Maximum likelihood Estimator of
p#Normal Population)

Assume y,, ..., ¥y, ~ N(U, 1) are independent. Let
p

Y ---» ¥, be a sample of size n selected under
noninformative sampling design. Assume that the
observed outcomes set is {y,, ..., y,,} and the missing
values set is {y .» ¥, If we assume that Ep(ll/,-| ¥)

m+1>

= exp(n, + 1N, ¥,), then it is easy to verify that y; :N

(u+mn,, 1) are independents. In this case the parameters
of the response pdf contains the parameters of the
population pdf, i, and the nonignorable nonresponse

parameter, 1,. So that the MLE of u and 7, is the
solution of the response likelihood equations

al, (6’ M) - (-
a, (e n) '2(

8771 ier

(32)

Solving this system of response likelihood
equations for 4 and 1, gives: &, =3, —1}.

Since we have two unknowns and one equation,
we have infinitely many solutions. Hence the
parameters are not identifiable from the response
observations of y alone. (A model is said to be
nonidentifiable if it contains parameters that cannot be
estimated uniquely, or, to put in another way, that have
standard errors of infinity). The identifiability problem
occurs here because we have only one sufficient
statistic, which is y, for two parameters. To solve this
problem we consider two-step estimation, see below.
For illustration, assume that the nonignorable

. 0
nonresponse parameter is known, say 7, =7}, , so that

if this is the case, the MLE of uis fi. =y, -/ 0, . Here

[ underestimates the true value of u if 7710 >0 and
overestimates the true value of u if 7 <0.

To solve this problem a two-step estimation
method is adopted. Based on the response data

{V» X, ¢ i € r} we can estimate the parameters of the
population model in two steps:

Step-one: Estimate the nonignorable nonresponse
parameters 1 using the following relationship

1
E, (llfi X5 ¥ 77)

Thus the nonignorable nonresponse parameters can
be estimated using regression analysis. Denoting the

resulting estimate of 1 by 7.

E(9,1%, v, M) = (33)

Step-two: Substitute 7 in the response
log-likelihood function, (29), and then maximize the
resulting response log-likelihood function with respect
to the population parameters, 6:
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lr(H’ 77) = zlogfr(yilxi’e’ﬁ)

)

= 1gn(6)+210g E (lllzl
i=1

—leog E, (y;|x.. 0. 17) (34)

where 1.(6, 77) is the response log-likelihood after

substituting 77 in the response log-likelihood function,
(29).
But the second component of this response log-

likelihood function does not contain 6, so we can just
maximize

L (0. 1) =1, (0)- Elog E, (wilx.. 6, 7)
" (35)

=l (0)+ X log E. (4]x;. 6. 77)
i=1

Example 2. (Maximum likelihood Estimators of u
and o - Normal Population)

Assume y,, ..., v N(u, 0°) are independent. Let

Vi ---» ¥, be a sample of size n selected under
noninformative sampling design. Assume that the
observed outcomes set is {y,, ..., y,,} and the missing
values set is {y > Y,}- If we assume that Ep(lllil v)

m+1>

= exp(n, + n,y,), then it is easy to verify that y, ~N
(u+ n,0%, 0% are independents.

Step 1: Estimation of nonignorable nonresponse
parameters. Using (33), we get

E(d;1X ¥ Ny M) = ———————
o exp(y +m )

= exp(_no - 771)/1) (3 6)

So that, approximately, the least squares estimators
of n,and n, are given by

- g,(yi —?) (g()’i _y)(q)i _&))J

(35a)

and 7 = —(‘5—5&)

where @, = In ¢.

(35b)

Step 2: Estimation of the population parameter,
wand 0. According to (34), the response log-likelihood
function to be maximized is given by

L(w o i) =1 (1 0% )

_m _ 2
= 1027 ) - 3 (- - 2 GO)
ier
Now differentiating (36) with respect to ¢ and 0°
and equating it to zero, we get

b= i §

lanign = W=y —Nns nign — Zyl 771 ntgn (37)

ier

and

SE = mgn - Z(yz yr (38)

iEer

Again, if 7, =0, that is the missing value

mechanism is estimated ignorable then

Z(yl 5

ier

lunign ==Y and S ntgn =

Let us now consider the following theorem which
is related to the effect of the normalizing factor on the
estimation process, when modeling the population
conditional expectation of the response probabilities,
given the outcome variable and possibly auxiliary
variables.

