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SUMMARY

This paper describes an application of small area estimation (SAE) to agricultural business survey data. Both well known
small area estimators, such as the empirical best linear unbiased predictor (EBLUP), and more recently proposed small area
estimators, for example, the M-quantile, the robust EBLUP and the Model Based Direct estimators are considered. Mean squared
error estimation is discussed. Using a real agricultural business survey dataset, we place emphasis on model diagnostics for
specifying the small area working model, on diagnostic measures for validating the reliability of direct and indirect (model-
based) small area estimators and on providing practical guidelines to the prospective user of small area estimation techniques.
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1. INTRODUCTION

Sample surveys provide a cost-effective way of
obtaining estimates for population characteristics of
interest. On many occasions, however, the interest is
in estimating parameters for domains that contain only
a small number of data points. The term ‘small areas’
is used to describe domains whose sample sizes are not
large enough to allow sufficiently precise direct
estimation. When direct estimation is not possible, one
has to rely on alternative, model-based methods for
producing small area estimates. Such methods depend
on the availability of population level auxiliary
information related to the variable of interest, and are
commonly referred to as indirect methods (Ghosh and
Rao 1994, Rao 2003, Pfefferman 2002). The industry
standard for small area estimation is to use unit or area
level models that include random area effects to account
for between area variation beyond that explained by the
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auxiliary information (Fay and Herriot 1979, Battese
et al. 1988) and in this paper we solely focus on unit
level small area models.

In recent years there has been a number of
developments in the small area estimation literature.
This involves both extensions of the conventional
random effects small area model and the estimation of
parameters other than averages and totals for example,
quantities of the small area distribution function of the
outcome of interest (Tzavidis ef a/. 2010) and complex
indicators (Molina and Rao 2010, Marchetti et al.
2012). One research direction has focused on
nonparametric versions of the random effects model
(Opsomer et al. 2008) while a further research area that
has attracted interest is in the specification of models
that borrow strength over space either by specifying
models with spatially correlated or nonstationary
random effects (Salvati et al. 2011, Chandra et al.
2012). The issue of outlier robust small area estimation
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has also attracted a fair amount of interest mainly due
to the fact that in many real data applications the
Gaussian assumptions of the conventional random
effects model are not satisfied. Two main approaches
to outlier robust small area estimation have been
proposed. The first one is based on M-estimation of the
until level random effects model (Sinha and Rao 2009)
while the second is based on the use of an M-quantile
model under which area effects are estimated using a
semi-parametric approach (Chambers and Tzavidis
2006, Tzavidis et al. 2010, Chambers et al. 2009). The
aim of this paper is to offer to the prospective user of
small area estimation practical guidance on the
implementation of a range of small area estimation
methodologies. We illustrate how recently proposed
small area methods can be used with a real agricultural
business survey dataset, what model diagnostics can be
used for specifying a small area working model and
what diagnostics can be used for assessing the validity
of small area estimates.

The paper is organised as follows. In Section 2 we
review unit-level models for small area estimation. In
particular, we review the Empirical Best Linear
Unbiased Predictor (Rao 2003), and we then present the
model-based direct estimator (MBDE) (Chandra and
Chambers 2009) and a range of outlier robust small area
estimators using either an outlier robust version of the
unit level random effects model or an M-quantile small
area model. In the same Section we further discuss
Mean Squared Error (MSE) using both analytic and
bootstrap-based approaches. Using real survey data, in
Section 3 we present model diagnostics that assist us
to build a model for performing small area estimation.
In Section 4 we present the results from small area
estimation and diagnostics for evaluating the reliability
of the small area estimates. Finally, in Section 5 we
provide some concluding remarks and inform the
prospective user about the availability of software for
implementing the estimation procedures.

2. UNIT-LEVEL MODELS FOR SMALL AREA
ESTIMATION

In this Section we assume that unit level data are
available at small area level. For the sampled units in
the population this consists of small area identifiers,
values of the outcome variable y; , values x; of a p X 1
vector of individual level covariates, and values z ofa
vector of area level covariates. For the non-sampled

population units we lack information about y; but it is
assumed that all areas are sampled and that we know
the number of units in each small area and the
corresponding small area averages of x; and z,.

A popular approach to small area estimation is to
assume a linear mixed model, with random area effects
(see Rao 2003). Let y , X and Z denote the population
level vector and matrices defined by y;, x; and z,
respectively,

y=XB + Zu + e, (1)

where u = (ulT yeens uﬁ )T is a vector of random area
effects with u ~ N(0, Z,) and e ~ N(0, Z,) is a vector
of unit level random effects. It is also assumed that u
is distributed independently of e. We assume that the
covariance matrices X, and X, are defined in terms of
a lower dimensional set of parameters 0 = (6, ...,6),
which are typically referred to as the variance
components of (1), while B is usually referred to as its
fixed effect. The covariance matrix of the vector y is
given by Var(y) = V.

