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SUMMARY

Fractional factorial designs have received considerable attention in the last twenty five years due to their applicability in
a wide variety of situations. These have been successfully used for planning experiments in agriculture, physical and chemical
sciences, medicine and industry and have been found very useful in quality improvement work. The literature on this subject
is already voluminous and continues to grow. In this article, an overview of some of the recent developments in this area is

presented.
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1. INTRODUCTION AND PRELIMINARIES

Factorial experiments are planned for exploring
the effects of several controllable variables. The general
scenario is one in which there is an output variable
which is hypothesized to depend on some controllable
or, input variables. The input variables are termed as
factors. Each factor has at least two settings, these
settings being called /evels. Any combination of the
levels of all the factors under consideration is called a
treatment combination. The aim of the experiment is
to explore the effects of individual factors and also their
possible interrelationships. Factorial experiments have
wide applications in many diverse areas of human
investigation, including agriculture, physical and
chemical sciences, medicine, manufacturing industry
and quality control work.

Consider a factorial experiment involving n (= 2)
factors F|, F,, ..., F,, where for 1 <i<n, F,appears at
m, levels and m; > 2. If in particular, m; = m, = - =
m, = m, say, then this set up corresponds to a symmerric
m" factorial; otherwise, it corresponds to an asymmetric

or, mixed level factorial. For 1 < i < n, let the levels of
F, be coded as 0, 1, ..., m, —1. A typical treatment
combination is represented by an n-tuple j, j, ... j, and
the effect due to this treatment combination is denoted
by 7, j, - J,) (0<j,<m,—1; 1 <i<n). There are

n
altogether v = Hi=lm treatment combinations which

will, hereafter, be assumed to be lexicographically
ordered. The set of v treatment combinations will be
denoted by V. Let T be a v x | vector with elements
7(j, J, --- J,) arranged in lexicographic order. The
treatment effects, that is, the elements of 7, are unknown
parameters. In the context of a factorial experiment,
interest centres around contrasts belonging to factorial
effects. A linear parametric function

N i) (e dn)s (1.1)

where {/(j, ... j,)} are real numbers, not all zeros, such
that X ... ¥/ (j, ... j,) = 0 and the summation extends
over j, ... j, € V, is called a treatment contrast.
Following Bose (1947), a treatment contrast of the type
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(1.1) is said to belong to the factorial effect F ... F,g
(1 Si<..<p<m 1 <g<n)if

(i) 4G, ... j,) depends only on ji1' vy jig, and

(ii) writing [(j, ...j,) = I_(jil jig) in consideration
of (i) above, the sum of I_(jil .. i) separately
[*]
over each of the arguments jil, vy jig is zero.
For 1 <i <.. <igSn(l <g<n), Fil Fiz Fig
denotes a typical factorial effect involving the factors

iys ..y I, There are H3=l(mu —1) linearly independent

contrasts beloning to the factorial effect ...F,g. A
factorial effect is called a main effect if it involves
exactly one factor (i.e., g = 1) and an interaction if it
involves more than one factor (i.e., g > 1). Following
the standard convention, F, denotes the ith factor as well
as the main effect thereof. Clearly, there are a totality

of (f)+(2)++(ﬂ) = 2" — 1 factorial effects in a
factorial experiment involving » factors.

There is a convenient way to represent a complete
set of orthonormal treatment contrasts belonging to the
factorial effects. Suppose Q is the set of all binary
n-tuples and let Q* be the subset of Q consisting of its
non-null members, i.e., Q" = Q\{0, 0, ..., 0}. It is easy
to see that there is a 1 — | correspondence between Q*
and the set of all factorial effects in the sense that a

typcial factorial effect F,l...I:,g (I<ij<..<i <n
1 < g <n) corresponds to the element x = x, x, ... x, of
Q" such that X =...= %,=landx, =0 foru#i, ..,
i_. Thus the 2" — 1 factorial effects may be represented
by F*, x € Q" For instance, if n = 3, then the effect
F'% represents the main effect of the first factor, F'1°

represents the 2-factor interaction of the first two
factors, and so on.

