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SUMMARY

A method of construction of block designs for partial triallel crosses for p > 3 lines is proposed by using the mutually
orthogonal Latin squares of order p, where p is a prime or power of a prime. Optimality of these designs is discussed by using

the approach of Das and Gupta (1997).
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1. INTRODUCTION

Two Latin squares of the same order are said to
be orthogonal to each other if, when they are
superimposed on one another, every ordered pair of
symbol occurs once and only once in the composite
Latin square. A set of p — 1 Latin squares of order p is
called mutually orthogonal Latin squares (MOLS), if
they are pair-wise orthogonal. Orthogonal Latin squares
are used for the construction of balanced incomplete
block designs, square lattice designs, orthogonal arrays
and quasi factorial designs. A set of p — 1 orthogonal
Latin squares of side p can always be constructed if p
is a prime or power of a prime. If p =41+ 2, 1> 1,
then there exist more than one mutually orthogonal
Latin squares of order p [Bose ef al. (1960)]. An
exhaustive list of these squares is available in Fisher
and Yates (1973) and most extensive treatment of Latin
squares can also be found in D'enes and Keedwell
(1991). In this article, we are also using the MOLS in
construction of mating designs for partial triallel cross
experiments.

Triallel crosses form an important class of mating
designs, which are used for studying the genetic
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properties of a set of inbred lines in plant breeding
experiments. For p inbred lines, the number of different
crosses for a complete triallel experiment is 3 PC; =
p(@—1)(p—-2)2ofthetype (i xj) x k,i#j# k=0,
1,2, ..., p—1. Rawlings and Cockerham (1962) were
the first to introduce mating designs for triallel crosses.

Triallel cross experiments are generally conducted
using a completely randomized design (CRD) or a
randomized complete block (RCB) design as
environmental design involving 3 PC, crosses. Even
with a moderate number of parents, say p = 10, in a
triallel cross experiment; the number of crosses
becomes unmanageable to be accommodated in
homogeneous blocks. For such situations, Hinkelmann
(1965) developed partial triallel crosses (PTC)
involving only a sample of all possible crosses by
establishing a correspondence between PTC and
generalized partially balanced incomplete block designs
(GPBIBD). Ponnuswamy and Srinivasan (1991) and
Subbarayan (1992) obtained PTC using a class of
balanced incomplete block (BIB) designs.
Dharmlingum (2002) also constructed PTC using the
Trojan squares. Actually Trojan squares are MOLS. Our
method of construction of PTC is based on Rao (1956).
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Other research workers who contributed in this area are
Arora and Aggarwal (1984, 1989), Ceranka et al.
(1990). More details on triallel cross experiments can
be found in Hinkelmann (1975) and Narain (1990).

Following Gupta and Kageyama (1994) and Dey
and Midha (1996), Das and Gupta (1997) constructed
block designs for triallel crosses by using the nested
balanced block design with parameters v=p, b,, b,, k,,
k, = 3. Their method yields designs which are
universally optimal in D (p, b, k), the class of connected
block designs for triallel crosses in p lines with b blocks
each of size k such that the total number of experimental
units are < 3 PC;. For optimality of two lines and four
lines crosses see Parsad et al. (2005).

In this paper, we are proposing a method of
construction of block designs for triallel cross
experiments by using the mutually orthogonal Latin
squares. These designs are found to be optimal in the
sense of Das and Gupta (1997). The paper is structured
as: in section 2 we gave some definitions and in section
3 we discussed a method of construction of these
designs. In section 4 we discussed the optimality of
these designs.

2. SOME DEFINITIONS

1. Definition: The triallel cross (T.C.) has been
defined by Rawlings and Cockerham (1962) as a
set of all possible three-way hybrids among a
group of (inbred) lines. Given three lines 7, j and
k, there are distinct triallel crosses, namely
(ij) k, (j k) i and (i k) j involving these three lines.

Thus given a set of p lines, the triallel cross will
consist of a set of [p (p — 1) (p — 2)/2] three way
crosses.