Let [§ and G denote estimates of the fixed and
random effects in (1). The EBLUP of the area i mean
of the y; under (1) is then

TP = N g+ - ) (RIB+7h0)) @

- NV
where u = (ul ,...,um) denotes the vector of the

estimated area specific random effects, we use indices
of s and 7 to denote sample and non-sample quantities,

respectively, and X,; and Zz, denote the vectors of

average values of x; and z; respectively for the N, — n,
non-sampled units in the corresponding area.

Unbiased direct estimators for small area quantities
are usually considered to be too variable to be of any
practical use. Chandra and Chambers (2009) describe
a class of model-based direct estimators (MBDE) for
small area quantities that appear to overcome this
limitation in the sense that these estimators are
comparable in efficiency to indirect model-based small
area estimators such as the EBLUP that is now widely
used. Throughout this paper we assume that the
sampling method used is uninformative for the
population values of y given the corresponding values
of the auxiliary variables and knowledge of the area
affiliations of the population units. As a consequence,
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model (1) represents our model for both sampled and
non-sampled population units. It follows that we can
partition y, X, Z, e into components defined by the »
sampled and N — n non-sampled population units. For
example, X, represents the matrix defined by the »
sample values of the auxiliary variable vector, while V,,.
is the matrix of covariances of the response variable
among the N — n non-sampled units. With this sample
and non-sample partition, under the population level
linear mixed model (1), the sample weights that define
the EBLUP for the population total of y are

_ _ v (~T T
WeBLUP T (Wj,EBLUP) =1+ H (X 1y - X ls)

+(1, - XT) ViV, 1, 3)

Srr

N —1 N\
(zixg;visslxis) (zlxgvlssl) . See
Royall (1976). The model-based direct estimator of the

where H =

i small area mean is then defined as
2AMBD _ . . .
yi - zjesi WJ’EBLUPyJ/Zjesi WJ,EBLUP' (4)

MSE estimation of the MBDE estimator (4) is carried
out by pseudo-linear MSE estimation approach
described in Chandra and Chambers (2009). There are
many practical advantages associated with the use of
MBDE arising mainly from the fact that this estimator
is computed as weighted linear combinations of the
actual sample data from the small areas of interest.
Perhaps the most important advantage is the simplicity
of both the point and the MSE estimation. Furthermore,
the MBDE estimator is easy to interpret and to build
into a survey processing system. In contrast to design-
based direct estimators, MBDE “borrows strength”
from other areas via the linear mixed model used in
defining the sample weights. That is, the MBDE of a
small area mean improves upon the efficiency of the
design-based direct estimator by using weights that
define the EBLUP for the population total (see Royall
1976) under the same linear mixed model with random
area effects that underpins the EBLUP for the small
area mean.

A topic that has attracted interest in more recent
small area applications is that of outlier robust small
area estimation. The need for outlier robust
methodologies has arisen mainly due to the fact that
many applications of small area estimation involve
business and economic survey data making the

normality assumptions of (1) hard to satisfy. One
approach for making estimator (2) insensitive to sample
outliers is by replacing B and @ with corresponding

outlier robust quantities. In particular, denoting by y a
bounded influence, Sinha and Rao (2009) discuss
outlier robust small area estimation that is based on a
robust version of (1). The Sinha and Rao (2009) robust
alternative to (2) is then

ST = 5, + (- R 1)

)

where the REBLUP stands for Robust EBLUP. An
entirely different way of thinking about small area
estimation and in particular about outlier robust SAE
is the M-quantile regression-based method proposed by
Chambers and Tzavidis (2006). This is based on a linear
model for the Mquantile regression of y on X, i.e.

my(X) = XBY, (6)
where m (X) denotes the M-quantile of order g of the

conditional distribution of y given X. An estimate ﬁ'g

of BVq’ can be calculated for any value of ¢ in the
interval (0, 1), and for each unit in sample we define
its unique M-quantile coefficient under this fitted model

as the value g; such that y; = x? ﬁg’ , with the sample
J

average of these coefficients in area i denoted by ;.

The M-quantile estimate of the mean of y; in area i is
then

W0 = N g+ N -m)ZBE L )

Note that the regression M-quantile model (6) depends
on the influence function ¥ underpinning the
M-quantile. When this function is bounded, sample
outliers have limited impact on ﬁ'{]’ That is, (7)
corresponds to assuming that all non-sample units in
area i follow the working model (6) with ¢ = g, , in the
sense that one can write y, = x?B'g + noise for all such
units. l

A problem with the Robust EBLUP and
M-quantile small area estimation approaches is the
assumption that all non-sampled units follow the
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working model that is, any deviations from this model
cancel out on average. Methods for dealing with this
assumption was developed by Chambers et al. (2009)
leading to the so-called robust predictive approach.
Under the linear mixed model (1) one can see that
provided the individual errors of the non-sampled units
are symmetrically distributed about zero, the REBLUP
estimator (5) will perform well since it is based on the
implicit assumption that the average of these errors over
the non-sampled units in area i converges to zero. The
M-quantile estimator (7) is no different since it assumes
that the errors from the area specific M-quantile fit are
‘noise’ and hence also cancel out on average. Note that
this does not mean that these non-sample units are not
outliers. It is just that their behaviour is such that our
best prediction of their corresponding average value is
zero.