Theorem 4. Under the two-step estimation method. If

Ep(ll/,-|yl-) =k, exp(n, + 1,¥), Ny N, # 0 where £, is
some constant, then

L (9’ Mo 771) = lign (9)_”10gMp (771)
Proof:

1. Ep(l/ll.| y,) =k, exp(n, + n,,), can be written as
=1, + log(k,).

So that Ep ;)= exp(ng) Mp (1) and log Ep(wl.)

E (7 |y,)=exp(rfy +71%,), where 77,

=1, +log M » (). Hence the estimated response
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likelihood, using estimates of the nonignorable

nonresponse parameters 7}, and 1, is given by
L (0’ o 771) = Ly (9)—nlogMp (ﬁl)
= Ly (6)—(770 + logke)—nlogMp (ﬁl)

Now since (7, +logk,) does not depend on the

parameters of the population distribution, therefore it
just can be omitted from the response likelihood. Thus
the estimated response likelihood is

lr(H’ Mo ﬁl) =lign (9)_”10gMp (ﬁl)

which is free of the normalized factor k,. Also the
estimate of the nonignorable nonresponse parameters,

1, is not affected by the estimate of the parameter, 778.

Corollary 4: Using Corollaries 2 and 3, the response
pdf y|x, can be written as

E, (¢13%)

The application of this response pdf requires the

KX = (39)

estimation of the conditional expectations £ (¢,]y,, x,)
and £ (¢,|x,). These conditional expectations can be
estimated from the respondent data set, as follows:

1. Estimate E (¢.|y,, x;) by regressing ¢, against
vy x), i€ T

2. Estimate £(¢,]x,) in two steps:

Step-one: Using Corollaries 2 and 3 and the estimate
of E(¢,1y;, x;,) obtained above, we can estimate

Ep(l//l.lxl.) as follows:

Ewlx) = [E, Wiy %) f, (%) dy,

1
= [——————f, (% )dy, (40
IE,(myi,xi)f”(ylx’)y (40)

Step-two: Using Theorem 12 we get

1

_ 41
E, (1//i|Xi) D

E(#)| x) =

The prominent feature of (40) is that, in order to
fit a population model for survey data, obtained under
an nonignorable nonresponse, we need only the
response data set {(x, y,, ¢,), i € s} and to specify the
underlying population model of y,[x,. However we do
not need to specify the population conditional
expectation of response probabilities

6. FISHER INFORMATION UNDER
NONIGNORABLE NONRESPONSE

In this section we assume that the nonignorable
nonresponse parameters 1 are held fixed at their
estimated values, that is 7=7 is fixed. Now, by
maximizing the response log-likelihood function

10) = g (0)— XYlog E, (i 1%, 0. 77)
i=1

= L, (0)+ D 1og E, (¢]x. 6. 77)  (42)
i=1

We get the ML estimator of the population
parameter 6, which is the starting point for inference.
We are usually interested in constructing confidence
interval for parameter 6; see Section 7. In such case
we need to calculate the value of Fisher information at

0=0. Let sc,(0) = 0 log 50 0)/06 and sc,(0) =
d log f.(y;; 0)/00 be the score functions in one

observation y, evaluated under the population and
response distributions, respectively.

So, we next arrive at two new results embodied
in the following two theorems.

Theorem 5. The response score function is given by

E[ dlog f, (;: 9)]2 dlog £, (710, 1) - )

20 00

Proof:

Since £ {0 log f(y;; 6)/06} = 0, therefore using
(12), we have

=0

- dlogE, w1y, m) .\ dlog f, (13 9) ~ ologE, (w16, n)
r 00 20 200

But Ep(l//il ¥,» N is free of 6. Hence the result.
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Theorem 6. The Fisher information with respect to the
response distribution (or the response Fisher
information) in one observation is

ol 5 0
1,(0)=Var, {%

}=Vm’r {sc (0)} 4y

Proof: The Fisher information under the response
distribution in one observation is given by

I

ri

(0)=E, {alogf,(y,.;e,77)}2 =_Er{azlogfr(yi; 0, 77)}

00 06

Applying (12) and Theorem 3 we get

1L (0)=E {_alogf,,(yi; e)F {E [_alogfp (o g)J}z
" ' 00 " 00

B 20

_Var_r( alogfp (yt’ 0)}

Corollary 5. The Fisher information with respect to the
response distribution in a respondent set of size m is

mn m dlog f, (y:; €
Ir(9)=§,1ﬁ(9)=§Va9{$} (45)

Example 3. Let yi;N(/" ‘72)? =1 ... N. Assume
that o is known.
(@) If E (w;ly)

& 1 m
= V A s = :_-
L(w Z} arS{O_z (y, ,u)} o2

exp(a, + a,y;), then

N
Note that 7 (1) = ZVarp {a log f, (3 /‘)/ aﬂ}
i=1
=No > I(1).

