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SUMMARY

Several forms of the Gompertz growth curve have been used extensively to describe the live weight of poultry over time.
This note reviews these current forms of the Gompertz curve and also presents a new parameterization which is particularly
useful for broiler chickens. Broiler chickens are processed well before attaining their asymptotic weight, and hence their time
series data have a relatively short time span compared to other poultry. The three parameters associated with the new model,
all of which are insightful for broilers, are (i) the time of maximum growth, (ii) the rate of maximum growth and (iii) the
weight at time of maximum growth. The estimation of these parameters directly from the new model facilitates the subsequent
statistical analysis. The model and statistical analysis are illustrated with data on chicken separately for each gender, aiding
comparisons. Both genders have similar times of maximum growth, however the males have a significantly larger weight at
this time, and a larger maximum rate of growth. The newly parameterized Gompertz model, with its new focus for analyzing
growth curves, may be applied to other poultry such as turkey, duck and goose as well.
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1. INTRODUCTION

Scientists have been developing mathematical
models to describe animal growth behavior for over 100
years. Seber and Wild (1989) review these
developments for the three main growth curves often
applied to poultry, namely the Gompertz, the logistic
and the Richards curves. The Gompertz curve was
proposed by Gompertz (1825) for life table analysis,
and was first used specifically as a growth curve by
Winsor (1932). The logistic curve was formulated by
Verhulst (1838) and apparently first used as a growth
curve by Robertson (1908). The Richards curve was
developed specifically for growth curves by Richards
(1959). These curves have recently found widespread
application for modeling growth curves of poultry,
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including turkey (Sengul and Kiraz 2005), chicken
(Norris et al. 2007), duck (Knitzetova et al. 1991),
goose (Knitzekova ef al. 1994), emu (Goonewardene
et al. 2003), ostrich (Cooper 2005), quail (Hyankova
et al. 2001) and partridge (Cetin et al. 2007). The
growth curves are shown in these papers to fit data from
the various poultry species apparently adequately, using
the standard regression model assuming independent
errors.

As chickens age, they become less efficient in
converting feed into meat, and hence commercial
practice is to process broiler chickens well before they
reach a biologically mature age. Therefore, weight data
for broiler chicken usually covers a relatively short time
span, and thus differs qualitatively from weight data sets
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for most other poultry. The Gompertz growth curve has
traditionally been favored for these short time series
over other growth curves. The shortness of the time
series has two other consequences. One is that such data
are typically devoid of autocorrelation. The other is that
it motivates a new parameterization of the Gompertz
model.

Section 2 of this note reviews the various forms
of the Gompertz model which are currently widely
applied in poultry research. Section 3 develops a new
parameterization of the model. Section 4 applies the
new model to data from male and from female broilers,
and Section 5 illustrates the statistical analysis using
parameters from the new and the standard forms of the
model. Concluding remarks are given in Section 6.

2. REVIEW OF THE GOMPERTZ GROWTH
CURVE AND ITS ANALYSIS

Let Y(?) be the weight of a broiler chicken at age
t. As noted, the three main growth models used for
poultry are the Richards curve, the logistic curve and
the Gompertz curve. The commonly used forms of the
Gompertz model used for poultry are reviewed and
fitted to our data in this section. The appropriateness
of the Richards and the logistic curves for describing
broiler growth will be discussed subsequently.

2.1 Standard Parameterizations

The classical form of the Gompertz model is
1) = Kexp{-b exp(—ct)} (D

where K, b and ¢ > 0 are parameters to be estimated.
Parameter K in (1) is called the “asymptotic” or
“mature” weight as 1 — oo, but there are no “intuitive
biological” interpretations of parameters b and c. A
frequently used variation is to assume that b and ¢ are
negative numbers, which would eliminate the negative
signs in (1). Another small variation of this model,
which is the one originally proposed by Winsor (1932),
is:

Y1) = Kexp{—exp(d—ct)} 2)

Both classical forms (1) and (2) are widely used for
poultry, including Sengul and Kiraz (2005), Cetin et al.
(2007), and Norris et al. (2007).