Starting with a working linear model linking the
population values of y; and x;, and sample data
containing representative outliers with respect to this
model, Welsh and Ronchetti (1998) extend the approach
of Chambers (1986) to robust prediction of the
empirical distribution function of the population values
of y;. Their argument immediately applies to robust
prediction of the empirical distribution function of the

area i values of y;, and leads to a predictor of the form

B0 = N Y 1y, <0457ty 21(3{ iid
JEs; Jjes; ker;
TA
rafl {0, - xiB) ol }<1))
®
Here a)Z’ is a robust estimator of the scale of the

residual y; — x?ﬁ"’ in area i and ¢ denotes a bounded

influence function that satisfies | @| = | |. Tzavidis
et al. (2010) note that the robust estimator of the area i
mean of the y; defined by (8) is the expected value of
the functional defined by it, which is

W= Jtdﬁ,w(t) = N;l[ 7 Vsi + (N; = 1)

(iﬁ-ﬁ"’ Y do{(v, - X8 )/ w‘j’}} }

JES;

©

These authors therefore suggest an extension to the
M-quantile estimator (7) by replacing B¥ in (8) by B 7>

which leads to a ‘bias-corrected’ version of (7), given
by

2MQ-BC _ 1| - —TAh
e =N [’liysiJr(Ni—”i)[Xri @

i Tl b))

JES;

(10)
and afj‘.”Q 1s a robust estimator of the scale of the

residual y, — X?B@ in area i. If @ is an identity function

then estimator (10) becomes a Chambers and Dunstan
estimator (Tzavidis et al. 2010 - CD hereafter).

A similar argument can be used to modify the
REBLUP estimator (5). In particular, a Robust
Predictive version of this estimator, hereafter REBLUP-
BC leads to

~REBLUP—-BC _ ~REBLUP 1)1
Vi =Y + (l_niNi )”i

Y do{(y-xip -2 ) ot ],
JES;
(11)

where the a;}}” are now robust estimates of the scale of

the area i residuals y; — x?BV’ - z?ﬁy’ .

Estimating the mean squared error (MSE) of
different small area estimators is both an important and
challenging task. Starting with the EBLUP, the most
popular analytic MSE estimator is the one proposed
Prasad and Rao (1990). See also Rao (2003) for details
on this estimator. An alternative, bias-robust approach
to analytic MSE estimation that is based on an
extension of the ideas by Royall and Cumberland
(1978) has been proposed by Chambers ef al. (2011).
An appealing feature of this alternative MSE estimator
is that it can be used with a wide range of small area
predictors as long as they can be expressed as weighted
sums of the sample values. Chambers ez al. (2011) use
the bias-robust MSE estimator for computing the MSEs
of the EBLUP estimator (2), MBDE (4) and the
M-quantile estimator (7). The overwhelming evidence
from the results of this paper indicates that the bias-



Nikos Tzavidis et al. / Journal of the Indian Society of Agricultural Statistics 66(1) 2012 213-228 217

robust MSE estimator comes at the price of higher
variability and should not be used when the
area-specific sample sizes are very small. On the other
hand, if there is reasonable doubt about the validity of
the assumptions of the linear mixed model (1), the
bias-robust MSE estimator can be more efficient than
alternative MSE estimators. More recently, the
bias-robust MSE estimator has been used for estimating
MSEs of the REBLUP estimator (5) and of the
bias-corrected M-quantile and REBLUP estimators (10)
and (11) (Chambers et al. 2009).

Analytic estimators offer only one approach to
MSE estimation. As the complexity of small area
models increases we tend to rely more often on
computer intensive approaches to MSE estimation
based for example on bootstrap. Sinha and Rao (2009)
proposed the use of a parametric bootstrap MSE
estimator for the REBLUP predictor that is similar in
spirit to the bootstrap proposed by Hall and Maiti
(2006). Tzavidis et al. (2010) proposed a non-
parametric bootstrap MSE estimator for the M-quantile
predictors (7) and (10). Marchetti et al. (2011) studied
the properties of the nonparametric bootstrap MSE
estimator and found it to be more stable than the
analytic bias-robust MSE estimator that was proposed
by Chambers et al. (2011).

3. THE DATASET

The data used in the analysis reported in this paper
come from a sample of 1,652 Australian broadacre
farms that participated in the annual Australian
Agricultural and Grazing Industries Survey (AAGIS)
organised by the Australian Bureau of Agricultural and
Resource Economics in the late 1980s. Australian
broadacre farms are spread across 29 regions of
Australia. Sample sizes within these regions varied from
a low of 6 to a high of 117. See Table 1 for distribution
of regional sample sizes. These regions are the small
areas of interest. Fig. 1 shows where these 29 farming
regions (or small areas) and zones are located with the
numbers shown in the map corresponding to region
codes. The Y-variable of interest in this analysis is the

Table 1. Distribution of regional sample sizes.