For 1 <i<n,let 1y, denote an m, x 1 vector of

all ones, |y an identity matrix of order m, and P, be
an (m; — 1) x m, matrix such that the m, x m, matrix

1

—1/2 47 ’
A = (m 1:]“1 ) is an orthogonal matrix, i.e., Aj Aj =

Im = A{Aj. For a pair of matrices E = (e;) and F, of

orders s X ¢ and p X g, respectively, let E ® F denote
their tensor (Kronecker) product, i.e., E ® F = (el.j F),

which is a matrix of order sp x tg. For x € Q, let

a(x)= Hin=1(m —1)%. For each x = (x, ... x,) € Q,
define the o (x) x v matrix

n
P* = Pi®..®P =_®1Pﬁ, (1.2)
1=
where for 1 <i < n,
_1/24r . _
pf = My 1% =0 (13)
P if  x=1

Then one can show that for each x, y € Q, x # y,
(a) PP = L,
(b) PX(P?) = O (a null matrix).

By virtue of (a) above, Rank (P¥) = o (x) and this
equals the number of linearly independent treatment
contrasts belonging to the effect F*. Thus for each
x € QF, the elements of P¥7 represent a complete set
of orthonormal treatment contrasts belonging to the
effect F*. Also, constrasts belonging to different
factorial effects are mutually orthogonal.

and

It is also possible to provide an interpretation for

PO00..07 Since P00 = 12 1, we have P00 7= 122
7, where 7,the general mean, is the arithmetic mean
of the quantities {7(j, ... j,)}.

2. FRACTIONAL FACTORIAL PLANS
2.1 Basic Ideas

The number of treatment combinations in a
factorial experiment increases rapidly with the increase
in the number of levels and/or factors. Even with 2
levels of each factor, if the number of factors is 10, one
has to experiment with 1024 treatment combinations in
a single replicate. Such a large experiment, apart from
being too expensive and impractical, may not at all be
necessary if the interest is in estimating lower order
factorial effects (say, the main effects and possibly all
or some 2-factor interactions). Economy of space and
material in such situations can be achieved by
considering a suitable subset of the set of all treatment
combinations. The underlying experimental strategy
then, is called a fractional factorial plan. Such a plan
aims at drawing, under appropriate assumptions, valid
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statistical inference about the relevant factorial effects
through an optimal utilization of the available resources.

Consider an N-run fractional factorial plan d for
an m, x ... x m_ factorial, where 0 <N <v (= Il m,).
According to the plan d, suppose r,(j, ... j,)
observations are to be made with treatment combination
Jy --J, foreachj, ...j € )} where {r(j, ...j,)} are non-

negative integers satisfying 2 2 tg(iprrdn) =N
hedn€V

For I <u <N, let Y, be the u-th observation according
to d. If ¥, corresponds to the treatment combination j,
... J,» then we shall assume that (Y, ) equals 7 (j, ... /),
where [E(.) stands for expectation. Furthermore, Y, ...,
Y, are assumed to be uncorrelated and to have a
common variance 6%(0 < 0% < ).

It will be convenient to express the above model
in matrix notation. To that end, for 1 <u<N,j, ...j €
V, define the indicator X, (u; j, ... j,), which assumes
the value 1 if the u-th observation according to d
corresponds to 7, ... j, and the value zero otherwise. Let
X, be the N x v design matrix, with rows indexed by u
and columns indexed by j, ... j,, such that

X, = (XU dn)) u=t,... N 2.1

- in€¥
The columns of X , are assumed to be lexicographically
ordered. Then, with Y = (Y, ..., Yn)’, the linear model
can be expressed as

E(Y) = Xq7,D(Y)=0?1y, (2.2)

where [(-) as before, stands for the expectation and
ID(+), for the dispersion (variance-covariance) matrix.

A linear parametric function for the form /'7 is said
to be estimable in d if it has a linear unbiased estimator.
It is well known that /'t is estimable under d if and
only if I € R(X ), where R(-) denotes the row space
of a matrix. Hence, with P¥as in (1.2), for any x € Q,
P¥7 is estimable in d (i.e., each element of P*7 is
estimable in d) if and only if

R(P¥) C R(X)). (2.3)
Now if  (j, ... j,) = 0 for some j, ... j, € V, then the
corresponding column of X, equals the null vector.
However, from the definition of P¥, it is easily seen that
P* cannot have a zero column. Hence, the relation (2.3)
cannot hold for any x € Q. In other words, for any x €
Q, in order to ensure the estimability of P*7 in d, it is
necessary that 7,(j, ...j,) 2 1 foreachj, ...j € V, ie.,
N = v. This means in particular that, unless further

assumptions are made, a fractional factorial plan (for
which N is strictly smaller than v) is incapable even of
ensuring the estimability of complete sets of main effect
contrasts which are invariably the parametric functions
of interest in any factorial set up.

