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SUMMARY

In this article we describe an application of small area estimation techniques to derive district level estimates of crop
yield for paddy in the State of Uttar Pradesh using the data on crop cutting experiments supervised under Improvement of
Crop Statistics (ICS) scheme and the secondary data from Population Census. The results show considerable improvement in

the estimates generated by using small area estimation method.
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1. INTRODUCTION

Crop area and crop production forms the backbone
of any agricultural statistics system. In India, crop area
figures are, by and large, compiled on the basis of
complete enumeration while the crop yield is estimated
on the basis of sample survey approach. The yield rate
estimates are developed on the basis of scientifically
designed crop cutting experiments (CCEs) conducted
under the scheme of General Crop Estimation Surveys
(GCES). A crop cutting experiment consists of
randomly identifying a field growing a specific crop,
locating and marking, as per specified instructions, a
plot of given size and shape in the selected field,
harvesting, threshing and winnowing the produce
within the plot and weighing the grains obtained. Since
the grain on the harvested day contains moisture, it is
stored and reweighted after driage to determine the
marketable form of produce. The GCES covers 68 crops
(52 food and 16 non-food) in 25 States and 4 Union
Territories. More than 500,000 CCEs are conducted
annually for this purpose. This much sample size is
sufficient to provide precise estimates of crop yield (i.e.,
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production per hectare of land) at the district level.
Although the CCE technique is an objective method of
assessment of crop yield, the procedure of conduct of
CCE is tedious and time consuming. Due to this and
some other factors, a tendency has been seen that the
enumerators do not follow the prescribed procedure for
the conduct of CCE in a number of cases. As a result
of this, the data quality under the GCES is observed to
be below the desirable limit. To improve the quality of
data collected under the GCES, a scheme titled
‘Improvement of Crop Statistics (ICS)’ has been
introduced by the Directorate of Economics and
Statistics, Ministry of Agriculture, Government of India
and implemented by the National Sample Survey Office
(NSSO) and the State Agricultural Statistics Authority
(SASA) jointly. Under this scheme, quality check on
the field operation of GCES is carried out by
supervising around 30,000 CCE by NSSO and State
Government supervisory officers. The findings of the
ICS results reveal that the crop cutting experiments are
generally not carried out properly resulting in data
which lacks desired quality.
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In view of limitation of infrastructure and
constraints of resources, there is a need felt to reduce
the sample size under GCES drastically so that volume
of work of the enumerator is reduced and also better
supervision of the operation of CCE becomes possible
leading to improvement in data quality. However,
reduction in sample size will have a direct bearing on
the standard error of the estimator. The reduced sample
size is more alarming when used for producing
estimates at district level since estimators based on the
sample data from any particular district can be unstable.
This small sample size problem can be easily resolved
provided auxiliary information is available to strengthen
the limited sample data from the district. The
underlying theory is referred to as the small area
estimation (SAE). The SAE techniques aim at
producing reliable estimates for such districts/areas with
small (or even no) sample sizes by borrowing strength
from data of other areas. The SAE techniques are
generally based on model-based methods, see for
example, Pfeffermann (2002) and Rao (2003). The idea
is to use statistical models to link the variable of interest
with auxiliary information, e.g. Census and
Administrative data, for the small areas to define model-
based estimators for these areas. Such small area
models can be classified into two broad types:

(1) Area level random effect models, which are used
when auxiliary information is available only at
area level. They relate small area direct estimates
to area-specific covariates (Fay and Herriot 1979)
and

(ii) Unit level random effect models, proposed
originally by Battese et al. (1988). These models
relate the unit values of a study variable to unit-
specific covariates.

In this article we explore an application of SAE
techniques to derive model-based estimates of average
yield for paddy crop at small area levels in the State of
Uttar Pradesh in India by linking data generated under
ICS scheme by NSSO (data collected with much
reduced sample size, however, the quality of data is
very high) and the Population Census 2001. Small areas
are defined as the districts of State of Uttar Pradesh in
India. It is noteworthy that we adopt the area level
model since covariates for our study are available only
at the area level. The paper illustrates how the ICS data
and Census data can be combined to derive reliable
district level estimates of crop yield. The rest of the

paper is organised as follows. Section 2 introduces the
data used for the analysis and Section 3 describes the
methodology applied for the analysis. In Section 4 we
present the diagnostic procedures for examining the
model assumptions and validating the small area
estimates and discuss the results. Section 5 finally sets
out the main conclusions.