Min | 25% | 50% [ Mean | 75% | Max | Total number
of regions

6 32 55 57 1795 117 29

1st digit: State
2nd digit: Zone
3rd digit: Region

[ Zone digit 1: Pastoral zone
[] Zone digit 2: Wheat-sheep zone
M Zone digit 3: High rainfall zone

Fig. 1. Australian broadacre zones and farming regions.

Total Cash Costs (TCC) of the farm business in the
reference year. An auxiliary size variable (Area) is
available for each farm and is defined as the total area
of the farm in hectares. The target is to estimate the
average TCC in each small area.

3.1 Exploring the AAGIS Data

Before implementing small area estimation we
must find a working model that we can use for this
purpose. To start with, the overall linear relationship
between TCC and Area is rather weak, however, this
improves when separate linear models are fitted within
the six strata defined by the interaction between area
and region as shown in Table 2 and in Fig. 3. In
particular, these six strata are defined by splitting each
zone into small farms (farm area less than zone median)
and large farms (farm area greater than or equal to zone
median). The six Size by Zone Strata are then defined
as follows: 1 = Pastoral zone and area of 50,000
hectares or less; 2 = Pastoral zone and area of more than

Table 2. Results showing the significance of the main and
interaction effects.

Source | Parameters| DF| Sum of F Prob

Squares Ratio >F
Area 1 1 16.262e+11| 5.3970| 0.0203
Stratum 5 5 [5.625e+13| 96.9683 | <.0001
Area* 5 5 [6.866e+13(118.3618 | <.0001
Stratum
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50,000 hectares; 3 = Wheat-sheep zone and area of
1,500 hectares or less; 4 = Wheatsheep zone and area
of more than 1,500 hectares; 5 = High rainfall zone and
area of 750 hectares or less; 6 = High rainfall zone and
area of more than 750 hectares. In Fig. 2 (top plot) we
also notice the presence of two outlier data points. The
linear relationship between TCC and farm size
improves when these two points are excluded from the
analysis. In particular, the values of R* (and root mean
square error) increase (and decrease) from 0.05 (and
970358.4) to 0.236 (and 410043.8) (see also Fig. 2).
The fit of the model between TCC and farm size within
the six post-strata when the two outlier data points are
excluded is shown in Fig. 3.

35000000

30000000

25000000

200000001
[}
=4 *
15000000
10000000 o
5000000
0 AP °®
T T T T T T T
0 500000 1000000 1500000 2000000 2500000 3000000
Farm size
10000000 o
Lo}
80000001
60000001
8 o
2

4000000

2000000

T T T T T T
0 500000 1000000 1500000 2000000 2500000 3000000
Farm size

Fig. 2. Relationship between total cash costs (TTC) and farm sizes
in AAGIS sample. The top plot shows the model fit with
the two outlying data points included. The bottom plot
shows the model fit after the two outlying data points have
been removed.

3.2 Specifications of the Mixed and M-quantile
Small Area Models

Many of the best known small area estimators are
based on the unit level mixed model with area random
effects. For specifying the fixed part of the model we
used the model fitting results we reported in the
previous Section. Hence, in the fixed part of the mixed
model (1), the design matrix X of auxiliary variable
values is defined to include an effect for Area, effects
for the Size by Zone strata and effects for interactions
between Area and the Size by Zone strata (see
Fig. 3).

In the random part of the model (1) we need to
test for the presence of random intercepts or random
slopes which corresponds to comparing two different
specifications for Z in (1). An empirical approach for
testing for random intercepts or random slopes is by
modelling the residuals from the fixed part of the model
(see Section 3.1) as a function of the 29 regions. The
results from this regression model indicated that there
is a significant region effect, which indicates the
presence of random intercepts. We then regressed the
residuals from the fixed part of the model as a function
of region, area and an interaction between area and
region. Adding this interaction term between improved
the fit of the model. Hence, the exploratory data
analysis indicated that specifying a random slope on
area should provide a better model fit. The presence of
random intercepts or random slopes can be more
formally tested by using the Akaike information
criterion (AIC). The smaller the value of AIC implies
a better model fit. In our test result the p-value of the
random slopes model was slightly smaller than the
random intercepts model. Fig. 4 shows normal
probability plots of level 1 and level 2 residuals from
the random intercepts model. It appears that the
normality assumptions of the mixed model do not hold
and hence we must also consider outlier robust small
area estimators.

Until now we have only considered the
specification of the mixed model. However, a number
of recently proposed small area estimators are based on
the M-quantile model. In the case of the M-quantile
model the design matrix X of auxiliary variable values
is just the design matrix for the fixed part of the mixed
effect model (i.e. Area*SizeZone stratum). In this case
we need to remember that there is no formal
specification of a random part. Instead of specifying
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Fig. 3. Relationship between total cash costs and farm sizes in six post-strata when the two outliers are excluded from the AAGIS sample.
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Fig. 4. Normal probability plots of level 1 (top) and level 2
(bottom) residuals from the random intercepts model.

random effects (i.e. random intercepts or random
slopes) the between area variability is captured via the
area specific M-quantile coefficients, which are
estimated by using an empirical (moment-type)
estimator.

