Available online at www.isas.org.in/jisas

ISAS

JOURNAL OF THE INDIAN SOCIETY OF
AGRICULTURAL STATISTICS 66(2) 2012 243-250

Some Nonlinear Time-series Models and their Applications

Prajneshu
Indian Agricultural Statistics Research Institute, New Delhi

1. INTRODUCTION

At the very outset, I express my gratitude to the
Indian Society of Agricultural Statistics for inviting me
to be the Sessional President this year. It is my honour
and proud privilege to deliver the Technical Address.

Well-known Box-Jenkins Autoregressive
integrated moving average (ARIMA) methodology has
virtually dominated analysis of time-series data since
1930s. However, it can be applied only when either the
series under consideration is stationary or can be made
so by differencing, detrending, or any other means.
Another disadvantage is that this approach is ‘empirical’
in nature and does not provide any insight into the
underlying mechanism. An alternative mechanistic
approach, which is quite promising, is the Structural
time-series modeling (STM). Here, the basic philosophy
is that characteristics of the data dictate the particular
type of model to be adopted from the family. Several
families of models have been developed, which are
applicable depending on whether the data exhibit
prominent trend, or seasonal variations or cyclical
fluctuations. For example, when the trend is dominant,
three models, viz. Local level model, Local linear trend
model, and Local linear trend model with intervention
are available. A good description of these models is
given in Harvey (2001). Ravichandran and Prajneshu
(2002) carried out modelling and forecasting of India’s
foodgrain production for the post-Green revolution era,
viz. 1966-98 through two dynamical modelling
techniques, viz. STM and Bayesian analysis of time-
series.

However, both ARIMA models and STM are
“Linear”. During the last three decades or so, the area
of “Nonlinear time-series modelling” is rapidly growing
(Fan and Yao 2003). Here, there are basically two
approaches, viz. Parametric or Nonparametric.
Evidently, if in a particular situation, we are quite sure
about the functional form, we should use the former,
otherwise the latter may be employed. Although several
parametric families have been developed, the four most
widely used are discussed in Section 2. Section 3
deals with two important nonparametric families.
Finally, some future research problems are identified
in Section 4.

2. PARAMETRIC NONLINEAR TIME-SERIES
MODELS

(a) Bilinear Time-series Model

The most natural way to introduce nonlinearity
into a linear ARIMA model is to add product terms. By
restricting to products of time-series variable X, ; and
errors g, ;, the resultant bilinear model BL(p, ¢, 7 s) is

p [¢] r s
X,= 23X +&+ Y B+ Y, Y CeXe bk (1)
j=1 k=1 j=1k=1
where ¢, ~ 1ID (0, o), a;, by, and ¢, are parameters.
Here p denotes lag in the linear part of autoregression
in X,, while r and s are lags in the nonlinear terms
involving past observations and error series {&}. The
coefficients in past observations depend on past shocks
thus enabling the model to capture data with high level
crossings.
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Although bilinear models were proposed almost
three decades ago and a number of theoretical
contributions have been made in succeeding period, yet
application of such models to real data is still a
nontrivial task. Ghosh et al. (2006b) have developed
computer programs in C-language for fitting of bilinear
models. As mentioned earlier, bilinear models are of
particular importance to describe those data sets that
depict sudden bursts of large amplitude at irregular time
epochs. As an illustration, India’s marine products
export data during the period 1961-62 to 1998-99 is
considered. Based on normalized Akaike information
criterion (NAIC), appropriate bilinear time-series model
is fitted by applying Newton-Raphson iterative
procedure.

(b) Autoregressive Conditional Heteroscedastic
Time-series (ARCH) Models

In a path-breaking work, Engle (1982) proposed
the ARCH model for which he was awarded the
prestigious Nobel Prize in Economics in 2003. This
entails a completely different class of models which is
concerned with modelling volatility. The objective is
not to give better point forecasts but rather to give better
estimates of the variance which, in turn, allows more
reliable forecast intervals leading to a better assessment
of risk. The ARCH model allows the conditional
variance to change over time as a function of squared
past errors leaving the unconditional variance constant
to model varying (conditional variance) or volatility of
a time-series. It is often found that larger values of time-
series also lead to larger instability (i.e., larger
variances), which is termed conditional
heteroscedasticity. The process {¢,} is ARCH(g), if the
conditional distribution of {¢,}, given available
information y,_ , is

q
& 10, ~N(O, ), h,= 8+ _}‘16\ & 2)
i=:

where ¢, ~ IID(0, 1) and a, = 0 are parameters.

