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SUMMARY

Models for a multi-category response data, labour force status, based on a generalized linear model specification typically
assume that the regression coefficients to be varied with the response category. However, they can be extended to random
components by allowing the area random effects to be depended on response category. In this paper, we describe a multinomial
linear mixed model with a bivariate random component in estimating totals of the inactive, unemployed and employed people
at Local Authority District (LAD) level. The random effects are assumed to follow a bivariate normal distribution. The model
parameters including variance components and correlation coefficient are estimated by maximum and residual maximum
likelihood methods. The estimated parameters and predicted values of the LAD (area) random effects are then used in calculating
the empirical best linear unbiased-type estimates. The mean squared error estimates are obtained by using an analytical
approximation approach. The application is the UK LFS data in Molina et al. (2007) and estimates are compared with the

results in that paper. A simulation study demonstrates a good performance of the proposed model.

Keywords : Bivariate, Category-specific, LFS, Maximum likelihood, Multinomial, Random component, REML.

1. INTRODUCTION

A reliable estimate at both national and sub-
regional levels of the number of individuals in all three
labour force categories is a high profile in Great Britain
(GB). In particular, category unemployed is one of the
most important indicators of the health of an area.
Sample unemployment information is collected in the
Labour Force Survey (LFS) and it is the largest regular
household survey in GB. The LFS is the major source
of data in estimating number of unemployed individuals
at both national and Local Authority District (LAD)
levels. The LFS produces reliable estimates of labour
force status for national and some LADs with large
sample sizes. However, application of design-based
estimation theory to LFS data leads to poor estimates
of the labour force status for LADs with small sample
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size. An alternative approach that is now widely used
in small area estimation is the so-called indirect or
model-based approach. This uses auxiliary information
for the small areas of interest and has been characterized
in the statistical literature as “borrowing strength” from
the relationship between the values of the response
variables and the auxiliary information.

A flexible and popular way of borrowing strength
is based on the application of linear mixed models with
area specific random effects (Rao 2003), with
estimation and inferences typically carried out using
empirical best linear unbiased prediction (EBLUP), see
Prasad and Rao (1990), Longford (2007) and Saei and
Chambers (2003). For recent review, see Jian and Lahiri
(2006). However, LFS data, which motivates this study,
the survey variable of interest is not normally
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distributed. In particular, data are counts from a multi-
category (ploytomous) response variable, labour force
status (inactive, unemployed and employed). The
application of standard methods (see Rao 2003) for
small area estimation based on linear models fails in
this situation not only because the response variable is
polytomous but also the distribution of small counts
does not approach normality.

For discrete response data in particular polytomous
data, Zhang and Chambers (2004) introduced
generalized linear structure mixed model (GLSMM)
and Saei et al. (2005) developed a generalized structure
preserving estimation equation (GSPREE) approach.
Saei and Chambers (2003) extended the empirical best
linear unbiased estimation to a binary/binomial data
under a logistic model with area random effects. This
method was used in the EURAREA Consortium (2004),
Curtis and Saei (2005) and Cruddas and Saei (2006)
to model the proportion of unemployed population. The
model provides estimated totals of unemployed
individuals, which are then combined with the direct
estimates of the totals of employed individuals to derive
the rates of unemployment (Hastings ez al. 2003). While
the unemployment estimates are calibrated to the survey
estimates at regional government office region (GOR),
socio-economic classification (Cluster) and age-sex
groups, there are inconsistencies at LAD levels. This
means that the sum of the modelled unemployed and
employed levels will not match a survey estimate of
total economically active population and that the sum
of all three labour force categories will not match the
LAD total population estimate. Molina et al. (2007)
provides a consistent unemployment totals estimate at
LAD level under a multinomial logistic model.
However, the underlying model is unable to
discriminate between response categories in term of
area random effect. In the absence of the auxiliary
information (covariates), the model produces the same
estimates for both categories (unemployed and inactive)
in the model. This assumption is hardly justified in
many applications, especially in LFS. Thus, small area
model for a multi-category response data needs to allow
a different random area effect for different response
categories. This paper extends the logistic linear mixed
model for binomial response data and allows the area
random effect to be varied by response category (i.e.
we have a category-specific area random effects). The
two sets of random effects are sharing some
commonality because they originate from the same

LAD. The model assumes that the LAD random effects
for two categories unemployed and inactive are
correlated. In particular, bivariate random effects are
embedded into the multinomial logistic linear model,
where area random effects in both unemployed and
inactive are assumed to follow a bivariate normal
distribution. Consequently the model differs from the
standard mixed model used in small area estimation in
that it contains extra unknown parameters
corresponding to covariance between the area random
effects as well as variances.