2. Hinkelmann (1965) proposed the definition of
PTC as given below:

Suppose we have p lines which are denoted by
i=1,2, .., p. A three way cross is then
represented by a triplet (i j) k, where (i j) stands
for an offspring of the single cross i x j. We shall
call i and j half-parents and k full-parent. The
crosses (i j) k, (j i) k, k (i j), and k (j i) are
considered to be identical in three way crosses.
Then PTC can be defined as follows:

A set of matings is said to be a PTC if it satisfies
the following conditions:

(i) Each line occurs exactly r,, times as half-
parent and 7. times as full parent.

(i) Each cross (i j) k occurs either once or not at
all.

The total number of crosses is p r, and
ry=2r. Letr,=r, whence r,, = 2r.

3. CONSTRUCTION OF PARTIAL TRIALLEL
CROSSES

It is known that when p is prime, it is possible to
construct (p — 1) orthogonal Latin squares in such a way
that they differ only in a cyclical interchange of the
rows from 2™ to p. Such squares are taken for the
construction of incomplete block designs for partial
triallel crosses. For p = 6, such squares cannot be
constructed.

Assume that there are p inbred lines and it is
desired to find an incomplete block design for a mating
design for partial triallel crosses. Out of (p — 1) MOLS,
consider any two MOLS and superimpose one square
over the other square. We obtain a composite Latin
square in which each cell contains ordered pair of
integers (i, j) taking values from 0 to p — 1. These
ordered pairs of integers occur once in the composite
square. Border the columns of the composite Latin
square with integers from 0 to p — 1 in the same order
as they occur in the first row. Omitting the first row
we now have, including the bordering elements,
p (p —1) ordered pair of integers corresponding to the
p(p—1) cells. To the ordered pair (i, j) corresponding
to each cell, we attach border elements corresponding
to their columns. This provides a mating design for
partial triallel cross. If we consider the rows of these
mating designs as blocks, we get two types of block
designs for triallel cross with parameters v=p (p — 1),
b=p-lLk=pr=landv=pp-1/2,b=p-1,
k=p,r=2.

Since we have (p — 1) MOLS and taking any two
at a time, we obtain (p — 1) (p — 2)/2 composite Latin
squares. Using the procedure described above we get
(» — 1) (p — 2)/2 mating designs for partial triallel cross
which can be classified in two types as (i) (p — 1)
(p — 3)/2 mating designs as d, in which all triallel
crosses are repeated once. (ii) (p — 1)/2 mating designs
as d, in which all triallel crosses repeated two times.
The degree of fractionation for both &, and d, is
2/(p —2) and 1/(p — 2), respectively.
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The method of construction is illustrated below.

Example: Let us consider the mating design for partial
triallel cross experiment for p = 5 parents. For p = 5,
we have four mutually orthogonal Latin square of order
5 as given below:

L L,
0 1 2 3 4 o 1 2 3 4
1 2 3 4 0 2 3 4 0 1
2 3 4 0 1 4 0 1 2 3
3.4 0 1 2 12 3 4 0
4 0 1 2 3 3 4 12
L, L,
0 1 2 3 4 o 1 2 3 4
3.4 0 1 2 4 0 1 2 3
1 2 3 4 0 34 0 1 2
4 0 1 2 3 2 3 4 0 1
2 3 4 0 1 12 3 4 0

Consider any two mutually orthogonal Latin
squares and superimpose any one over the other. Remove
first row in each composite Latin square, and then attach
border elements in each cell corresponding to their
column. We get following six mating designs for partial
triallel cross. If we consider the rows of these mating
designs as blocks, we get two types of block designs
D(v, b, k) for triallel cross with parameters
v=20,b=4,k=5r=1landv=10,b=4,k=5r=2.

I
I (1x2)0(2x3)1(3x4)2@x0)3(0x1)4
Qx4)0(3x0)1@x1)2(0x2)3(1x3)4
BGx1)0@Ax2)1(0x3)2(1x4)3(@2x0)4
(4x3)00x4)1(1x0)2Q2x1)3@3x2)4

Rl

I

—_—

(2x3)0(3x4)1@x0)20x1)3(1x2)4
@x1)00x2)1(1x3)2@2x4)3@3x0)4
(1x4)02x0)1(3x1)2(4x2)3(0x3)4
Bx2)0(@4x3)1(0x4)2(1x0)3@2x1)4