SAS or EViews software packages may be
employed for fitting of these models. Ghosh and
Prajneshu (2003) applied these models to describe
volatile monthly onion price data during April 1996 to
October 2001. As the assumption of constant one-period
ahead forecast variance did not hold, ARCH process
was fitted and out-of-sample forecasts for four months
were developed.

However, the conditional variance of ARCH(q)
model, where ¢ indicates the order of maximum lag,
has the property that the unconditional autocorrelation
function (acf) of squared residuals, if it exists, decays
very rapidly compared to what is typically observed,
unless the maximum lag ¢ is long. To overcome this
limitation of ARCH model, Bollerslev (1986) proposed
the Generalized ARCH (GARCH) model, in which the
unconditional autocorrelation function of squared
residuals has slow decay rate. It also gives parsimonious
models that are easy to estimate and, even in its
simplest form, has proven surprisingly successful in
predicting conditional variances. In the GARCH model,
the conditional variance is assumed to be a linear
function of its own lags and has the form

q P
h = 8+ 2365+ Ybh; 3)
-1

i=1

This has the property that the unconditional

autocorrelation function of €t2, if it exists, can decay
slowly. As eq. (3) is a more parsimonious model of the
conditional variance than a high-order ARCH model,
it is preferred over the simpler ARCH alternative. The
overwhelmingly most popular GARCH model in
applications is the GARCH(1, 1) model.

For estimating parameters of GARCH model, most
widely used method is the Gaussian maximum
likelihood estimation (GMLE) method. The maximum
likelihood estimators are derived by minimizing

L{(6) = T‘1§[In\/ﬁ—lnf<at/\/ﬁ)} 4)

where y is the truncated version of &, (Paul et al.

2009). Besides normal distribution, the function f{.) can
also follow ¢-distribution. The Akaike information
criterion (AIC) and Bayesian information criterion
(BIC) values for GARCH model with ¢-distributed
errors are computed as

AlIC = i[ln\/ﬁ—lnf(q/«/ﬁ+2(p+q+1))}

t=v

2ptgt ) )
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and

BIC = t:}‘;[ln\/ﬁ—lnf(%/\/ﬁﬂ

+2p+q+ D In(T-v+1) (6)
where In indicates natural logarithm.

Sometimes, volatility due to positive and negative
shocks may be asymmetric. To this end, Nelson (1991)
proposed the Exponential GARCH (EGARCH) model,
represented by specifying the logarithm of conditional
variance as

In(h) = 3+ BIn(h ) +a|e_a/Jha|+rea /YRy

(7

Ghosh et al. (2010b) considered all-India data of
monthly export of fruits and vegetables seeds during
the period April 2000 to January 2007 comprising 82
data points, obtained from Indiastat website
(www.indiastat.com). The first 76 data points were
employed for building the models while the data for the
remaining 6 months were used for validation purpose.
The data exhibit presence of volatility at several time-
epochs. The EViews software package, Ver. 4 was used
for data analysis. Further, AIC and BIC values for
t-distributed errors in GARCH model were computed
separately by writing computer programs in C. It is
observed that the kurtosis is extremely high, which
reflects a “leptokurtic behaviour. Therefore, instead of
Gaussian distribution, error distribution was assumed
as Student’s z-distribution. The mean and conditional
variance for fitted AR(1) - GARCH(1, 1) model were
computed. A visual inspection shows that the fitted
model is not able to capture properly the volatility
present at various time-epochs in the data set, perhaps
due to the fact that positive and negative shocks are not
symmetric. To capture this asymmetric nature of
volatility, EGARCH model was employed. The AIC and
BIC values for fitted EGARCH model were
respectively found to be much less than the
corresponding values for the fitted GARCH model. This
clearly shows the superiority of EGARCH model over
GARCH model for the data under consideration. It is
seen that the fitted model is able to capture quite well

the volatility present at various time-epochs. One-step
ahead forecasts along with the corresponding forecast
standard errors were computed, which could be of
immense help to planners in formulating appropriate
strategies.