(b) If E(y,1y) = by + by, then [(1) = n{(1/0?)
— (b\/by + b )}

If b, = 0, then I,(1) = n/c® < NIo® = I (u).

7. VARIANCE ESTIMATION AND CONFIDENCE
INTERVAL

Let @ be the MLE of 0 defined by the solution of

01(6)/00 = 0. For the variance estimation of 0, we

consider estimating the conditional variance of @,

given the nonignorable nonresponse parameters 1 are
held fixed at their estimated values. The conditional

1
¥t (6) =7, (0) [2” [pees 10 I
" 6=6

(46)

Fisher information evaluated at @ =@ is given by

Example 4. Assume that the population distribution of
the outcome variable y,, i € U is Poisson with parameter
0, so that

0% exp(-0)
Al

f, (nl0)= :0>0andy =0, 1, 2,...

Then 0 log £y, 0)/00 = (y/0) — 1.
(a) If E (wly,) = My, then
6" exp(-0
w; f0>0andy =1, 2,...
()’i _1)!

So that, under this response pdf, we can show that:
1(6) = m/6. Consequently, According to (35), the MLE

of @is §=73, —1, so that \A/af<é)=(yr —1)/7"- Hence

an approximate 100(1 — «)% confidence interval for g
is given by

L = (5 =120 -1)/m
U= O _1)+Za/2\/(§r _1)/’"

Note that the length of this confidence interval
(L, U)is

f;'(yile):

and

Ur_Lr = 2Z0!/2 (yr_l)/m

and the midpoint is

W, +L)2 = 5, ~1={(Ug + L, ) /2}-1
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where

Ly = {5 =23 /m}

and

Ugn = {)_’r +Z0{/2\/yr/m}

(b) If Ep(l//i/yi) = exp(n, + n,»,), then we can show
that

{6 exp ()} exp{-0 exp(n, 1

()’i)! Vi

Note that, the response distribution is also Poisson
but, under the response distribution, the parameter 6 is

0" = {0 exp(n,)}.

It is easy to verify that 7 (6) = exp(n,)/6. Using
(35), if n, is fixed, then the MLE of 0 is

6 =5, /exp(n; ). Hence

0,1 2,.

fr()’i|‘9)=

o (\__ 3,
Var 0 :—r
( ) nexp(2771)
Thus if n, is estimated by 7, therefore an

approximate 100(1 — )% confidence interval for 0 is
given by

L

, = {exp)) ! Ly,

and
U

r

{exp() ) Uy,

Note that the length of this confidence interval is

U, =1, ={exp (1)} (Vien ~ Ly

and the midpoint is

(Ur +1 )/2 =Y {exp (ﬁl )}_1 - {exp (ﬁl )}_1 (Ur +1L )/2

If n,> 0, that is, larger values from the population
appear in the response set more often than smaller
values, then the length of the confidence interval for 0
based on the response distribution decreases by a factor

1/exp(n,).

If n, < 0, that is, smaller values from the
population appear in the response set more often than
larger values, then the length of the confidence interval
for 6 based on the response distribution increases by a
factor 1/exp(1,).

8. PREDICTION OF FINITE POPULATION
PARAMETER UNDER NONIGNORABLE
NONRESPONSE

Sverchkov and Pfeffermann (2004) use sample and
sample complement distributions for the prediction of
finite population totals under informative sampling for
single-stage sampling designs. Later Eideh and Nathan
(2009) extend the theory to general linear functions of
the population values and to two-stage informative
cluster sampling. In this section we use the response
and nonresponse distributions to predict the finite
population total under noninformative sampling design
and under nonignorable nonresponse. We consider the
prediction for single-stage sampling and under three
models namely, common mean population model,
simple ratio population model, and simple regression
population model.

8.1 Preliminaries

Assume single-stage population model. Let

N
I, = Zliyi = Zliyi +zliyi = Zliyi +Zliyi +Zliyi
i=1

i€es i€y ier ier ies
(47)

where (/,, ..., /) is a vector of known constants, be the
linear function of population values that we want to
predict using the data from the response set and
possibly values of auxiliary variables that may include
some or all of the design variables.