Section 2 defines the category-specific correlated
random effects and associated notations. Assuming the
variance components of this model are known, we
develop the corresponding best linear unbiased
predictor-type (BLUP-type) estimates of totals of
inactive, unemployed and employed people in Section
3. The empirical best linear unbiased predictor-type
(EBLUP-type) estimates of totals in all three categories,
inactive, unemployed and employed, are developed in
Section 4. Results from a simulation study of the
performance of the new model and method are then
provided in Section 5. The application of the method
to UK LFS data is developed in Section 6. Section 7
concludes the paper with a discussion of potential
avenues for further research.

2. MODEL AND NOTATION

Let vectors {y,;;} and {y,;;} denote the sample
and non-sample population values of the survey
variable total number of people in three LFS categories
(inactive, unemployed and employed). The subscripts
diandjd=1,2,...D;i=1,2,....,Lj=1,2,3)
represent area, group (for example age-sex class/
combination) and response category respectively. The
sampled and non-sampled are presented by s and 7 in
subscripts. The objective is to estimate/predict the
number of people in all three LFS categories (inactive,
unemployed and employed),

=10} = {2 Ysaij zyrdij}-
i=1 i=1

The vector y can be partitioned as y = [y,, y, ] after
sample is observed. Similarly, a known matrix A is
partitioned conformably as A = [A,, A,]. In matrix
format, the parameters of interest are then

0=Ay, Ay,
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The first term depends only on the sample values
and is known after the sample is observed. The second
term, which depends on the non-sample values, is

unknown. The estimate or predicted value of 6, say é,

is then obtained by replacing y, with its predicted value
and it is,

0 =Ay,+Ay, )

where a “hat” denotes an estimate of an unknown
quantity.

Let p,; be probability that an individual in group
(age-sex) i from area d belong to LFS category j (j =1
= inactive, j = 2 = unemployed) and let n, be total
number of individuals (active and inactive) in group i
from area d in the sample. Similarly, let x.;; be the
vector of sample values of the auxiliary information/
covariates.

We consider two different forms of the linear
predictor for the multinomial logistic linear mixed
model. In the first, the predictor is assumed to be a
linear function of a vector x,,; of p covariates as well
as an area (LAD) random effect u# to account for

variation not explained by the values in x,;,. That is,

_ ’
Ty = O+ Xgqii B + 1y )

where ¢; is the category-specific effect, f; is an
unknown vector of regression coefficients for the
response group j (j = 1 = inactive, j = 2 = unemployed).
The random effects u, are assumed to be realisations
of independent N(0, @) random variables. The linear
predictor (2) is connected to multinomial response by
a generalized logit function, i.e.

m logit( pyg; ) = log( Pd ] = 74 forj=1,2. (3)
Dsai3

Molina et al. (2007) used model (3) in estimating
labour force status. Although it overcomes the
inconsistency estimate problems in Hastings et al.
(2003), it is unable to discriminate between response
categories in term of area random effects. As a result,
it produces a single estimate/predicted value for all
response categories for a given area in the absence of
the covariates/auxiliary information.

In applications the random effect assumption of
model (3) often is highly questionable and hardly
justified. Our second (new) model assumes the area

random effects are depended on the response category
(category-specific random effect). It allows a possible
change in variance and pattern of association according
to response categories. This is consistent with the idea
that the random area effects are used to account for
variation not explained by the auxiliary variables x ;.
The model is

Ty = 0+ Xegi B + uy forj=1,2. 4

The u, = (uy, uy)’s are independent bivariate
normal variables with zero mean vector and variances
of ¢, ¢ and covariance between them of ¢; . The u,
and u, are the area random effect for the first (inactive)
and second (unemployed) response categories for a
multinomial variable with three categories. A model
with independent category-specific random effects is
special case of model (4) where ¢; = 0.