4. APPLICATION

As we mentioned in Section 1 the purpose of this
article is to demonstrate the application of different
small area methods in practice. We started by presenting
some approaches for specifying the working small area
model. In what follows we use this working model for

obtaining small area estimates and corresponding
estimates of precision taking into account the
characteristics of the sample data. For performing small
area estimation we use the original AAGIS sample data
described in Section 3 and we generate a synthetic
population dataset. From this population we then draw
one sample. We then assume that this is the real
population and we carry out small area estimation using
the single sample we selected from the population.

4.1 Setting the Scene

A population of N = 81982 farms generated by
bootstrapping the original AAGIS sample. That is, the
1652 farms in the original AAGIS sample were
themselves sampled with replacement 81982 times
using selection probabilities proportional to a farm’s
AAGIS sample weight. An independent sample of
n = 1652 farms taken from this population using
stratified random sampling, with regions defining the
strata and with strata sample allocations equal to those
in the original AAGIS sample. Using the selected
sample, we replicated the exploratory analyses of
Section 3. The conclusions from the exploratory data
analyses with the randomly selected sample from the
synthetic population were the same as the ones we
reported in Section 3 with original AAGIS sample.
Consequently, the model specifications described in
Section 3.2 were also valid in this case.

4.2 Computing and Evaluating the Small Area
(Region) Estimates

Using the various small area estimation methods
discussed in Section 2 and with the sample data and
population information described in Section 4.1, we
calculated small area estimates using a wide range of
small area point and MSE estimators. In particular,
regional estimates for average TCC and their respective
mean squared error estimates were calculated using the
statistical software R and the following estimators:
(1) the direct estimator (regional sample mean), (2) the
EBLUP based on random intercepts model
(RIVEBLUP), (3) the EBLUP based on random slopes
model (RS/EBLUP), (4) the model-based direct
estimator based on the random intercepts model
(RI/MBDE), (5) the model-based direct estimator based
on the random slopes model (RS/MBDE), (6) the
M-quantile naive estimator (MQ/Naive), (7) the
M-quantile CD estimator (MQ/CD), (8) the M-quantile
bias corrected estimator (MQ/BC), (9) the robust
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Table 3. Correlations between the alternative regional estimates.

RIVEBLUP|RI/MBDE |RS/EBLUP | RS/MBDE [MQ/Naive | MQ/CD | MQ/BC | REBLUP |REBLUP/BC
Direct 0.955 0.952 0.872 0.915 0.936 0.966 0.923 0.889 0.894
RIVEBLUP 0.978 0.958 0.964 0.973 0.981 0.971 0.968 0.974
RI/MBDE 0.951 0.988 0.980 0.989 0.983 0.940 0.956
RS/EBLUP 0.944 0.952 0.964 0.977 0.940 0.969
RS/MBDE 0.978 0.966 0.978 0.935 0.950
MQ-/Naive 0.978 0.992 0.946 0.956
MQ-/CD 0.986 0.932 0.954
MQ-/BC 0.946 0.967
REBLUP 0.991

Table 4. Goodness of Fit diagnostic. A smaller value (less
than 42.5 in this case) indicates no statistically
significant difference between model-based and
direct estimates.

Model-based estimator Goodness of Fit'
RI/EBLUP 12.60
RI/MBDE 3.36
RS/EBLUP 33.05
RS/MBDE 5.41
MQ/Naive 31.90
MQ/CD 9.13
MQ/BC 25.12
REBLUP 131.82
REBLUP/BC 132.10

EBLUP estimator based on the random intercepts model
(REBLUP) and (10) the robust bias corrected EBLUP
based on random intercepts model (REBLUP/BC).
MSE estimation is performed using analytic and
bootstrap (parametric and nonparametric) estimators
(see Section 2).

Point estimates for each region are reported in
Table 5. Region specific precision estimates are
reported in Table 6 and region specific coefficients of
variation (CV) are reported in Table 7. For assessing
the different estimators we must use a set of diagnostics.
Such diagnostics are suggested in Brown et al. (2001).
Model-based estimates should be (a) consistent with
unbiased direct estimates and (b) more precise than

direct estimates. The results reported in Table 3 show
that the correlation between the model-based estimates
and the direct estimates are positive and high, which
indicates that the model-based estimates are consistent
with the direct estimates. Table 7 also shows that overall
the MQ/CD, MQ/BC, REBLUP and REBLUP/BC
provide advantages over the direct estimator as the CVs
of these model-based estimates are smaller than the
corresponding CVs of the direct estimates.

There is a number of additional diagnostics that
can be used for evaluating small area estimates.
Practitioners can use the following diagnostics which
are described below.

Bias Diagnostic: Plot the direct estimates on
Y-axis and model-based estimates on X-axis and look
for divergence of the regression line from Y = X.

Goodness of Fit (GoF) Diagnostic: This diagnostic
tests whether the direct and model-based estimates are
statistically different. The null hypothesis is that the
direct and model-based estimates are statistically
equivalent. The alternative is that the direct and model-
based estimates are statistically different. The GoF
diagnostic is computed using the following Wald
statistic for every model based estimator

(Direct Estimate; —
Model-Based Estimate; )
i | Var(Direct Estimate; ) +
MSE(Model-Based Estimate; )

V-3
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Table 5. Region specific estimates of average TCC values.