Notice that 7', can be decomposed into three
components, the first component represents the total for

observed units in the sample — response set, Zierli Yis

the second component represents the total for
unobserved units in sample — nonresponse set,

21.6711- ¥, and the third component represents the total
for non-sample units, Ziesli ¥

For the prediction process we have the following
available information:

(a) The information that comes from the sampling
design denoted by
O,=[{(x, 1), i€ Uy, {m, i€ s}], where [, = 1
forie sand [.=0 forig s.
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(b) Information that comes from the response set
denoted by

Or = [{(yp l’(/l)’ i€ r}ll € S], N, n and m.

Thus the available information, from the sample
and response set, for the prediction process is

0=0,U0,.

Let 7, =T, (0) define the predictor of 7, based on

0. The mean square error (MSE) of fc given with
respect to the population pdf is defined by

MSE, (1)) = E,((f,~T,}*|0}

= E,[{T, - E, (T,|0)+E, (1,|0)-T,}|0]
(48)
= {T, - E, (T,|0)f + Var,(T;|0)
It is obvious from the last line of (48) that, (48) is

minimized when f[ = E(mo) Now we consider the

following
E,(T,|0) =E, {[ZIiyﬁZliyi]O} (49)
i€s i€s
=Yy + Y LE (3]0)+ Y LE, (%]0)
ier e ies

Thus the general predictor for 7', under
nonignorable nonresponse is

T, =E,(T]|0)=E, {[24» +24y,-]
i€s i€s
=Y byt Y hE (yi|0)+§llﬁp (y,.|0)

i€er ier i€s

0} (50)

The predictor given in (50) represents the
prediction of T, for single-stage sampling when the
sampling mechanism in noninformative and missing
value mechanism is nonignorable. The analysis that
follows assumes known model parameters. In practice,
the unknown model parameters are replaced under the
frequentist approach by sample estimates, yielding the
corresponding “empirical predictors.” In the present
case, maximum likelihood estimation of the model
parameters must be based on the response distribution
of the observed units in the sample — response set; see
Sections 5-7.

We now consider the following special cases for
prediction of the overall population total

N
T=2yl. zzyi+2yi+2yj
i=1 ier ier i€y
that is, for (/,, ..., ) = (1, 1, ..., 1).

According to (50), the general predictor for 7’
under nonignorable nonresponse is
E, (T10)=X 5 + X E; (4[0)+ X E, (%]0) 1)
i€r i€er i€s
We know the values {y s,ier}, so the sum
«,Yi 1s known. Thus to estimate for our response
set, we need to predict the total for unobserved units
in the sample — nonresponse set, ZH y;, and the total
for non-sample units, ZH Vi Tl}at is, to predict 7' we
need to predict values for the {y, s,ie 7} and values

for the {yi’ s,I€S}.

According to (14e), we have

E, {(l—l//,-)y,-} _ E, (yi)_Ep (yil//i)

EF(Y;‘) =
Ep(l_l/jl) I_Ep(l//z)
_ Ep (yi)_Ep(yil//i)_Ep(yi)Ep(l//i)+Ep (yi)Ep(l//i)
I_Ep(l//i)
(52)
3 Ep(yi)Ep(l_Wi)_COVp(y/i’yi)
- I_Ep(l//i)
Cov,, (¥, )
- E (y PNV
So that
Cov, (w;,y)
E N—E (v.)=—2 NP7t/
p (y,) 7 (y,) 1— Ep (l//z) (53)
Hence
oo = £,(710)= 2+ 25 (1]0)+ D, (3/0)
Cov, | (.3 ) O
= 2+ 215, (4]0)- 1p—[E (l/f~)| |
ier ier p \*i
+ Y E,(%]0) (54)

i€s
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:2)’1‘ +2Ep (yi|0)+2Ep (y,-|0)

ier ier ies
g Cou[)0]
P 1-E, (Wi)
i g Coultn)o]
ier 1- Ep (l//z)
where
T = 20+ 2 E, (%]0)+ X E, (%]0) (59
ier ier ies
is the best linear unbiased predictor (BLUP) of
N

T= z ¥; under ignorable nonresponse.
i=1

The nonresponse bias of Y;Hgn

B(T0) = B, (Tn =T)= {EE [

Ies

+2E,,[y,-—F¢<y,->]} 56)

ier

Z_Z[Ep (%) E ( )]2_

ier ier

E(yl}

2 Cov, (v, x)

E, (l_l//i)

Hence, the predictor T. s unbiased if there is

nign
no correlation between the study variable and the
response probabilities y.. The stronger the relationship
between the study variable and the response probability,
the larger the bias. Similar result was obtained by
Bethlehem (1988).