(¢) Mixture Nonlinear Time-series Models

These models may be employed to describe those
data sets that depict sudden bursts, outliers and flat
stretches at irregular time-epochs. Three models, viz.
Gaussian mixture transition (GMTD), Mixed
autoregressive (MAR) and MAR-ARCH were
thoroughly studied by Ghosh et al. (2006a). Weekly
wholesale onion price data during April 1998 to
November 2001 were considered. After eliminating
trend, seasonal fluctuations were studied by fitting Box-
Jenkins airline model to residual series. The tests for
presence of nonseasonal and seasonal stochastic trends
and use of appropriate filters in airline models were also
examined. Presence of ARCH was tested by Lagrange
multiplier test. Estimation of parameters was done using
Expectation-Maximization algorithm and the best
model was selected on the basis of BIC. Out-of-sample
forecasting was performed for one-step and two-step
ahead prediction by naive approach. It is concluded
that, for data under consideration, a three-component
MAR and a two-component MAR-ARCH is the best
in respective classes. Further, identified MAR-ARCH
model is also shown to perform better than three-
component MAR model identified earlier in terms of
having fewer numbers of parameters and lower BIC
value.

For seasonal data, Ghosh er al. (2010a)
investigated Periodic autoregressive and Mixture-
periodic ARCH models and applied these for modelling
and forecasting of monthly rainfall data of Sub-
Himalayan region of West Bengal, India during the
period January 1990 to December 2006, obtained from
the website (www.tropmet.res.in) of the Indian Institute
of Tropical Meteorology, Pune, India. The data showed
a periodic variation with marked volatility at some time-
epochs. Salient feature of the work done is that the best
predictor and prediction error variance for carrying out
out-of-sample forecasting up to three-steps ahead were
derived analytically by recursive use of conditional
expectation and conditional variance.
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(d) Threshold Autoregressive Time-series Models

Another important parametric nonlinear time-
series family of models is that of Threshold
autoregressive (TAR) models, initiated by Tong and
Lim (1980). These assume different linear forms in
different regions of the State space, which is usually
dictated by one threshold variable, say X, , for some
d = 1. The model is of the form

X, = a +a"X g+ +ad X+, if X, € R (8)

fori =1, ..., k, where R, forms a partition of the real
line and at(') ~ 11D(0, Uiz). The simplest thresholding
model is the Two-regime (i.e., k = 2) TAR model with
R, = {X,_;<r}. The AR parameter depends on whether
X,_sexceeds the threshold value 7; hence the name TAR.
Further, if 7 = —o, TAR model reduces to AR(1) model.
A comprehensive discussion of TAR models is given
in Tong (1995). STAR software package may be used
for fitting of these models. A heartening feature of TAR
models is that these are capable of describing cyclical
fluctuations. Ghosh et al. (2006c) applied Self-exciting
TAR (SETAR) model to describe India’s lac export
annual data during the period 1901-2001. The data set
exhibited prominent cycles of approximately 13 years.
The best-identified model on the basis of minimum
NAIC value was found to be SETAR two-regime model
with delay parameter d = 1 and p = 2. Finally, out-of-
sample forecasts for years 2002 and 2003 were
obtained. For more efficient estimation of parameters
of SETAR model, Iquebal et al. (2010) employed
stochastic optimization technique of genetic algorithm,
which is based on the principles of genetics and natural
selection.

The SETAR moving average (SETARMA) is an
important extension of SETAR model capable of
describing cyclical data having sudden rise and fall, i.e.,
the model is capable of exhibiting “limit cycle”
behaviour. The SETARMA model of order (2; p;, py;
q,- 4») can be expressed as

B o]
0§+ 0Py + e+ Y 0Pl if yg <t
i=1 w=1

Y= o %
@7+ 207+ + X P i g >

j=1 w=1
©)

where &) is a white noise process with zero mean and
finite variance &, i =1, 2; p; and g, are nonnegative
integers referred respectively as the autoregressive (AR)
and moving average (MA) orders; (pj(i) and 0\2) are
unknown AR and MA parameters, withj = 1, 2, ..., p;
andw =1, 2, ..., g;; r is threshold value and d is delay
parameter. Like an indicator variable, K, ,,_, takes value
1 or 2 according as y, ,,_, is less than or greater than r.
It may be noted from eq. (9) that the SETARMA model
is linear in each sub-space but it is nonlinear over the
entire state space. Recently, Samanta et al. (2011) have
developed the methodology for estimation of
parameters of SETARMA two-regime model by using
a very efficient stochastic optimization technique of
Real-coded genetic algorithm. Subsequently, it was
applied for modelling and forecasting of Indian
mackerel time-series data.