2. DATA DESCRIPTION

In this study we use data pertaining to supervised
CCE on paddy crop under ICS scheme for kharif season
for the State of Uttar Pradesh in India collected during
the year 2009-10. The variable of interest for which
small area estimates are required is yield for paddy
crop. We are interested in estimating the average yield
at the district level. In the State of Uttar Pradesh there
are 70 districts, however supervision, on a sub-sample,
of crop cutting experiments work under ICS scheme is
carried out in 58 districts only and there is no sample
data for the remaining 12 districts. In what follows, we
refer these 12 districts as the out of sample districts.
These 70 (58 in sample and 12 out of sample) districts
are the small areas for which we are interested in
producing the estimates. The area specific sample sizes
for these 58 sample districts range from minimum of 4
to maximum of 28 CCE with average of 11 CCE
(see Fig. 1). A total of 655 CCE were supervised for
recording yield data in the State of Uttar Pradesh for
paddy crop for the year 2009-10. We see that in a few
districts the sample size is small so the traditional
sample survey estimation approaches lead to unstable

estimate. In addition, in 12 districts due to non
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Fig. 1. Distribution of district-specific sample sizes in
sample districts.
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availability of sample under ICS, we can not estimate
paddy yield. Indeed, there is no design based solution
to provide estimates for these 12 out of sample districts
(Pfeffermann 2002). The SAE is an obvious choice for
such cases. The covariates (auxiliary variables) known
for the population are drawn from the Population
Census 2001. Note that use of covariates from the 2001
Population Census to model yield data of paddy crop
from the 2009-10 ICS scheme data may raise issues of
comparability. However, the covariates used in this
study are not expected to change significantly over a
short period of time. There were 121 covariates
available from these sources to consider for modelling.
However, we did some exploratory data analysis, for
example, first we segregated group of covariates with
significant correlation with target variable and
subsequently we implemented step wise regression
analysis. Finally we choose model with two significant
variables, average household size (HH_SIZE) and
female population of marginal household
(MARG_HH_F) with 26 per cent R?. The residual
diagnostic plots in Fig. 2 indicate that fitted model is
reasonable. For SAE analysis we therefore used these
two covariates. Note that for SAE of 12 out of sampled
districts we used the same two covariates since we
assume that the underlying model for sample areas also
holds for out of sample districts.

3. SMALL AREA ESTIMATION
METHODOLOGY

In this Section we describe the underlining theory
of SAE used in the paper. In particular, we elaborate
SAE based on the area level model (Fay and Herriot
1979). It was proposed to estimate the per-capita
income of small places with population size less than
1000. This model relates small area direct survey
estimates to area-specific covariates. The SAE under
this model is one of the most popular methods used by
private and public agencies because of its flexibility in
combining different sources of information and
explaining different sources of errors. To start with, we
first fix our notation. Throughout, we use a subscript d
to index the quantities belonging to small area or district
d(d=1, ..., D), where D is the number of small areas
(or districts) in the population. Let éd denotes the direct
survey estimate of unobservable population value 68, for
aread (d =1, ..., D). Let x,; be the p-vector of known
auxiliary variable, often obtained from various
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Fig. 2. Histogram and normal P-P plot of regression
standardized residual.

administrative and census records, related to the
population mean @,. The simple area specific two stage
model suggested by Fay and Herriot (1979) has the
form

We can express model (1) as an area level linear
mixed model given by

Oy = x\B +uy+e;d=1, .., D. )
Here P is a p-vector of unknown fixed effect

parameters, u,’s are independent and identically
distributed normal random errors with E(z;) = 0 and
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Var(u,) = 0'5 , and e,’s are independent sampling errors
normally distributed with E(e; | 8,) = 0, Var(e, | 6, =
a§ . The two errors are independent of each other
within and across areas. Usually, 0'§ is known while
0'5 is unknown and it has to be estimated from the data.
Methods of estimating 0'3 include maximum likelihood
(ML) and restricted maximum likelihood (REML)

under normality, the method of fitting constants without
normality assumption, See Rao (2003, Chapter 5). Let
6'5 denotes estimate of O'E . Then under model (2), the
Empirical Best Linear Unbiased Predictor (EBLUP) of
0, is given by

G5B-UP = XUB +7q(G — X4B) = s + (L 7)xgh

3)
where 75 = 62/(c2 +62) and B is the generalized
least square estimate of . It may be noted that éc'fBLUP

is a linear combination of direct estimate éd and the

model based regression synthetic estimate ngi , with
weight 74 . Here 74 is called “shrinkage factor” since
it ‘shrinks’ the direct estimator, éd towards the

synthetic estimator, Xgﬁ . For out of sample areas
(i.e. areas with n; = 0), the EBLUP predictor (3) leads

to synthetic predictor of the form é(jSYN = xgﬁ .