Maximum growth occurs at the “point of
inflection”. Many references, including Seber and Wild
(1989), give the time of inflection of the curve, Ling> the
weight at this time, Yo and the maximum growth rate
which occurs at this time, X,  , from (1) as

lip = log, (b)/c 3)
Y, = Ke 0
X = Kcle. 5)

max

Each of these three new parameters is interpretable
intuitively biologically, and each provides a
characteristic of chicken growth curves which is useful
for the subsequent model and its statistical analysis.

2.2 The Laird Parameterizations for Broiler
Chickens

Aggrey (2002) observes that “the original
Gompertz equation is a function of the asymptotic
(or mature) weight of birds. Broiler type birds rarely
attain mature body weight because they are usually
processed at slaughter age (42 d)”. In fact, in all our
data the broilers were processed at less than 60% of
their estimated asymptotic weight K. In light of this, an
alternative form of the Gompertz equation, proposed
originally by Laird (1966) and based on parameters
related to the time of hatching, is often used for broiler
chicken. The initial or “hatching weight”, ¥, = ¥(0), is
immediate from (1) as:

Y, = Ke'®, (6)

and the “instantaneous growth rate”, denoted L, found
by differentiating ¥(¢) and evaluating at 7 = 0, is:

L = be (7)

Substituting (6) and (7) into (1) gives the new
form:

Y(#) = Y exp{(L/c) - (I —exp(=cn)} (8)

This “Laird form” of the Gompertz equation has
a compelling mechanistic interpretation, with weight
starting at ¥ and increasing initially at rate L. This rate
of increase decays exponentially over time, as defined
by coefficient ¢. This model form has been used
frequently for broiler chicken data, including Mignon-
Grasteau ef al. (2001) and Aggrey (2002).
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A recent variation of this model is to substitute (6)
into (1), which yields

Y(#) = Kexp{(exp(-cn) - In(Y,/K)}  (9)

This form is used by Ricklefs (1985), Anthony
et al. (1991) and Porter et al. (2010), and is given also
in Thornley and France (2007).

3. ANEW PARAMETERIZATION

3.1 The Case for a New Parameterization

The four forms of the Gompertz model in (1), (2),
(8), and (9) contain six different parameters, namely
K b, ¢, d Y, and L, to describe a growth curve.
However the parameters tmf inf 3 and X _in(3)—(5)
are also of intrinsic interest for broiler chicken analysis.
The time of maximum growth, Lings is a key
characteristic of interest, and the weight, me, at this
intermediate time is a more natural parameter for
describing broiler growth than either of the other
weights, ¥ or K, at the two extreme times, namely at
t =0 ort— oo Similarly X, is a key descriptor of
growth which has immediate application for producers.
Yet none of these three parameters is incorporated
explicitly in the four commonly used forms of the
Gompertz curve.

This is often a significant problem for the
following reason. These three parameters, though not
incorporated explicitly into the model, have
nevertheless often been used in the subsequent analysis
of data. In the most common application, including in
our subsequent illustration, random samples of birds are
taken from a flock at specified times and the mean
weights are calculated at each time. A Gompertz curve
is then fitted to these mean weight data and the model
parameters are estimated. As examples, Cetin et al.
(2007) fits model (2) to mean weight data of partridge,
and Aggrey (2002) fits model (8) to mean weight data
of chicken. The specific parameters of the model are
then transformed, using relationships such as (3) — (5),
to estimate Ligr Yings and X . Comparative values of
these parameters are usually given for some
characteristic of interest, e.g. by gender in the two
examples. However the problem with this application
is that standard errors are not given for the estimates,
without which formal statistical hypothesis testing is not
possible. The transformations to ¢ and X

inf” znf ’ max
involve products or quotients of random variables and

hence only approximations are available to calculate
their standard errors (Taylor 1997). Subsequent
statistical inferences would be much simpler and more
exact in these applications if the parameters Linfs me,
and X, were in the model explicitly, whereby their
estimates and standard errors would be calculated
directly.