Rl

III

—_—

(1x3)02x4)1(3x0)2@x1)3(0x2)4
@x1)0(3x2)1(@4x3)2(0x4)3(1x0)4
Bx4)0(@Ax0)1(0x1)2(1x2)3(@2x3)4
(4x2)00x3)1(1x4)202x03@3x1)4

Rl

v

—_—

(1x4)02x0)1(3x1)2(4x2)3(0x3)4
2x3)0(3x4)1@x0)20x1)3(1x2)4
Bx2)0(@4x3)1(0x4)2(1x0)3@2x1)4
@x1)00x2)1(1x3)2@2x4)3@3x0)4

Rl

v

—_—

Qx4)0(3x0)1@x1)2(0x2)3(1x3)4
(4x3)00x4)1(1x0)2Q2x1)3@3x2)4
(1x2)0(2x3)1(3x4)2@x0)3(0x1)4
BGx1)0@Ax2)1(0x3)2(1x4)3(@2x0)4

Rl A

VI

—_—

BGx4)0(@Ax0)1(0x1)2(1x2)3(@2x3)4
(1x3)02x4)1(3x0)2(@x1)3(0x2)4
(4x2)00x3)1(1x4)2@2x03@3x1)4
Cx1)0(3x2)1(@4x3)2(0x4)3(1x0)4

Rl

By inspecting above mating designs we find that
the mating designs Il and IV are replica of each other
and each triple cross is repeated twice in each mating
design. The rest four mating designs are also replica of
each other but each triple cross occurs only once in each
mating design. Thus we get two types mating designs,
designs 1, I, V and VI belong to class d, and designs
IT and 1V belong to class d,. When (p — 1) is even we
get above two types of mating designs otherwise we
will get only one type of design. The choice between
d, and d, depends on the degree of fractionation of the
triallel crosses.

Note: For given (p — 1) MOLS, if we superimpose three
MOLS at a time and omitting the first row, we obtain
a mating design for partial triallel cross. So in this way
we get [(p — 1) (p —2) (p — 3)/6] mating designs. Now
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exchanging the position of superimposing squares, for
example (L, L,: L;) we may get another two mating
designs (L, L;: L,) and (L,, L;: L,). With the result we
get two types of mating designs containing 3p (p — 1)
and p (p — 1)/2 distinct crosses, respectively, satisfying
the property of triallel crosses. Thus in total we get
[ = 1) (p = 2) (p — 3)/3] mating designs.
The degree of fractionation for these designs are of
order 6/(p —2) and 1/(p — 2), respectively. Dharmlingam
(2002) used this technique in the construction of PTC
by the name of Trojan square design.

4. OPTIMALITY

For the analysis of data obtained from design d we
will follow Das and Gupta (1997). Let r, and s, denote
the number of replication of the /" cross and the number
of replications of the ih line in different crosses,
respectively, ind [t=1,2, ..., p (p—1) (p — 3)/3;
i=1,2, .., pl Evidently, Xr = bk, Xs= 3bk and
n = bk, the total number of observations. In a triallel
cross experiment, the genotypic effect of the hybrid
consists of single line effects, two line effects and three
line specific effects. However, if we assume that for a
partial triallel cross experiment (in which every line
appears as half parent an equal number of times, say
r;» and every line appears as full parent an equal
number of times, say 7., and each of the crosses (ij)k
appears at most once) the two line specific effects and
three line specific effects are not of importance, still
the line effects are of two types viz effects as half parent
and effect as full parent i.e., the ordering of lines in a
triallel cross is important. Some plant breeders argue
that these ordering effects can also be averaged over
line effects. Das and Gupta (1997) considered the
situations where ordering of lines in a triallel cross is
not of importance. We will take the following additive
model for the observations obtained from design d.

3.1)

where y be n x 1 vector of observations, 1 is the n x 1
vector of ones, Aj is the n x p design matrix for lines
and A5 is an x b design matrix for blocks, that is, the
(h, D™ element of A{ (respectively, of A%) is 1 if the
h™ observation pertains to the /! line (respectively, of
block) and is zero otherwise. U is a general mean, g is
a p x 1 vector of line parameters, B is a b x 1 vector of
block parameters and e is a n x 1 vector of residuals.