Regions | Direct RI/ RI/ RS/ RS/ MQ/ MQ/ CD | MQ/ BC | REBLUP [ REBLUP/
EBLUP | MBDE | EBLUP | MBDE Naive BC
1 180290 | 174077 | 179061 | 174196 | 188204 | 148821 | 180277 | 162954 | 148179 | 164375
2 205239 | 183078 | 196181 | 179570 | 198814 | 134125 | 193713 | 152467 | 142998 | 157367
3 100898 | 100507 96901 | 107073 98145 90410 99788 96044 93015 96198
4 207130 | 162557 | 186705 | 125826 | 180715 105097 | 182036 | 130226 | 115119 | 134535
5 110376 94628 | 106294 97405 106914 83022 98005 94053 94206 94523
6 40613 44067 39779 60412 39835 38038 37660 33252 34753 33909
7 84807 98662 80856 | 105502 80392 82633 91657 88601 90655 91054
8 82864 79720 80567 87499 79259 68626 78781 74865 74118 76319
9 64440 69099 64789 76499 66226 57596 65725 63714 65863 66369
10 67969 64398 66949 61611 68835 52738 66597 59787 61205 63086
11 127259 | 189660 | 121562 | 174580 | 141347 | 127506 | 139963 | 137246 | 141426 | 133570
12 303359 | 256445 | 251148 | 196262 | 305792 | 285864 | 239154 | 283727 | 292193 | 291734
13 164618 | 164448 | 160356 | 206673 184034 | 140785 | 173849 | 165225 | 154253 | 167197
14 208315 | 197493 | 207425 | 201520 | 205846 | 185783 | 209757 | 209757 | 192451 | 209144
15 93374 | 100551 89186 99611 91355 88394 97591 95314 91674 95140
16 182096 | 155491 | 167449 | 148782 | 162479 | 153191 | 159449 | 152201 | 138900 | 148897
17 80385 95541 84684 | 109189 76521 74639 84874 68813 97018 91559
18 52439 | 158025 61787 | 112620 60865 24491 35525 23571 | 229406 | 225856
19 263139 | 242451 | 225699 | 232568 | 190347 | 202237 | 238604 | 221643 | 228906 | 231114
20 102408 | 127687 | 100507 | 133625 101394 112230 | 105444 | 105444 | 100373 | 106336
21 72775 84517 71905 89265 74906 75363 78845 77430 78825 78754
22 82765 93992 76897 94584 78742 76528 92212 76397 79698 78945
23 500274 | 538320 | 497536 | 790841 523119 | 490384 | 638057 | 638057 | 488525 | 638385
24 209831 | 256422 | 206096 | 224414 | 252305 | 211430 | 205616 | 204395 | 174612 | 197254
25 234962 | 210603 | 226588 | 229050 | 258555 155369 | 224931 | 192604 | 168612 [ 197563
26 229565 | 268593 | 223413 | 323008 | 244159 | 227876 | 261781 | 261781 | 265456 | 260938
27 94254 84270 89735 74456 88162 64938 90155 77305 77907 85425
28 113202 | 110309 | 106858 97211 94528 79168 | 119367 | 103283 97576 | 106401
29 1043862 | 705424 | 594341 | 695434 | 558929 | 571135 | 812597 | 656148 | 534603 | 632967
Mean | 182880 | 176243 | 160733 | 183079 | 165542 | 145118 | 175931 | 162286 | 156984 | 170859
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Table 6. Region specific estimates of Root MSE values.
Regions | Direct RI/ RI/ RS/ RS/ MQ/ MQ/ CD | MQ/ BC | REBLUP [ REBLUP/
EBLUP | MBDE | EBLUP [ MBDE Naive BC
1 25307 32374 25536 34647 22484 25090 25143 10384 13640 14067
2 29700 20514 44804 12128 27801 28801 27778 8143 7440 7411
3 8729 19846 6243 11727 6276 6851 6473 4598 6222 6033
4 49620 19512 80289 8248 29000 35537 33576 6514 7085 7000
5 10038 22264 73387 12036 13414 8357 7314 4909 8114 8068
6 8929 30960 | 104338 11438 9535 15230 7665 4158 10949 11202
7 9243 25677 17554 14140 14873 12707 6052 4014 9183 9382
8 8405 24820 5700 11605 5457 9267 5946 3504 9815 9646
9 6665 22934 10470 10765 5300 9940 5008 2497 7906 8063
10 7250 22705 | 103069 10843 5162 5271 5118 1975 8709 8497
11 46715 43390 56281 81517 68995 55523 40615 27322 21256 21250
12 65856 30089 43909 19958 177801 50662 46121 17994 11439 11854
13 23635 32213 22462 29821 30068 21351 21387 13119 11467 11784
14 13309 29180 14125 26708 14622 31999 12592 12929 11073 10924
15 9487 22095 11312 13791 14922 9239 6955 4836 8267 7968
16 21771 18688 [ 200005 10454 28807 18126 12157 7996 5831 5620
17 13544 26773 60710 15554 17737 14634 12871 5828 9377 9550
18 13395 67459 33026 74818 173195 32708 34216 29242 21685 22184
19 49629 30036 19537 19909 53502 35132 24154 13019 11184 11181
20 9127 26334 16219 19284 19558 28346 7973 8071 8792 8644
21 5399 22075 13883 12784 9290 6616 4130 2697 7702 7432
22 11845 23011 74040 13775 18321 10042 10005 2879 8097 8037
23 128552 50191 | 198976 | 113101 232369 128847 | 116000 | 120198 26375 27901
24 39072 34545 36161 31448 92446 57854 24153 19118 12849 13105
25 25787 21752 27981 14079 33356 33640 22506 8412 7449 7402
26 16451 27360 39064 38535 69019 37257 12114 11801 11605 10807
27 10967 24992 93738 11541 7907 9740 8797 3511 8369 8193
28 17311 24560 84764 11979 18845 16877 13414 6483 9706 9701
29 301550 31466 | 139265 23755 | 203982 192003 191136 98097 12682 13146
Mean 34044 28545 57133 24841 49105 32677 25909 16009 10837 10898
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Table 7. Region specific coefficients of variation %.