In a less common application, data are recorded
for individual birds over time, and a Gompertz model
is fitted to each individual data set, as e.g. in Anthony
et al. (1991). An analysis of variance (ANOVA) may
then be calculated for each of the response variables,
lipr YVigpr and X separately from the data on
individual birds. Standards errors are estimated by the
ANOVA, from which statistical inferences concerning
possible treatment effects are available. This procedure
clearly involves considerable data analysis. Though this
application does not require that the model be
parameterized explicitly in terms of Ligs Vi and X
for the subsequent analysis, such a parameterization

might still be enlightening.

3.2 The New Parameterization

We suggest that it is both natural and useful to
parameterize the Gompertz model in terms of the new
parameters, £, inf> Y, nf> and X . One step in this direction
is to substltute for b in (1) a function of 7, from 3).

This reparameterizes (1) as

Y(1) = K exp{—exp(—c(t — tmf))} (10)
which is given in Seber and Wild (1989). Surprisingly,
this parameterization appears not to be used for poultry.

Consider incorporating all three parameters 7, .,
mf, and X into the model. Substituting (4) and (5)

into (10), one can show that

Yo = mfexp{l —exp(-X,, (t—1, )/me)} (11)

We have not found form (11) of the Gomperiz
model used previously in the literature; for sure it is
not in common use in poultry research. Besides being
based on three biologically interpretable parameters, we
will show in the following section that this
parameterization has two useful properties for the
subsequent statistical analysis of data. The first is that
one can easily find plausible initial estimates for the
nonlinear fitting by inspection from the data, and the
second is that it can give standard error estimates
directly. These properties are illustrated in the following
section.
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The derivative of ¥(7), denoted X(¥), is the curve
for the growth rate. This curve is easily found to be

X)) = X, exp{l =X (1— tmf)/me

max
—exp(-X, (1, )Y, (12)
This function is insightful as, by definition, its
peak is X, which occurs at time Linf This time is often
denoted as 7, for obvious reasons.

4. AN ILLUSTRATION FITTING THE
GOMPERTZ MODEL TO DATA

4.1 Data on the Live Weight of Chicken

The live body weight of chicken was recorded by
gender in a nutrition experiment in 2006 at the Kharabo
Experimental Farm of Damascus University (Al-Rais,
2009). Random samples of 60 male and 60 female
chickens were chosen every week for eight weeks from
a flock of broilers. The data on their mean weight (gm)
vs age (d) are given in Table 1 and illustrated in Fig. 1
for the male and the female samples.

Table 1. Observed mean weights (gm) and predicted values
from the Gompertz curve for male ((3‘) and female
(@) chickens from 7 to 56 days of age

Age obs & Obs Q Pred & Pred Q
7 129 124 135 135
14 336 320 334 321
21 667 623 665 621
28 1125 1034 1125 1030
35 1684 1529 1681 1517
42 2274 2027 2283 2042
49 2891 2559 2884 2562
56 3446 3055 3448 3049
4000
3500
= 3000 Z
S
2 2500 7, pred male
£ 2000 A
o A ® obs male
o 1500
= s - - pred female
1000
obs female
500 s ¢ obsfemal
0 /I./ T T T T 1
0 10 20 30 40 50 60
Age (d)

Fig. 1. Observed and fitted mean values for male and female
chicken weight over time

The equality of the mean weights was tested at
each time of observation using a two sample t-test
(Neter et al. 1995). The mean weights were found to
be significantly different (p < 0.05) between male and
female chickens at each weekly age.

4.2 The Fitted Models

Considerable additional insight is provided using
the proposed reparameterized Gompertz curve. The
curve in (11) was fitted to the data, using the nonlinear
least squares program in SPSS (2007) and assuming a
regression model with independent errors. Nonlinear
least squares procedures require initial parameter
estimates, which are easy to provide from the data for
parameters /,, ., me, and X, ., in (11). Note, for
example, that the maximum observed weight gain for
male chickens in Table 1 was about 600 gm both for
the 7 days from ¢ = 35 to # = 42, as well as from ¢ = 42
to t = 49, and that at 7 = 42 the weight was ¥ = 2274.
Hence plausible initial estimates of the parameters
for male chickens are L™= 42 d, me= 2270 gm, and
X = 600/7 = 86 gm/d. Initial estimates for the other
parameterizations of the Gompertz model, especially
for parameter ¢, are not immediate from the data. This
advantage of model (11) facilitates the subsequent

statistical analysis of data.