It is possible to overcome the above stated
difficulty if from a knowledge of the physical process
underlying the experimental set up or from past
experience, one can assume the absence or negligibility
of certain factorial effects, typically the higher order
factorial effects. Fortunately, such an assumption is
reasonable in many practical situations. In situations
where the absence of higher order effects can be validly
assumed, fractional factorials provide useful
information on lower order effects at a considerable
saving. Even the highly fractionated designs, like the
designs of Resolution III, can be used in the initial
stages of an exploratory programme for screening
among a large number of potential factors, a few factors
with large effects, quickly and at a reasonable cost.
Detailed experiment can then be performed with the
reduced set of factors. Thus, fractional factorials are a
useful class of designs for situations where many
factors have to be studied simultaneously and where,
at least in the initial stages of investigation, an
economical assessment of the effects of many factors,
with possibly some ambiguous conclusions, is to be
preferred over an experiment involving a detailed
examination of only a few factors. In view of these
considerations, fractional factorial plans have been used
extensively in many areas in the recent years, notably
in manufacturing and high-tech industries and in quality
improvement work. Simultaneously, numerous
theoretical results have also been found. In this
communication, we present an overview of some of the
major developments in the area of fractional factorials.

2.2 Notion of Resolution

Under the absence of factorial effects involving
t+ 1 or more factors, suppose interest lies in the general
mean and contrasts belonging to the lower order
factorial effects, say those involving at most f factors,
where 1 < f< 1. A fractional factorial plan ensuring the
estimability of all factorial effects involving f factors
or less, under the assumption that all factorial effects
involving ¢ + 1 factors or more, 1 < f<¢t<mn—1,is
called a Resolution (f, #) plan. This definition, due to
Dey and Mukerjee (1999b), of resolution of a fractional



254 Aloke Dey / Journal of the Indian Society of Agricultural Statistics 66(2) 2012 251-258

factorial plan is somewhat different from and more
general than the standard definition, according to which
a Resolution (f; #) plan, as defined above, would have
simply been called a Resolution-(f + ¢ + 1) plan. The
modification in the definition is necessary, because the
resolution of a plan is not always dependent on the
integers £, ¢ through their sum, f'+ ¢. Examples can be
found where a plan is of Resolution (f, #) but not of
Resolution (f”, ¢) even though f+r=f"+ 7.

Below we give two examples of Resolution (f, £)
plans for 2-level symmetric experiments. The plan in
(i) below has f=1=1¢ n =3, N=4 while the plan in
(i)hasf=1,r=2,n=4, N=38.

Example 2.1
000 0
01 10
00 0 1010
011 1100
O g W
110 100 1
01 0 1
00 1 1

2.3 Role of Orthogonal Arrays

A natural question that arises in the context of
fractional factorials is how to choose the fraction so that
the parameters of interest, under suitable assumptions,
are estimated most efficiently. To that end, orthogonal
arrays provide a solution. A definition of orthogonal
arrays follows.

Definition 2.1 : An orthogonal array OA(N, n, m,
. xXm, g, having N rows, n(= 2) columns, m, ..., m,
symbols and strength g (2 < g < mn), is an N * n array,
with elements in the ith column from a set of
m, 2 2 distinct symbols (1 <i <n), in which all possible
g-tuples of symbols appear equally often as rows in
every N X g subarray.

Without loss of generality, the symbols appearing
in the ith column of an OA(N, n, m * ... x m , g) may
be supposed to be 0, 1, ..., m, —1. Note that an
orthogonal array of strength g is also of strength g’

(1 < g <g). If in particular, m; = ... = m_ = m, say,
then we get a symmetric orthogonal array, which is
denoted simply by OA(N, n, m, g), otherwise, the array
is an asymmetric or mixed orthogonal array.

The number of rows in an orthogonal array is
bounded below by an integer that depends on » and the
m;s. For an OA(N, n, m % ... X m,, 2),

N>1+ zn:(m -1,

i=1

and for an OA(N, n, m; x ... X m,, 3),

N>1+) (m 1)+ (m' —1){2(m —)—(m' —1)},

i=1 i=1

where m* = max, _._, m. Such lower bounds on the
number of rows of an orthogonal array of arbitrary
strength g > 2 are known; see e.g., Hedayat et al.
(1999). These lower bounds are often referred to as
Rao's bounds as, Rao (1947) first obtained such bounds
in the context of symmetric orthogonal arrays. Arrays
with the number of rows attaining these bounds are
called tight. For a comprehensive treatment of
orthogonal arrays including applications and tables, see
Hedayat et al. (1999). Tables of fractional factorial
plans, including symmetric and asymmetric orthogonal
arrays also appear in Dey (1985) and Wu and Hamada
(2000). For more recent results on the construction of
orthogonal arrays, see e.g., Suen ef al. (2001) and Suen
and Dey (2003).