Using equations (14a-e), we obtain

_ E, (@)’i) Er{((bt _1))’i}
E, (yi)_F?(yi)_ E, (Q) - Er{(@ _1)}
_ E, (@)’i)[Er (@)‘ﬂ‘[Er (Q%)‘Er (yi):IEr (‘/jz)
E (#)E (4 -1}
5 @0)E @) E 03)-E (0)E () + E (1)E ()
E(@)E{(@-D}
_ _{Er (@)&‘)‘Er ()’i)Er (4’): )} _ Cov, (4’%,)’1‘)
E@ME{@-1D;  E@)E{@-D}

(57

Hence (54) and (56) can be written as

N - COVr(Q’yi)
T = E,(T|0)=T,, - ZE,((/;)E,{((/;—I)} (58)

er

B(f) = -y () (59)

ier Er (¢z )Er {(@ - 1)}

Thus, if the for unobserved units in sample and the
response weights ¢ are correlated, then ignoring the
sampling scheme yields biased predictors.

Schaible (1983), defined the incomplete data bias

in a predictor 7;1 ion (r) as the total bias in the predictor
minus the bias that would occur if the sample were

complete TAn

B(Tiani)) = Ep (Fniy ~T) -, (£,-7)
= 5, (T ~T)
= E, {(;y +;E (yi)+;E,, (yi)]

—(Zyi+2yi+2Ep(%)j}

ier ier ies

- E{szfrfr(y,%z@(yi)j

ier i€r i€s

—Ep[zyﬁzyﬁszp(»)]

ier i€r i€s

_ -E, Y (%-E (%))

ier

—2E, (v

i€er

— (B, ()~ E (v ))

ier

~E; (%))

_2 Cov, (. %)

ier Ep (l ~V; ) (60)

Hence E, (T =T )= By (1, =)= E, (Tyguy =T
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8.2 Common Mean Population Model

The common mean population model (C) stating
~N (ﬂ, o’ ), i=1,.
random Varlable with mean £ (y) = u and variance
Vo) =

Under the exponential response probability model

E(wly) = exp(ny) (61)

we have, the

~N(,u+770’2,0'2), i=1, ..,

E®y)=u+no = E)+ no® and Var (y) = o (62)

that ., V are independent normal

response distribution as

m. That is,

Accordingly,
E(v) = EE(,|y)=E,{exp(ny)}  (63)

o2
Mp (77)=exp(77,u+ 772 ]

and
E ) = E(Ew,3,1y)) = E0EW1y)
= E, {yexp(ny)}= nM (1) (64)
_ 2 77202
(4470 )exp(ﬂm 2 )
= E(v) M)
Also,
Cov, (¥, ¥) = (NG*)M,(1) (65a)
and
Conple ) oy M, ()
EG-w) ~ )Ty O

Hence, according to (52) and (65), we have,

M,(n)
2 P
E-(y,) = MH—\Nno 65¢
() ( )I_Mp(ﬂ) (65¢)
Using the results obtained in Section 8.1, and
results (62-65) we obtain the following.

(a) The BLUP for T under nonignorable nonresponse
is

fC,nign :;)’i +(n—m){u—(no'2 )%}+(N—n)y
(66)

Under the response distribution given in (62), we
can show that the ML estimators of the common
population model are given by

1 =2
_Zyz _nSC,nign (67)

ier

) _
_nsC,nign -

luC,nign =yr

and

Z(y, 5 ) (68)

ier

where 7] is the least square estimator obtained via the

SC ign =

following relationship in (14a)
E(,1y) = {E vy}
So that

fC,nign = Wr _ﬁsg,nign {(N _m)+1‘3—(77())} (69)

where

~) 2
SC,nign

2

If n = 0, that is, the missing value mechanism is
ignorable, then

fion =20t (n=m){u}+ (N —n)u

ier

Mp (ﬁ) =ExXp IaC,nignﬁ + (70)

™~

=2+ (N-m)u (71)

ier
Now, under ignorable nonresponse, the MLE of 1
is

luC,ign = = —2 Y;
ier

then
zzyi +(N_m)§r :myr +(N_m)yr

ier

Ny, =—2x (72)

iEer

7;,ign

which is the classical BLUP known in sampling
surveys.