Another parametric model for describing cyclicity
is the Exponential autoregressive (EXPAR) family. An
EXPAR (p) model may be written as

X = {(/’1 +m eXp(—Vth—l)}xt—l te

+{¢p + 7T exp(—thz_l)}Xt_p +&  (10)

where @, and 7; represent the autoregressive and
exponential autoregressive parameters at lag i, y> 0 is
some scaling constant and {¢,} is white noise process
with mean zero and variance 0'52- In practical situations,
exact data generating process of time-series
observations is not known. Therefore, fitted values from
linear and nonlinear models may be used as explanatory
variables to empirically describe the same. Recently,
Ghosh et al. (2011a) combined the three models, viz.
the ARIMA, EXPAR and SETAR models, which are
capable of capturing the cyclical behaviour by using the
Constant coefficient regression method as well as the
Time-varying coefficient regression method through
Kalman filtering technique. As an illustration, the
models were then applied to describe annual Mackerel
catch time-series data of Karnataka, India. It is found
that the fitted model by using the latter approach
performs the best.
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3. NONPARAMETRIC NONLINEAR TIME-
SERIES MODELS

Parametric families discussed above provide
powerful tools for analyzing time-series data when
models are correctly specified. However, any
parametric model is at best only an approximation to
the true stochastic dynamics that generates a given data
set. A time-series may be of the type for which there is
no suitable parametric model that gives a good fit to
the data under consideration. In such a situation,
“Nonparametric” approach may be employed.

(a) Functional-coefficient Autoregressive Model

A very versatile model of the above type is
Functional-coefficient autoregressive (FCAR) model
given by

X=aX, ) X+t aX, )X, + 0K, ) (1)

where g, ~ 1ID(0, 1) and is independent of X, |, X, ., ...
The FCAR model (Fan and Yao 2003) depends
critically on choice of model-dependent variable X, ,,
which is one of the lagged variables. Ghosh et al.
(2010c) applied FCAR model for forecasting of India’s
annual export lac data during the period 1900 to 2000.
Comparison of the performance of FCAR model vis-a-
vis the SETAR and ARIMA models was also made from
the viewpoint of dynamic one-step and two-step ahead
forecasts along with Mean square prediction error,
Mean absolute prediction error and Relative mean
absolute prediction error. The SAS, Ver. 9.1 and SPSS
software packages were used for data analysis.
Superiority of FCAR model over SETAR and ARIMA
models was demonstrated for the data under
consideration.

(b) Wavelet Analysis

Currently, there is a lot of interest in employing
“Wavelet analysis” for nonparametric nonlinear time-
series modelling. Novel idea of wavelets is that these
are localized in both time and space whereas traditional
Fourier bases are localized only in frequency but not
in time. The theory of wavelets permits decomposition
of functions into localized oscillating components and
so is an ideal tool for modelling and forecasting
purposes. Wavelet analysis can be carried out either in
Time domain or in Frequency domain. An excellent
description of various aspects of Wavelet methodology

is given in Percivel and Walden (2000) and Abramovich
et al. (2000). A further improvement in this
methodology is incorporation of the concept of
“thresholding”. Various types of thresholding are
discussed in Jansen (2001). For Wavelet thresholding
approach in time domain, Sunilkumar and Prajneshu
(2004) carried out modelling and forecasting of India’s
meteorological subdivisions rainfall data. This
methodology was extended by Sunilkumar and
Prajneshu (2008) to the situation when the errors are
autocorrelated and applied it to describe India’s marine
fish production. Wavelet thresholding methodology was
also employed by Sunilkumar and Prajneshu (2009) for
detection of jump points in time-series data. In respect
of India’s oilseed yield data during 1939-2002,
existence of one jump point in 1988 was established,
thereby reflecting the success of “Technology Mission
on Oilseeds” set up by the Government of India.

Ghosh et al. (2011b) investigated the Wavelet
approach in frequency domain for analyzing time-series
data. As an illustration, Indian monsoon rainfall time-
series data from 1879-2006 was considered. It is found
that the size of the test for testing significance of trend
in respect of Daubechies wavelet is more than that for
Haar wavelet. Further, Haar wavelet generally
performed better than Daubechies wavelet in terms of
power of the test. An important conclusion emerging
out of this study is the presence of a declining trend in
the data, which may have serious implications from
‘Global Warming’ viewpoint.