Example 2.2. In Example 2.1, the plan (i) is an OA4
(4, 3, 2, 2) and plan (ii), an OA(8, 4, 2, 3). In (a), (b)
below, we show an asymmetric OA(8, 5, 4 x 24, 2) and
a symmetric OA(9, 4, 3, 2).

00000
01111
10011
(@) 048,54 x24,2)=|1 1 1 00
20101
21010
30110
3100 1]
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(b) 049, 4,3,2) =

N NN PP O o O
N PO P ONBE O
R onNMODNMPE NPEP O
onNPE FEP ONMDNE O

The rows of an OA(N, n, m; % ... X m,, g) can be
identified with the treatment combinations of an
m, % ... x m, factorial set up. Thus the array itself
represents an N—run plan for such a factorial. For
example, the array OA(9, 4, 3, 2) shown in Example
2.2(b) represents a 9—run plan for a 3* factorial. This
is given by {0000, 0111, 0222, 1012, 1120, 1201, 2021,
2102, 2210}, as obtained by listing the rows of the
array. Similarly, the array in Example 2.2(a) represents
an 8—run plan for an asymmetric 4 x 2% experiment.

Let D, be the class of all N-run plans for an
m, % ... x m, factorial such that each member of D,
allows the estimability of all factorial effects with f
factors or less under the absence of all factorial effects
involving 7 + 1 factors or more, where | <f<¢r<n-1.
The following result shows the role of orthogonal arrays
in the choice of a ‘good’ fractional factorial plan.

Theorem 2.1 : Let d, be a fractional factorial plan
belonging to 2, represented by an OA(N, n, m; * ...
X m,, g), where 2 < g < n. Then d, is a universally
optimal Resolution (f, t) plan in 2, for every choice
of integers f, t such thatf+t=gand 1 <f<t<n-1.

In the above theorem, the term ‘universal
optimality’ is used in the sense of Kiefer (1975). Note
that a universally optimal plan is, in particular, also
optimal according to the more commonly used criteria,
like A—, D— and E— criteria. Theorem 2.1 shows that
fractional factorial plans represented by orthogonal
arrays are strongly optimal. For instance, a fractional
factorial plan represented by an orthogonal array of
strength two is universally optimal for the estimation
of the mean and contrasts belonging to the main effects
under the assumption that all 2-factor and higher order
interactions have negligible magnitudes. Similarly, a

fractional factorial plan represented by an orthogonal
array of strength four ensures the optimal estimation of
the mean, all main effects and all 2-factor interactions,
when 3-factor and higher order factorial effects are
assumed negligible. For fuller details and more results
on optimality aspects of fractional factorial plans, see
Dey and Mukerjee (1999b, Chapters 2 and 6).

Most of the available optimality results on
fractional factorials relate to situations where all
factorial effects involving the same number of factors
are considered equally important and thus, the
underlying model involves the general mean and all
factorial effects involving up to a specified number of
factors. In practice however, the presumption of
equality in the importance of all factorial effects
involving the same number of factors may not always
be an appropriate one. For instance, there may be a
situation where it is known a priori that only one of
the factors can possibly interact with each of the other
factors, all other 2-factor and higher order factorial
effects being absent. The model then includes the mean,
all main effects and a specified set of 2-factor
interactions. Work on the issue of estimability and
optimality in situations of this kind in the context of
2-level factorials has been addressed by Hedayat and
Pesotan (1992, 1997), Wu and Chen (1992) and Chiu
and John (1998). Further work in this area was done
by Dey and Mukerjee (1999a) who considered arbitrary
factorials, including the asymmetric ones and gave a
combinatorial characterization for a fractional factorial
plan to be universally optimal under a hierarchical
model. We give an example of a universally optimal
plan based on the results of Dey and Mukerjee (1999a).

Example 2.3 : Suppose it is desired to find an optimal
fraction for a 5 x 23 experiment in N = 20 runs under a
model that includes the mean, all the main effects and
the three 2-factor interactions F 1Fj’ 2 <j <4, where
the factor | appears at 5 levels and the factors /7, 2 <
j < 4, are each at two levels. The following plan with
columns representing the runs is universally optimal
under the above stated model. The plan is also
saturated.