Let A represents an indicator matrix for the
category-specific effects ¢;’s and X denotes matrix of
regression variables. Let w; = (4, #y; , ..., Up), Uy, =
(U195 Uy » oor Upyy) and X =[AX,]. Similarly, let Z, and
Z, denote the incidence matrices for the random effect
vectors u; and u, respectively. In general the right hand
side of the (4) can be written as

7,=X [+ Zu 5
where Z = [Z,, Z,] and u = (u;, u,). The random

vectors u is distributed as multivariate normal with zero
mean vector and variance-covariance matrices given by

¢1¢3]
&% b

where I, is identity matrix of D (D = 406 in UK LFS
application) order and ® denotes direct product.

CI)=ID®[

3. BEST LINEAR UNBIASED PREDICTOR-
TYPE

A widely used method for defining the estimates
in (1) is via substitution of the corresponding best linear
unbiased estimators (for unknown regression
coefficients) and best linear unbiased predictors (for
unknown realisations of random variables). Under
generalized linear mixed model (GLMM), the
distribution of the vector y of sample values of the
variable of interest is assumed to depend on a vector
quantity 7, that is related to regression covariates and
random components through the equation (5). The
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linear predictor 7, is connected to response variable y
via a known function A4, defined by E(y, | u) = A(z,).
Here /(7)) is a vector of the elements of

exp(Tsd,-j)

2
1+ 2 exp(Tsd,-j)
j=1

- ©6)

where 7, is the number of sampled people in group i
for the area d.

Henderson (1963, 1973a, and 1975) develops best
linear unbiased predictors for linear mixed models.
McGilchrist (1994) extended this approach to
generalized linear mixed models. Below we outline the
extension of this approach to multinomial logistic linear
mixed model with category-specific area random
components.

Let /; be the log-likelihood function of the
multinomial observations vector y, conditional on the
value of the random component vector u and let /, be
the logarithm of the probability density function of u.
For the model (4) the functions /, and /, are

DY

P

D I
L= (filylw) = >
d=1i=1

J-1
J

j=1

J-1
[ysdleSdU —ny; In [1 + 2 eXp(Tsdij ) J]

1, = In (f(w)) = — (*2) [Const. + In @] + u'® 'u]
where s indicates sample, J =3 and 7,4, = &} + Ty

The o, Band u values that jointly maximise / =/, + [,
are called the penalised quasi likelihood (PQL)

estimates; &, #, and @. Put 7, = o + X8+ Zu and
X" = [A X, Z] (here Z = Z_ = Z,). The iterative
procedure used to obtain the PL estimators can be
specified as follows:

(a) Starting from initial values &, B, u, and @,
(hence @) successive iterations are obtained by
finding changes A, Af and Au to the current
estimates from the equations

Aa 0
V|AB =X*Ti—[ ., ]
Au 9% [P

2 . (0 0
where V = X7 —L X + _,| and
97400750 0 @,

2
J 750 0 TsOa TSTO

derivatives of /; with respect to 7, and evaluated at
initial value 7.

are first and second order

At converge values &, B and @, best linear
unbiased predict-type (BLUP-type) estimate of  is then

0 =4y, + AJ, = Ay,

1
2
+ A, (Ny —ng;) exp(Z,; {1 +> eXP(frdij)J
j=1

where N is the total population (active and inactive)

in age-sex group i/ for LAD d and 7,4

a; +x;dl-jﬂ~j +iy; for j =1, 2. The new estimator is
called BLUP-type because it is neither linear nor
unbiased.

It is often the case that variance components
parameters defining the matrix ® are unknown and
have to be estimated from the sample data. A further
step could follow the step (a) to obtain penalised
likelihood estimates of the variance components.
However, these estimates of are negatively biased and
they are not recommended in the practice; see
McGilchrist (1994). The maximum likelihood (ML) and
residual/restricted maximum likelihood (REML) are
two important approaches in estimating variance
components. The biases in estimating variance
components are very small by REML method.