Also, the estimate of the bias of TAn ian is given by
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B(fc,nign):—z(ﬁsz,nig,,)% )
er 2

Using (59), the method of moment estimate of the

bias of fC,nign is given by

COVr (¢z > Vi )

B(Te pign) = —; E, (¢)E {(4 -1)}
m—lZ(@ _ﬁ)(y,- -5,)

ier

m*z«ej(m-lm—n]

ier ier

m (4 -6)(-7)

ier

m-lm][m-lm—l))

ier ier

—(nm)(

- ~(n-m)
|

m 'Y (4 -4)0i-5,)

ier

24

—-m Cr (Q_il, yi)

o

=—m

2
=—’"70, (@.%) (74)

where 24;)[ =n.
i€r

8.3 Simple Ratio Population Model

The simple ratio population model (R) stating that
)’i|xi~N(,3X,-, O'zx,-), i=1, .., N are independent
P

normal random variable, with mean Ep(V,- |x,) = Bx, and
variance Var (y,|x,) = o°X,.

Under the exponential response probability model
E(w,1y) = exp(ny) (75)

We have, the
il ~N (no®> + pB) X, szl.), i=1, .., m Thatis,

response distribution is

E,|x) = (na® + P, (762)

and
Var (y,|x,) = 0%, (76b)

Accordingly,

X

2
Ep(lll,-) =M, (n)zexp(n(ﬂxi)+ u (j i) 77

and
_d
E0w) = M, ()
2
= (B +nolﬁci)eXp(77(ﬂ)€i)+ ! (jxi ](78)
= E(v) M(n)
Also,

2
Cov,(y,, ») = (ncrle-)exp(n(ﬂxm roy J (79a)

2
and
7o’y
Cov, (v yi)_ o exp(ﬂ(ﬁx,-)+ > j
E,(1-w;) _(77 )

2
(79b)

2.2
1_exp[,,(ﬁ)9)+w

Hence, according to (52) and (65), we have

2
eXP(n(ﬂxi)ﬂ(j%)
E- (3)=Bx - (no"x) )
l—exp(ﬂ(ﬁ)ci)+77g)ciJ
Thus
eXP(ﬂ(ﬁxi)+ ;723%9, ]

7’iu'gn,r = ;yi+€2 ,Bxl—(ﬂolxl)

1—exp[77(,8)ci)+772§2)CiJ

+Y B

ies



376 |

Abdulhakeem A.H. Eideh / Journal of the Indian Society of Agricultural Statistics 66(3) 2012 359-380

= zyi "‘2:399 "‘2:399

ier er ies

-
I

icF 1—exp[77(,3xl-)+ 772‘;239' )

em[n(ﬂxi)ﬂz‘jx"]

= YA}?,ign - 2 (770'23‘%)

7 oo )

C2))

Toion = 20 + 2. B% + Y, Bx; (82)

ier ier ies

where

Under the response distribution given in (76), we
can show that the ML estimators of the simple ratio
population model are given by

ﬁOA—Izi’,nign + BR,nign = % (833)
. 1 1 - A 2
0—12€ nign 7;;()’: - (no—lz?,nign + ﬁR,m’gn )'xl)
2
L 5 (83b)
= _2_ Yi—| = |4
Fier X Xy
N
ﬂR nign E_r —TNog nign
(83¢)

2
I _
5yt —[yi—(%]xl]
Xy rierxi Xy

where 7] is the least square estimator obtained via the
relationship in (14a).
So that, if n = 0, that is, the missing value

mechanism is ignorable, then

o, yr
ﬁR,ign = — (843.)
X

and

Therefore,
* fI'? . zyi +ZIBR,ignxi +z:ﬁR,ignxi
8 icr icF ics
yr v
— )_C—NX (85)

r

which is the classical ratio estimator under nonignorable
nonresponse and under noninformative sampling
design.

Now, the Bias of ’ZA}i,nign is

B (f;zign )= Ep (f;zign - T)

em(n(ﬂ%)ﬂzfx"]
Z_Z (no’zxi) 252
ier 1_exp[n(ﬁxl)+772xl}
(86)

8.4 Simple Regression Population Model
The simple regression population model (1) stating

that yi|xi ~N (B, + Px, 0°),i=1, ..., N are independent
)

normal ‘random variable, with mean £ p(yl. lx) =B, + B,
and variance Var(y,|x)) = 0.

Under the exponential response probability model
E (wly) = exp(ny) (87)
We have, the response distribution is

i ~NMS + B+ fix, o), i=1, .., m.