F, | 0000 1111 2222 3333 4444
F, | 0011 0011 0011 0011 0011
F, | 0101 0101 0101 0101 0101
F, | 0110 0110 0110 0110 0110
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Continuing with this line of work, Dey and Suen
(2002) used tools from a finite projective geometry to
obtain a large number of fractional factorial plans for
symmetric m" factorials, where m > 2 is a prime or a
prime power, which are universally optimal under a
model that includes the mean, all main effects and a
specified set of 2-factor interactions. This work was
extended by Dey et al. (2005) to cover asymmetric
factorials, again using ideas from a finite projective
geometry. See also Chatterjee et al. (2002) for some
additional results.

3. MORE ON THE CHOICE OF FRACTIONAL
FACTORIALS

A regular fraction of symmetric factorials is
characterized by a set of defining contrasts. For
example, in a 1/2% fraction of a 2" factorial, the set of
defining contrasts consists 2¥ — 1 factorial effects. The
resolution of a regular fraction is the number of factors
involved in the smallest interaction in the set of defining
contrasts. Equivalently, an m” ~ ¥ plan (i.e., a 1/mk
fraction of an m" factorial) of Resolution R (= 3) keeps
all treatment contrasts belonging to factorial effects
involving at most f factors estimable under the absence
of all factorial effects involving R — f or more factors,

whenever fsatisfies 1 < f < %(R — 1) (In the literature

on applied experimental designs, the value of resolution
is generally indicated by a Roman numeral such as III,
IV, etc.)

In view of the above definition of resolution, in a
Resolution III design (i.e., R = 3), no main effect is
aliased with another main effect but a main effect is
aliased with one or more 2-factor interaction(s). In a
fractional factorial plan, a factorial effect involving
f =1 factors is said to be clear, if it is not aliased with
another factorial effect involving the same number
(=f) of factors. Hence, in a Resolution III plan, the
main effects are clear. Similarly, in a Resolution IV
plan, the main effects are clear, but the 2-factor
interactions are not clear as, a 2-factor interaction is
aliased with another 2-factor interaction.

From the definition of resolution, it is clear that
the choice of a fractional factorial plan can be based
on the resolution of the plan, fractions with higher
resolution being preferred over the ones with smaller
resolution. It was later realized that this criterion is not
discriminating enough in the sense that fractions with
the same resolution can have entirely different

properties when judged by other considerations. For
example, consider two 272 plans, d, and d,, involving
factors F), ..., F,, with the following sets of defining
contrasts:

d,:1=FFFJF,=FFFFF =FFFFF,

d,:1=FFFF,=FFFF, =FFFFFF,.

Clearly, both the plans are of Resolution IV.
However, d, has three pairs of 2-factor interactions that
are aliased with each other, viz., (F,F, F(F.), (F,F,,
FF.) and (F,F,, F.F,) while d, has six such pairs.
Thus, in d|, the number of clear 2-factor interactions
is more than that in d, and based on this criterion, d|
is preferable to d,, even though both the plans have the
same resolution.

Fries and Hunter (1980) proposed a more
discriminating criterion than resolution, called minimum
aberration (MA) for selecting optimal fractions.
Unfortunately, barring the work of Franklin (1984,
1985), the MA criterion went unnoticed for nearly a
decade. Only in the early nineties, Wu and his
collaborators recognized the crucial role of the MA
criterion in the selection of optimal fractions. For
references to the work of Wu and others on this topic,
see Mukerjee and Wu (2006).

For explaining the concept of minimum aberration,
we consider regular fractions of the type m” ~*, where
m is a prime or a prime power. As stated earlier, a
regular fraction m" ~ ¥ is specified by a set of defining
contrasts or, a set of defining words, where a word
consists of letters which are the names of the factors.
The number of letters in a word so defined is its
wordlength. For an m" ~* design, let A, denote the
number of words of length 7 in its set of defining
contrasts. The vector

W=(4y, Ay ..., 4,)

is called the wordlength pattern of the design. Note that,
in W, one starts with 4,, because a design with positive
A, or 4, is useless. For any two m"~* designs d, and
d,, let r be the smallest integer such that 4 (d,) # 4,(d,).
Then d, is said to have less aberration than d, if 4,(d,)
<A4(d,). If there is no design with less aberration than
d,, then d, has minimum aberration.