Regions | Direct RI/ RI/ RS/ RS/ MQ/ MQ/ CD | MQ/ BC | REBLUP [ REBLUP/

EBLUP | MBDE | EBLUP [ MBDE Naive BC

1 14.04 18.60 14.26 19.89 11.95 16.86 13.95 6.37 9.20 8.56
2 14.47 11.21 22.84 6.75 13.98 21.47 14.34 5.34 5.20 4.71
3 8.65 19.75 6.44 10.95 6.39 7.58 6.49 4.79 6.69 6.27
4 23.96 12.00 43.00 6.56 16.05 33.81 18.44 5.00 6.15 5.20
5 9.09 23.53 69.04 12.36 12.55 10.07 7.46 5.22 8.61 8.54
6 21.99 70.26 | 262.29 18.93 23.94 40.04 20.35 12.51 31.51 33.04
7 10.90 26.03 21.71 13.40 18.50 15.38 6.60 4.53 10.13 10.30
8 10.14 31.13 7.07 13.26 6.88 13.50 7.55 4.68 13.24 12.64
9 10.34 33.19 16.16 14.07 8.00 17.26 7.62 3.92 12.00 12.15
10 10.67 35.26 153.95 17.60 7.50 10.00 7.69 3.30 14.23 13.47
11 36.71 22.88 46.30 46.69 48.81 43.55 29.02 1991 15.03 1591
12 21.71 11.73 17.48 10.17 58.14 17.72 19.29 6.34 391 4.06
13 14.36 19.59 14.01 14.43 16.34 15.17 12.30 7.94 7.43 7.05
14 6.39 14.78 6.81 13.25 7.10 17.22 6.00 6.16 5.75 5.22
15 10.16 21.97 12.68 13.84 16.33 10.45 7.13 5.07 9.02 8.38
16 11.96 12.02 119.44 7.03 17.73 11.83 7.62 5.25 4.20 3.77
17 16.85 28.02 71.69 14.24 23.18 19.61 15.17 8.47 9.67 10.43
18 25.54 42.69 53.45 66.43 284.55 133.55 96.32 124.06 9.45 9.82
19 18.86 12.39 8.66 8.56 28.11 17.37 10.12 5.87 4.89 4.84
20 8.91 20.62 16.14 14.43 19.29 25.26 7.56 7.65 8.76 8.13
21 7.42 26.12 19.31 14.32 12.40 8.78 5.24 3.48 9.77 9.44
22 1431 24.48 96.28 14.56 23.27 13.12 10.85 3.77 10.16 10.18
23 25.70 9.32 39.99 14.30 44.42 26.27 18.18 18.84 5.40 4.37
24 18.62 13.47 17.55 14.01 36.64 27.36 11.75 9.35 7.36 6.64
25 10.98 10.33 12.35 6.15 12.90 21.65 10.01 4.37 4.42 3.75
26 7.17 10.19 17.49 11.93 28.27 16.35 4.63 4.51 4.37 4.14
27 11.64 29.66 104.46 15.50 8.97 15.00 9.76 4.54 10.74 9.59
28 15.29 22.26 79.32 12.32 19.94 21.32 11.24 6.28 9.95 9.12
29 28.89 4.46 23.43 3.42 36.50 33.62 23.52 14.95 2.37 2.08
Mean 15.37 22.00 48.06 15.50 29.95 23.49 14.70 11.12 8.95 8.68
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The value from the test statistic is compared
against the value from a chi square distribution with D
degrees of freedom. In our case, this is the chi square
value with D=29 degrees of freedom which is 42.56 at
5% level of significance.