That is,
E®,|x)=(no* + B,) + Bx,and Var (y,|x) = 6> (88)
Accordingly,

E,(;)=M,(n) =exp(n(ﬂo+m)+n; J (89)

and

d
wv) = —M
E o) = My (1)
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7720_2 ’7202
- ((,30+,31xi)+770'2)exp n(f +BAx)+ > (90) exp(ﬂ(ﬂo + 6% )+
= T~ 2 1(n0°) 1)
=E(v) M,(m) i l—exp(n(ﬂo + 6% )+ ’72 }
Hence,
7720—2 where
Covy (vio21)=(n0” Joxp| (A + Bx)+ =912 Toign = 2% + 2 (B + B )+ X (By+ Ax) (94)

and

€X : 77262
CovpWin) (521 p(n(ﬁﬁmﬁ 2 ]

—w. / 2 2
) a7
(91b)
Therefore,
2
——

E (5)=(f+Bx)-(n0")

2

l—exp[’?(ﬂo + 6% )+ re )

92)
Thus,

Typign = 2%+ 24 (By+ B )= (n0)

ier ier
2]

no’ J

o
2

o119
X

l—exp(n(ﬂo +,31xi)+ 5

+2, (B +Bx)

ies

= Y+ (B+Bx)+ X (K +Bx)

ier ier ies

o) exp(ﬂ(ﬂo+ﬂm)+n;]
-y 7702/ -
ier l—exp(n(ﬁ)+,@xi)+n;— J

ier ier i€s

Under the response distribution given in (88), we
can show that the ML estimators of the simple
regression population model are given by

7710—12‘,nign + ﬂL,Onign = yr _IBL,lnign)_cr (953)

ﬁL,Onign = (yr - BL,lnign)_C )_ ﬁlo}\—i,nign (95b)
Y65
ﬂL,lnign = &L ) (950)
2 (xi X )
and ier

é\-l%,nign = %2{()’1 - )_ BL,lnign (xl - X, )}2

ier

1 A N2
= _Z(yi_yi) (95d)
T ier
Hence,
5\71‘ = (ﬁlé—z,nign + IBL,Onign )+ ﬂlnignxi'
= yr - ﬂL,lnign)_cr + ﬂL,lnignxi
= yr + ﬂL,lnign (xl - Er) (956)

where 7] is the least square estimator obtained via the
following relationship in (14a).

So that, if n = 0, that is, the missing value
mechanism is ignorable, then

B = 3~ Prigs, (96a)
A 20 =3) -%)
IBL,lign = & ) (96b)
Z (xl - )
er

O,%,ign = %2{()’1 - yr)_ [%ign (xl _fr )}2

ier
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= —Z(y, )

iEer

(96¢)

and

IBL,Oign + ﬂL,lignxi'
= yr - ﬂL,lign)_Cr + ﬂL,lignxi

= yr + ﬁAL,lign ('xt - Er) (96d)

Therefore

A

Tjjon = f;gn = 2 Y+ 2 (BL,Oign + BL,lign"% )

ier ier

+ Z(BL,Oign + BL,lignxi )

i€s

= 2 Vi + BL,lign 2 X + BL,lign Z X;

ier ier i€s
+ (N - m)ﬁL,Oign

- Eyz +BL,1ign (N)?_mfr)

ier
+ (N - m)<§r - BL,lignfr )
= Wr + N:BL,lign (‘)Z _fr)

N| 5+ Biien (X -5 ©7)

which is the classical regression estimator under
nonignorable nonresponse and under noninformative
sampling design.

Now, the Bias of T

T} pign
B(fL,nign ) = E, (fL,nign - T): _Z[Ep (y,- )_ E: (y,- )]
CXP(U(ﬂo + )+

_Z (770-2\
1—exp[n(ﬁo+m)+

o

2

7720_2
3

(98)

9. TEST OF NONIGNORABLE NONRESPONSE

Pfeffermann and Sverchkov (1999) use
conventional t-correlation test for testing ignorability
of sampling design. Later Eideh and Nathan (2006), use

the another test based on the Kullback-Leibler
information measure. In this section we extend these
two tests for testing not at random missing value
mechanism.