Prasad and Rao (1990) proposed an approximately
model unbiased (i.e. with bias of order o(1/D) ) estimate
of mean squared error (MSE) of the EBLUP (3) given by

MSE@FPP) - g (62) + Gpq (67)

205462 Var(6Z), @
where

G4 (62) = 7405,
02 (62) = (1—74)?x§ Var (B)xq, 2nd
0 (82) = {0 I(aF + 67)° var (67)

. N 2D (2, A2\

when

estimating 6'3 by method of fitting constants. See Rao

(2003, Chapter 5) for details about various theoretical
developments. Under model (2), the MSE estimate for

the synthetic predictor édSYN is given by MélE(é(jSYN)

= x| Var (B)x4 + 62.

4. EMPIRICAL RESULTS

This Section presents the results from data and
theory described in previous Sections. Some diagnostics
to examine the reliability of small area estimates are
carried out and the bias diagnostics and coefficient of
variation are used to validate the reliability of the
model-based small area estimates. 95 per cent
confidence (CI) intervals for both direct and model-
based estimates are also computed.

The bias diagnostics is used to investigate if the
model-based estimates are less extreme when compared
to the direct survey estimates. In addition, if direct
estimates are unbiased, their regression on the true
values should be linear and correspond to the identity
line. If model-based estimates are close to the true
values the regression of the direct estimates on the
model-based estimates should be similar (Ambler ez al.
2001 and Chandra ef al. 2011). We plot direct estimates
on Y-axis and model-based estimates on X-axis and look
for divergence of regression line from ¥ = X and test
for intercept = 0 and slope = 1. The bias scatter plots
of the direct estimates against the model-based
estimates are given in Fig. 3. From the bias diagnostic
it is found that the intercept fails this diagnostic
(i.e., intercept is different from zero). The plots show
that the model-based estimates are less extreme when
compared to the direct estimates, demonstrating the
typical SAE outcome of shrinking more extreme values
towards the average. The coefficient of variation (CV)
are computed to assess the improved precision of the
model-based estimates compared to the direct estimates.
The CVs show the sampling variability as a percentage
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Fig. 3. Bias diagnostic plots for sample districts. Direct estimates
versus model based estimates, y=x line (Solid) and linear
regression fit line (dash).
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of the estimate. Although, there are no internationally and model-based. The figure shows that the estimated
acceptable tables for judging what CV is too high, CVs for the model-based estimates have a higher degree
estimates with large CVs are considered unreliable. of reliability when compared to the direct survey
Fig. 4 shows the CVs for the direct survey estimates estimates. Table 1 presents the district-wise model-

Table 1. Districts wise values of model-based estimate, 95 per cent confidence interval limits and coefficient of variation
(CV) for paddy (green) yield (gm/43.3012 sq. mt.)