We now apply these two diagnostics to the
estimates generated using the agricultural business
survey data. Fig. 4 presents bias diagnostic plots. We
note that all model-based estimators have similar
consistency with the direct estimates. Overall, model-
based estimates appear to be consistent with direct
estimates, however, there are two regions for which the
model-based and direct estimates are notably different.
The GoF diagnostic results are presented in Table 4.
These results indicate that all model-based estimates are
not statistically different from the direct estimates apart
from the REBLUP and the REBLUP/BC. The GoF
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diagnostic result for the REBLUP and the REBLUP/
BC can be affected by the MSE estimation. For some
regions the MSE estimates of the REBLUP and the
REBLUP/BC appear to be very small compared to the
MSE estimates of other model-based estimators. We
think that in those cases we underestimate the MSE,
which can be explained by the fact that parametric
bootstrap MSE is used when the assumptions of the
model may not hold (see Fig. 5). Taking into account
the results from the coefficient of variation, the bias
diagnostic plots and the GoF diagnostic we suggest that
in this case the MQ/CD and MQ/BC have to be used.
The EBLUP estimator that is based on the random
slopes model appears to provide some efficiency gains
over the direct estimator. Deciding to use the REBLUP
or REBLUP/BC must be done bearing in mind that
MSE estimation for these two estimators can be
problematic in this case.

RS/EBLUP
1,200,000
[e]
1,000,000
800,000
-
(5]
g
& 600,000
(e}
400,000
o
[}
o]
200,000 °, 8
o
(e}
o o
! o
0

1

1,

-
%]
[
=

(=]

T T T T T T T
0 100000 200000 300000 400000 500000 600000 700000 800000

RS/EBLUP
RS/MBDE
200,000
000,000
800,000
& 600,000
400,000
200,000
0

T T T T T T T
0 100000 200000 300000 400000 500000 600000 700000 800000
RS/MBDE



226

Nikos Tzavidis et al. / Journal of the Indian Society of Agricultural Statistics 66(1) 2012 213-228
MQ/Naive MQ/CD
1,200,000 1,200,000
e}
1,000,000 - 1,000,000
800,000 800,000
e -t
(2] [4]
[ (]
S S
& 600,000 - & 600,000
400,000 400,000
200,000 200,000
0 T T T T T T T 0 T T T T T T T T
0 100000 200000 300000 400000 500000 600000 700000 800000 0 100000 200000 300000 400000 500000 600000 700000 800000 900000
MQ/Naive MQ/CD
REBLUP REBLUP/BC
1,200,000 1,200,000
o
1,000,000 1,000,000
800,000 800,000
o v
(2] o
g g
& 600,000 & 600,000
400,000 400,000
200,000 200,000
0 T T T T T T T 0 T T T T T T T
0 100000 200000 300000 400000 500000 600000 700000 800000 0 100000 200000 300000 400000 500000 600000 700000 800000
REBLUP REBLUP/BC
MQ/BC
1,200,000

1,000,000
800,000

-

[%}

g

& 600,000 1

400,000 4

200,000

T T T
0

T T T
100000 200000 300000 400000 500000 600000 700000 800000
MaQ/BC

Fig. 5. Bias diagnostics plots
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5. CONCLUSIONS

In this paper we present a small area application
using an real agricultural business survey dataset. A
range of well known and more recently proposed small
area estimators are considered. These include the
EBLUP estimator based on a random intercepts and
random slopes mixed model, the MBDE estimator
based on a random intercepts and random slopes mixed
model and a range of outlier robust small area estimator
using either an outlier robust version of the mixed
model or the M-quantile small area model. Outlier
robust estimators are considered in this paper due to
departures from the assumptions of the mixed model
(see Fig. 4). Although, not explored in this paper one
can also examine the transformation based small area
estimation when the model is not linear on raw scale,
see Chandra and Chambers (2011). Emphasis is placed
upon practical aspects of small area estimation. We start
by presenting model diagnostics for deciding the best
specification of the small area working model. This
consists of deciding (a) what is the best specification
for the fixed part of the model, (b) what is the best
specification for the random part of the model and
(c) whether outlier robust estimation is needed. Once
the best possible small area working model has been
found, we then have to use this model for producing
small area point and MSE estimates. A number of
diagnostics can be used for assessing the model-based
estimates. These include (a) the consistency between
the model-based and direct estimates which can be
assessed by a GoF diagnostic, a bias diagnostic and by
using the correlation coefficient between the model-
based and direct estimates that has to be positive and
high, and (b) the precision of model-based estimates,
using for example the CV, which has to be smaller than
that of direct estimates. However, the prospective user
must be extremely careful when using these diagnostics.
For example, the CV and the GoF diagnostics depend
on the estimated MSE. For some model-based
estimators, MSE estimation is performed by using
parametric bootstrap which depends on the validity of
the model assumptions. However, if the model
assumptions do not hold or hold only approximately,
the parametric bootstrap results may be misleading and
hence the CV and GoF diagnostics may also be
misleading. For this reason, the user must always be

critical when using diagnostics for evaluating the results
from small area estimation. All procedures for point and
MSE estimation we presented in this paper can be
implemented by using R functions. These are available
upon request from the authors of this paper.
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