The parameter estimates and their estimated
standard errors are given in Table 2. The estimates for
the male and female growth curves in (11) are: for me,
2253 and 1981 gm; for Lins 41.655 and 41.203 d; and
for X . 87 and 76 gm/d. The two curves are plotted
in Fig. 1, from which the estimated parameter values
are interpretable. For example, note that for the time
of maximum growth for males, i.e. at L™ 41.7 d, the
predicted size of a broiler and the slope of the curve,
Y= 2253 gm and X, = 87 gm/d respectively, are
consistent with visual observations from the graph. The
estimated growth rate curves from (12) are plotted in
Fig. 2. The estimated values of tmfand of X are easily
seen to be consistent with the graphs.

The fitted values for both curves are also given in
Table 1, and they give an exceptionally close fit to the
observed values. All residuals (ie. differences between
observed and fitted values) are very small. In fact, the
largest residual, for the female data at 1 =42 d, is only
15 gm (which is less than 1% of the observed value).



James H. Matis et al. / Journal of the Indian Society of Agricultural Statistics 66(2) 2012 327-334

| 331

Table 2. Parameter estimates and their estimated standard errors for the Gompertz curves for male (6‘) and female (Q)
chickens, with a statistical test of gender difference

Parameter | Est 6‘ SE (3‘ Est Q SE Q Difference SE Diff z p-value
K 6125.0000 73.6000 | 5386.0000 122.1000 739.0000 142.6000 5.18 <.001
b 5.0000 0.0290 4.8100 0.0510 0.1900 0.0590 3.22 .001
c 0.0386 0.0004 0.0381 0.0008 0.0004 0.0009 0.44 .660
Y, 41.4200 1.6060 43.8600 3.0070 —2.4400 3.4100 0.72 480
L 0.1930 0.0032 0.1830 0.0056 0.0100 0.0064 1.56 .108
L 41.6600 0.3410 41.2000 0.6530 0.4600 0.7400 0.62 .540
Y, 2253.0000 27.1000 1981.0000 44.9000 272.0000 52.4000 5.19 <.001
X o 87.0100 0.2520 75.5400 0.4110 11.4700 0.4800 23.90 <.001

The residuals are too small to be visible in Fig. 1. It is
very unusual in the published literature in poultry for
the residuals not to be visible in the graphs.

100
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50 4
/ 7
40 2
30
20 L
10

0 T T T T T 1
0 10 20 30 40 50 60

Age (d)

— rate male

- - - rate female

Growth Rate (gm/d)
\

Fig. 2. Estimated growth rate functions for male and for female
chicken data

The residuals have no clear pattern over time,
which suggests the lack of serial correlation. The
Durbin-Watson d statistics for testing for serial
correlation in the two time series are 2.95 and 1.99,
respectively, neither of which gives any indication of
positive autocorrelation (Neter e al. 1995). The absence
of serial correlation is likely due to the shortness of the
time series. We have observed significant serial
correlation in poultry data with longer series, and
remedial measures are proposed in these cases (Matis
et al. 2010 and 2011).

The goodness of fit may be assessed using the
mean squared residual, denoted MSR, which is a

measure of the residual variance. The MSR for the two
fitted Gompertz curves are 37.9 and 107.8 gm?. These
MSR are very small due to the tiny residuals. As a
contrast, the fitted logistic curves (as in Matis et al.
2010) for the male and female data have MSR of 2924
and 2913 gm?, respectively. The least squares procedure
failed to converge to give parameter estimates for both
Richards curves (see e.g. Matis ef al. 2011), as the
model has four parameters. This failure to converge is
not surprising in light of the typically very limited
number of data points describing broiler chicken
growth.