A natural question arising for nonignorable
nonresponse is how to test if the messing value
mechanism in not missing at random or nonignorable,
so we cannot be ignored for the inference process, given
the available design information. Under the
assumptions of Section 2, it is easy to verify that
S0, m)= ];(yl.le), that is the messing value mechanism
is ignorable, if and only if

£010.m) = £,16) (99)
9.1 Conventional Correlation t-Statistic

Condition (99) allows us to use the t-correlation
test for testing ignorable nonresponse. If we have no
auxiliary variables, then using (14c), we can show that
the test of ignorable nonresponse is equivalent to testing
the set of hypotheses

Hy,= Corr, (3f, ¢)=0, k=12, .. (100)

where Corr, is the correlation under the response
distribution.

The conventional t-statistic can be used to test this
set of hypotheses. This test requires that the all
moments of the distribution exist.

If the size of the response set is m, and response
probabilities are unknown, then an estimate of

Corr, (ylk ,¢l) can be computed as
iy )(¢3 ¢3)

DIACESS) \/Zl 1(

where 3 =m 'Y " v, @ ¢ =1/, and ¢ b 1211

So we don’t need the values of the study or outcome
variable for units in the nonrespondents set.

éorr (yl , A)— (101)

9.2 Kullback-Leibler Information Test

A new test for response ignorability we propose
is based on the Kullback-Leibler information measure;
see Kullback (1978). For instance, under the
exponential response probability model, the condition



Abdulhakeem A.H. Eideh / Journal of the Indian Society of Agricultural Statistics 66(3) 2012 359-380 379

(99) implies that the test of response ignorability is
equivalent to testing the null hypothesis

Hy 16, m) = f,(vl0) or n=0 (102)
against the alternative hypothesis
H, : f(]0.m) # f(y]0orn#0 (103)

We can show, under the common mean population
model, see Section 8.2, that the minimum
discrimination information (for a single observation)
from the response log- likelihood is given by

fp (yi|9)

I(fr:fp)zE{log (104)

(o)

Note that I(f, : ];7 ) is a product of 1/2 and the
amount of change in the location parameter, and is
equal zero if and only if £(y|0, 1) = j; (v10), that is, if
n=20.

Now let r denote the values of the response data
set y,, ..., y,, of m independent and identically
distributed observations. Then the estimate of the
minimum discrimination information given in (104) is

Nt p | o (116
I(ﬁ-fp)—’(Hl'H“‘Er[log 1 (3116) ]

M (A
= (162 (105)
where 7 and 6%,nign are the appropriate estimators of
n and o respectively; see equations (67) and (68).
Asymptotically, under certain regularity conditions and
under the null hypothesis H,, 21 (H,:H,) given in

(105) has an asymptotic chi-square distribution with one
degree of freedom, see Kullback (1978, Section 5.5).
Thus, asymptotically

Pr(21 (H, : Hy )2 23q, )=

10. CONCLUSIONS

(106)

In this paper we consider a new method of
estimating the parameters of the superpopulation model
for single-stage sampling from a finite population when
the sampling design is noninformative and the response

mechanism is nonignorable. We derive some new
relationships between moments of the population
distribution before sampling and the response and
nonresponse distributions. Thus provides new
justification for the broad use of probability-weighted
estimators and pseudo likelihood estimator in estimating
finite population parameters in case of ignorable
nonresponse. We study Fisher information and
confidence intervals under the response distribution.
Furthermore we fit three population models, namely:
common mean population model, simple ratio
population model, and simple regression population
model, under noninformative sampling design and
under nonignorable nonresponse. In addition to the
estimation problem we introduce new predictors of the
finite population total for common mean population
model, simple ratio population model, and simple
regression population model. These new predictors take
into account the nonignorable nonresponse. Thus, also
provides new justification for the broad use of best
linear unbiased predictors (model-based school) in
predicting finite population parameters in case of
ignorable nonresponse.

The main features of the present predictors and
estimators are their behaviours in terms of the
nonignorable nonresponse parameters. Also the use of
the best linear unbiased predictors and estimators that
ignore the nonignorable nonresponse yield biased
predictors and bias estimators.

Finally, we introduce two new tests: conventional
t-test, and the Kullback-Leibler information test for
testing ignorability of missing value mechanism.

The paper is purely mathematical; it shows the role
of missing value mechanism in adjusting various
estimator, and predictors, for bias reduction, under
different population models and under exponential
response probabilities. Other modeling of conditional
expectation of probability of response given the values
of study variable can be studied in the same way.

I hope that the new mathematical results obtained
and the issue of the role of sampling weights when the
sampling design is noninformative (or ignorable) and
the missing data mechanism is not missing at random
(or informative or nonignorable) will encourage further
theoretical, empirical and practical research in these
directions.
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