Districts Estimate | Lower | Upper | CV, % | Districts Estimate| Lower [ Upper | CV, %
Saharanpur 17759 | 13667 | 21851 | 11.52 | Ambedkar Nagar 16667 | 13652 | 19681 9.04
Muzaffarnagar 17208 | 11735 | 22681 | 15.90 | Sultanpur 16793 | 13899 | 19688 8.62
Bijnor 18927 | 16306 | 21547 6.92 | Bahraich 14735 | 13606 | 15865 3.83
Moradabad 16781 | 12329 | 21232 | 13.26 | Shrawasti 15168 | 10783 | 19553 | 14.46
Rampur 17174 | 16148 | 18200 2.99 | Balrampur 12338 9206 | 15470 | 12.69
Jyotiba Phule Nagar| 11622 8894 | 14351 | 11.74 | Gonda 16708 | 14611 | 18805 6.28
Ghaziabad 16726 | 11101 | 22351 | 16.82 | Siddharthnagar 12921 9808 | 16033 | 12.05
Bulandshahar 18116 | 14555 | 21677 9.83 | Basti 14165 | 10331 [ 17999 | 13.53
Aligarh 14278 | 10277 | 18280 [ 14.01 | Sant Kabir Nagar 13273 | 11626 | 14920 6.20
Mathura 12688 8322 | 17054 | 17.20 | Mahrajganj 18640 | 14465 | 22815 | 11.20
Etah 12508 | 10274 | 14742 8.93 | Gorakhpur 12437 9608 | 15266 | 11.37
Mainpuri 13711 9065 | 18357 | 16.94 | Kushinagar 16699 | 12301 | 21096 | 13.17
Budaun 13307 9961 | 16652 | 12.57 | Deoria 8866 6143 | 11588 | 15.35
Bareilly 14140 | 10976 | 17305 | 11.19 | Azamgarh 12033 | 10073 | 13993 8.14
Pilibhit 14687 | 10207 | 19166 | 15.25 | Mau 10489 7090 | 13888 | 16.20
Shahjahanpur 18411 | 16184 | 20638 6.05 | Ballia 7763 5056 | 10470 | 17.44
Kheri 15079 | 12023 | 18135 | 10.13 | Jaunpur 16418 | 13286 | 19549 9.54
Sitapur 16422 | 12836 | 20007 | 10.92 | Ghazipur 11279 8606 | 13953 | 11.85
Hardoi 19315 | 16665 | 21965 6.86 | Chandauli 12229 8333 | 16125 | 15.93
Unnao 14005 | 11188 | 16821 | 10.05 [ Varanasi 17063 | 12659 | 21468 | 12.91
Lucknow 18242 | 13196 | 23289 | 13.83 | Sant Ravidas Nagar 7133 2939 | 11327 | 29.40
Rae Bareli 19287 | 16128 | 22446 8.19 | Mirzapur 15052 | 11815 | 18290 | 10.76
Farrukhabad 10446 7420 | 13471 | 14.48 | Sonbhadra 16328 | 11079 | 21578 | 16.08
Kannauj 30450 | 27119 | 33782 547 | Meerut” 14984 8898 | 21069 | 20.31
Etawah 15431 | 13899 | 16964 4.97 Baghpat# 12442 6182 | 18702 | 25.16
Auraiya 21021 | 17121 | 24922 9.28 | Gautam Buddha Nr'| 16704 | 10436 | 22973 | 18.76
Kanpur Dehat 19547 | 15717 | 23378 9.80 | Hathras” 15258 9158 | 21357 | 19.99
Kanpur Nr 16315 | 12090 | 20539 | 12.95 Agra# 14803 8716 | 20890 | 20.56
Banda 13375 8039 | 18711 | 19.95 | Firozabad” 14391 8289 | 20492 | 21.20
Fatehpur 15881 | 11406 | 20355 | 14.09 | Jalaun” 15186 9048 | 21325 | 20.21
Pratapgarh 16437 | 12543 | 20331 | 11.84 | Jhansi® 17378 | 11209 | 23547 | 17.75
Kaushambi 16624 | 11363 | 21884 | 15.82 Lalitpur# 16928 | 10684 | 23172 | 18.44
Allahabad 20218 | 16164 | 24272 | 10.03 Hamirpur# 16520 | 10273 | 22767 | 18.91
Barabanki 18756 | 15176 | 22336 9.54 | Mahoba" 16285 | 10030 | 22540 | 19.21
Faizabad 16556 | 12690 | 20422 | 11.68 | Chitrakoot” 14948 8773 | 21122 | 20.65

*Districts with no sample information under ICS, Nr denotes Nagar
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based estimates, 95 per cent confidence interval (CI)
limits and percentage coefficient of variation for paddy
crop yield for all 70 (i.e. both for 58 sample and 12 out
of sample) districts. In right hand side part of Table 1,
results for last 12 districts correspond to out of sample
districts. The CV results in Table 1 reveal that average
CV of these out of sample districts is 20.10 per cent.
Fig. 5 shows the 95% CI of the model-based and the
direct survey estimates. It is apparent that the standard
errors of the direct estimates are large and therefore the
estimates are unreliable.

5. CONCLUSIONS

This paper illustrates that the small area estimation
technique can be satisfactorily applied to produce
reliable district level estimates of crop yield using CCE
supervised under ICS scheme. Although the ICS
supervised crop cutting experiments number only
30,000 in the entire country i.e. the sample size is very
low, the collected data is of very high quality. The
estimates generated using this data are expected to be
relatively free from various sources of non-sampling
errors. Further small area estimation technique provides
estimates for those districts where there is no sample
information under ICS and so direct estimates can not
be computed. It is, therefore, recommended that
wherever it is not possible to conduct adequate number
of crop cutting experiments due to constraints of cost
or infrastructure or both, small area estimation
technique can be gainfully used to generate reliable
estimates of crop yield based on a smaller sample.
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