4.3 Fitting the Other Gompertz Forms

The standard and the Laird forms of the Gompertz
model were also fitted to the data in order to obtain the
standard error estimates directly. They obviously give
the same fitted curve. For the standard form in (1), the
parameter estimates for male and female chickens are:
for K, 6125 and 5386 gm; for b, 4.996 and 4.811; and
for ¢, 0.0386 and 0.0381d"". Only parameter K is easily
interpretable from the graph in Fig. 1. For the Laird
parameterization in (8), the parameter estimates are: for
Y,,41.4 and 43.9 gm; for L, 0.193 and 0.1834d!; and
for ¢, 0.0386 and 0.0381d~! respectively. Of these,
Y,and L are interpretable from the graph. The complete
results including the standard errors are given in
Table 2.
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5. STATISTICAL HYPOTHESIS TESTING

The primary forms of the Gompertz model in (1),
(8), and (11) contain eight different parameters, namely
K b c YL Lings me, and X . to describe the growth
curve. A primary question of interest is how sensitive
the various parameters are in detecting treatment
differences in general, in this case between the male and

female growth curves.

There are two ways to test whether there are
significant differences between the parameters. A
simple, sufficient way is to check whether the
confidence intervals overlap. For example, the 95%
confidence intervals for K, which are given directly in
SPSS (2007) output or can easily be calculated from
the estimates and their standard errors in Table 2, are
(86.4, 87.7) for male and (74.5, 76.6) for female
broilers. These confidence intervals do not overlap,
hence the observed 11.47 gm/d increase in X, in
Fig. 2 for males over females is statistically significant.
In identical manner, one could show that the 272 gm
increase in Y and the 739 gm increase in K for males
are also statistically significant.

An alternative, statistically more powerful method
is to calculate an approximate z-statistic to test the
difference directly. This test would proceed as follows:

1. For any given parameter, find the difference,
denoted d, between the estimates for male and
female broilers.

2. Find the estimated variance of d, denoted s dz‘
Letting s, and s, denote the standard errors for the
male and female estimates, the formula is

2

Sq

— 2 2
=85, ts,)"
3. Calculate the z-statistic,
z=ds,

4. Find the p-value for the test of equality assuming
approximate normality.

For example, testing the hypothesis of equality of X
for males and females in this case gives

d=11.47,5,=0.48 and z=23.9
which rejects the hypothesis of equality (p < 0.001).

Table 2 contains the results for this more powerful
test. There are significant increases for the male
chickens in parameters K, b, Yo and X . As noted
previously, the asymptotic weight K is not of primary
interest for broiler chickens, and b is not intuitively
interpretable biologically. The parameters Y and X,
which do describe differences of interest between male
and female broiler chickens are the ones given directly
in the new parameterization in (11). This may not
always be the case in other studies, hence we
recommend investigating all variables of interest,
estimating each one directly from one of the Gompertz
model parameterizations. In cases where there are more
than two groups to compare, one may use pairwise
comparisons with the previous z-statistic, with proper
error control utilizing the Bonferroni method and a
pooled variance estimate (Neter et al. 1996)

6. DISCUSSION

Gompertz growth curves have been used to model
animal growth for nearly 80 years, and they have found
particular application to poultry. The Gompertz model
has various forms, each with its own advantage. The
original, standard forms of the model are elegant
mathematically, and the Laird forms provide a clear
mechanistic description of growth. We suggest that the
new parameterization presented in this note has the
following advantages:

1. Each of the parameters, Linfs me, and X . is

interpretable biologically and is of interest in
broiler production.

2. The parameterization facilitates obtaining initial
parameter estimates.

3. Standard errors estimates may be obtained directly
using the parameterization.

We suggest as a rule fitting as many forms of the
Gompertz curve as necessary so that all parameters of
interest and their standard errors are estimated directly.

Though the new parameterization was suggested
by application to broiler chicken, the statistical
advantages of the new form of the model may carry
over to other applications in agriculture and also
engineering. In other applications, serial correlation
may be likely. Research is in progress to develop
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methods to mitigate autocorrelation in applications with
the Gompertz curve.
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