4. SOME FUTURE RESEARCH PROBLEMS

Current status for estimation of parameters of
SETAR models is that Real-coded genetic algorithm is
employed. As future work, some other stochastic
optimization techniques could also be tried. Particle
swarm optimization (PSO) is a population based
stochastic optimization technique, inspired by social
behaviour of bird flocking and fish schooling (Gazi and
Passino 2011). Similar to Genetic algorithms, PSO
performs searches using a population (called swarm) of
individuals (called particles) that are updated from
iteration to iteration. Another potential optimization
technique is the Ant colony optimization (ACO)
technique, which borrows its features from the ability
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of some ant species to find, collectively, the shortest
path between two points (Solnon 2010). There is a need
to employ PSO and ACO techniques for estimation of
parameters of SETAR models.

In this article, several parametric families of
nonlinear time-series models have been discussed.
However, there are some other families for which
research effort is required to be directed before applying
these to data from Indian agriculture. The SETAR
model assumes that regime-switching occurs at some
particular value of the transition variable. In reality,
policy decisions are taken on a regular basis and
accordingly, the Smooth transition autoregressive
(STAR) model has been proposed. Medeiros and Veiga
(2005) extended this model and introduced the Neuro-
coefficient smooth transition autoregressive model. As
a future research problem, efficient estimation
procedure for application of this model may be
developed.

Stochastic volatility (SV) parametric nonlinear
time-series model to describe time-varying volatility
have some extra flexibility for modelling kurtosis
compared to the GARCH family, but at the cost of
introducing an additional stochastic term. The
parameters of this model can be estimated by employing
the Extended Kalman filtering (EKF) technique, which
is a modification of usual KF. The EKF approach is to
apply the standard KF (for /inear systems) to nonlinear
systems with additive white noise by continually
updating a /inearization around the previous state
estimate, starting with an initial guess. In other words,
we only consider a linear Taylor approximation of the
system function at the previous state estimate and that
of the observation function at the corresponding
predicted position. This approach gives a simple and
efficient algorithm to handle a nonlinear model. Further,
Ristic et al. (2004) have given a detailed description
of a newly developing powerful technique of Particle
filters (PF), which are applicable for nonlinear and non-
Gaussian filtering. Polson et al. (2008) have developed
a simulation-based approach to sequential parameter
learning and filtering in general state-space models. As
a future research problem, estimation procedure may be
developed for SV models using EKF/PF techniques.

The FCAR nonparametric model depends critically
on the choice of one of the lagged variables, which

limits the scope of its applications. A generalization of
this family of models is to allow a linear combination
of past values, called indices, as a model-dependent
variable. This leads to the family of Adaptive FCAR
(AFCAR) models (Fan and Yao 2003). The estimation
procedure and efficient algorithms for fitting of FCAR
model need to be developed. Further, in this article, the
work done dealing with Wavelet analysis in time
domain and frequency domain has been described.
There is a need to carry out research work in order to
extend this type of work for bivariate/multivariate data.

Artificial neural network (ANN) methodology
suffers from the drawbacks of overfitting and
convergence at local minima. Recently, a very
promising technique of Nonlinear Support vector
machine (NSVM), based on the principles of Statistical
learning theory, has been proposed. It implements the
Structural risk minimization principle, which has been
shown to be superior to traditional Empirical risk
minimization principle implemented in ANN models.
An excellent description of NSVM is available in
Ivanciuc (2007). As a future research problem,
Nonlinear Support vector machine may be applied for
prediction of time-series data.

All the models discussed in the article are
applicable to those data sets in which the data points
are expressible in terms of single point values. Thus, it
is assumed that there is no internal variation in an
observation and so the analysis deals with variation
between observations only. In contrast, Symbolic data
analysis (Diday and Noirhomme-Fraiture 2008) is
concerned with the internal variation of each
observation plus the variation between observations.
Maia et al. (2008) proposed a forecasting model for
interval-valued time-series data. It is a challenging task
to extend this type of work for Nonlinear time-series
models when the data are interval-valued.

Another promising area, related to Symbolic data
analysis, is “Fuzzy time-series modelling”, where the
response variable lies in an interval. However, this
interval is not ‘crisp’ or ‘precise’, but is rather
imprecise, vague or fuzzy. Singh (2009) developed a
computational method of forecasting based on higher-
order time-series. Considerable amount of research
work needs to be carried out to develop ‘fuzzy’ versions
of various families of Nonlinear time-series models.
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