Example 3.1 : Consider two 3° =2 designs d, and d,

involving the factors F, ..., F, with the following sets
of defining contrasts:

) 2 2F 2 2 2

dy: | =RRF; = AR RR = AR R = RRFF

. 2 2 22 22
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Clearly, both d, and d, have Resolution III. One
can check that d, has less aberration than d,. The
implication of this is that in d,, there are three 2-factor
interactions, viz., F'|F,, F1F42 and F2F42, that get
aliased with a main effect whereas, in d,, there are six
2-factor interactions that get aliased with a main effect.
Therefore, if one is not confident about the absence of
all 2-factor interactions, then d, is preferable to d,
because d, requires less stringent assumptions, even
though both d, and d, have the same resolution.

Deep and interesting theoretical work on minimum
aberration designs was carried out by several authors
including Cheng and Mukerjee (1998) and Mukerjee
and Wu (1999, 2001). A detailed exposition of such
results is available in the book by Mukerjee and Wu
(2006). The notion of minimum aberration designs was
originally studied in the context of regular fractions of
symmetric factorials of the type m"* where m is a
prime or a prime power. Some progress on the
asymmetric or mixed factorials has also been made. See
Mukerjee and Fang (2000) and Mukerjee and Wu
(2001) in this context.

Another important notion in making an optimal
choice of a fractional factorial plan is that of estimation
capacity, introduced by Sun (1993). It was studied in
fuller detail by Cheng et al. (1999) and Cheng and
Mukerjee (1998). For simplicity, consider a 2" factorial.

In such an experiment, there are d = (r21) two-factor

interactions. For 1 < r < §, there are (3)

models that include all the main effects and r 2-factor
interactions, the remaining (6 — ») 2-factor interactions
and other higher order factorial effects being assumed
negligible. For a fixed 7, let £ (T) be the number of
models of this kind that can be estimated by a design
T The estimation capacity aims at maximizing £ (7) for
every r (1 £r < 0). A design which achieves this is said
to have maximum estimation capacity. This criterion
therefore aims at selecting a design that retains full
information on the main effects, and as much
information as possible on the 2-factor interactions in
the sense of entertaining maximum possible model
diversity, under the assumption of absence of
interactions involving three or more factors. Results on
designs with maximum estimation capacity for m"*
fractional factorials, where m is a prime or a prime
power, can be found in the above stated references and
in Chapter 5 of Mukerjee and Wu (2006).

possible

4. BLOCKING

Blocking is often an effective way to reduce the
experimental error when the experimental units are not
homogeneous. Early work on blocking of fractional
factorials centred around orthogonal blocking. In the
context of a main effect plan, for instance, with »
factors F, ..., F,, a common technique is to start with
an orthogonal array of strength two, having n + 1
columns, and then identify one of these columns with
the blocking factor and the remaining columns with
F,, .., F. In every block, this method allocates all the
levels of each F; equally often and as such, this method
is successful when the block size is an integral multiple
of the number of levels of each F. Hence, the method
will not work when for example, the block size is less
than the number of levels of any F.. Mukerjee ef al.
(2002) obtained sufficient conditions for a main effect
plan to be universally optimal under possibly non-
orthogonal blocking and gave a method of construction
of such optimal block designs. An example based on
their method follows.

Example 4.1 : Consider a 3* x 2 factorial experiment
and suppose a block design for this experiment is
desired in blocks of size 2 each. The parameters of
interest are all the main effects, all other factorial effects
being assumed to be negligible. Clearly, one cannot
have an orthogonally blocked design in this situation.
The following design for the problem is universally
optimal in D(9, 2), where in the context of an m, x ...
x m factorial, D(b, k) denotes the class of all fractions
laid out in b = 2 blocks each of size £ > 2.

Block 1 Block 2 Block 3 Block 4 Block 5
00000 01110 02220 10120 11200
11111 12221 10001 21201 22011

Block 6 Block 7 Block 8 Block 9

12010
20121

20210
01021

21020
02101

22100
00211

For some additional results in this area, see Das
and Dey (2004) and Bose and Bagchi (2007).

Another direction of work in the area of blocked
fractional factorials is based on the MA and maximum
estimation capacity criteria. Optimal block designs for
regular symmetric factorials based on the MA criterion
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was studied in detail by Mukerjee and Wu (1999),
making extensive use of finite projective geometries.
More results on block designs of regular fractions
having maximum estimation capacity were obtained by
Cheng and Mukerjee (2001). Much of this work is
elegantly described in Chapter 7 of the book by
Mukerjee and Wu (2006), where details of the available
results, examples and tables of designs can be found.
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