Y =il +A{ g+ Ap Bre

It is assumed that vector P is fixed and e is
normally distributed with E(e) = 0, V(e) = o> I and
Cov(B, e) = 0, where I is the identity matrix of
conformable order.

The method of least squares for the analysis of
proposed design d leads to the following reduced
normal equations for estimating the linear functions of
the general combining effects of lines under model

3.1).
-1 ’ ..
C,=G,~N,Kg'N/=(c,) (ij=1.2....p) (3.2)

where G, = Ay Ay =(g,,/), &, =5, = 3(p— 1) and for
i#1, g, is the number of crosses in d in which the
lines i and i” appear together. N, = A; A5 = (n 4> My
is the number of times the line i occurs in block j of d

and K, = A, A5 is the diagonal matrix of block sizes.

Following Dey and Midha (1996) we have the
following identities which are useful for obtaining the
information matrix C,.

b
(i) Y =3p-D

=1

b
(ii) an? =9p-1)
-1 il

b
(iii) Y, NgiNgq =6

1=1, i

(3.3)

where n;, is the number of times ith line occurs in /th
block in d and n, is the number of times ith and i'th
lines occur in /th block in d. The proofs are all identies
are easy. Therefore we are not producing here.

Using above identities (3.3), the information
matrix C, is given by

3(p-D(p-3) 3(3-p) 3(3-p)
3(3-p) 3(pD(p-I3 3(3-p)
Cd :—]p-
3(3-p) 3(3-p) 3(p-D(p3)

34
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A design d is said to be connected if and only if
rank(C ) = (p — 1) or equivalently, if all elementary
contrast among gca effects are estimable using design
d. A connected design d is variance balanced if and only
if the information matrix C, is completely symmetric
i.e., the matrix C, has all the diagonal elements equal
and all the off diagonal elements equal. Now we will
prove that rank(C)) = p — 1.

Theorem 1. For proposed design d, the rank of
information matrix (C,) is equal to p — 1.

Proof: The information matrix C, can be expressed as

Ca,=9(1p—p‘1 L1)=6A (3.5)

Here 6 =3 (p—3)and A= (I~ = 1,1'), where
I is the identity matrix of order p andp 1, is a
p-component vector of all 1's. Since A is an idempotent
symmetric matrix of order p and has a rank equal to its
trace. The trace of A is (p — 1). Hence the rank (C)) is
also p — 1. This completes the proof.

Since rank (C,) = p — 1. Therefore the design d is
connected and also variance balanced because the
matrix C, has all the diagonal elements equal and all
the off diagonal elements equal. Now the trace of
C,is

Trace(C)=3 (p-3)(p-1)

The criterion for the optimality is the constancy
of the variances for all pair wise comparisons of the
lines together with the minimization of this variance.
To show that the designs obtained by using the method
of section 3 are universally optimal. We will use the
following theorem given by Das and Gupta (1997). For
given positive integers p, b, k, D(p, b, k) denotes the
class of all connected block designs with p lines, b
blocks and common block size.

(3.6)

Theorem 2. Let d € D(p, b, k), be a block design for
triallel crosses satisfying

(i) Trace (C))<k~'h {3k(k—1-2x)+px(x+1)},
and

i) C,is completely symmetric
d p y sy

Then d is universally optimal in the relevant class
of competing design in D(p, b, k) and in particular is
A-optimal.

Now consider d € D(p, b, k) constructed by using
the mutually orthogonal Latin squares with parameters
v=p(@-1),b=p—1, k=p and applying Theorem 2,
we see that

Trace(C,)

k'b B3k (k—1-2x)+px(x+ 1)}

3 (-1 (p-3), which is equal to the
value given at (3.6)

Hence we state the following theorem.

Theorem 3. Let d € D(p, b, k), be a block design for
triallel crosses constructed by using the mutually
orthogonal Latin square satisfying

(i) Trace(C)=3(p-1)(p-3)
(i) C,is completely symmetric.
(iii) 3 k/p is an integer.

Then d is universally optimal in the relevant class
of competing design in D(p, b, k) and particularly is A-
optimal.

5. CONCLUSION

According to Das and Gupta (1997), the proposed
designs belong to a class where 3 k/p is an integer and
the optimality result of d is relevant to this class.
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