4. EMPIRICAL BEST LINEAR UNBIASED
PREDICTOR-TYPE

For normal error model, the interrelationship
between BLUP (PL) with maximum likelihood (ML)
and restricted or residual maximum likelihood (REML)
estimators was developed in Harville (1977) and
investigated further in Thompson (1980), Fellner (1986,
1987) and Speed (1991). McGilchrist (1994) extends
this approach to generalized linear mixed models. This
method has elements in common with Schall (1991),
Breslow and Clayton (1993), Wolfinger (1993), Nelder
and Lee (1996) and Saei and McGilchrist (1998). Lee
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and Nelder (2001a, 2001b) further extended the work
of Nelder and Lee (1996) to correlated non-normal data.
Below we outline the extension of this approach to the
multinomial logistic linear mixed model with category-
specific area random components. In this case, the PL
estimates and predictors &, fand @ are used as an
initial step in finding ML and REML estimates of ¢,
via Anderson (1973) and Henderson (1973b) algorithm.
The iterative procedure used to obtain the ML and
REML estimators and their approximate variance-
covariance matrices can be specified as follows:

(b) (a) Starting from initial values ¢, £, u, and Po
(hence @) successive iterations are obtained by
finding changes A, Af and Au to the current
estimates from the equations

Aa

0
V| AB =)6Ti-[ B ]
Au 9% D

This is the PL estimation equation and its
elements are described in previous section.

(c) Once iterations of (a) have converged to &, B and
U, let 7 = A@+XpB+Zii, B, =-09% /0,07 ,
a, = () +djd,, a, = tr(Ty)+ihii, and

ay = 2(te(T},) + @ @,) and
*_ oy — -1 T —1
T =[Tyl=[® +ZBZ] .

The estimates of ¢ are then given by

— $0 Do |_( %0 |
¢31=_a1 (@oj%Jr $o (@0] |
D
(e b
5 -L 0 0 o) 1
D
b, = AoP%

D5y — axyy + b + Yoy — oD

(d) The preceding two (a) and (b) steps are then

repeated, with initial values set to &, ,3 u, and
9;.

At convergence, &, and éj are the ML

estimates of fixed parameters «, f and variance
components ¢. At this stage the ML-based empirical
best linear unbiased predict-type (EBLUP-type) of 0 is

O=dy,+ AS, (®)

= Ayt ANy —ng) exp(d, g )1+ 2 exp(Fg)) )

where £, = &; +xdl]ﬁ +iy; forj=1,2. The @;,

B, and il are the final values of the &, /3 and u,; in

the iteration processes (a) and (b).

Remember that estimate values for the last
category (employed) can be obtained by subtraction of
sum of the inactive and unemployed from total N,.

The ML estimators ¢A(ML) = (QA(ML), ¢2\Z(ML)’

# L) ) have asymptotic variance-covariance matrix

Var(qs(ML) )

2 2 2w T
Tnthii—281n1 Hiethi —4312 Hizthiz — 253

figp + 1y = 2Ry Tip3+ 103 — 2503
fi33 +h33 — 2133

)]
where
iy =t @@ 13g) ©@® /39|
By =t T @@ /9¢,) T (0@~ / 8¢j')]
By = | @@ /99,) T @07 199;) |
fOI‘j,j, = 1> 29 3

where tr( ) denotes trace of the matrix inside the
bracket. The derivatives of the inverse of variance-
covariance matrix @ are given in Appendix A.
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A\ T, T
LetV=[ 11 12:| andv_lz[n 12]
1 Vo Ty Tp

denote the partitions of the matrix V and its inverse

corresponding to the dimensions of fixed effects (@, B
and random effect u. Replacing T by T,, in (7) yields

the REML estimates &, B and éj(REML) of a, ﬂand

@, This leads REML-based empirical best linear
unbiased predict-type (EBLUP-type) estimates in (8)
and variance-covariance for the REML estimators

#remr) = (AREML)> PREML): BREML)») i (9).

An important measure of the “quality” of a
statistical estimator is its mean square error (MSE), and
so it is important that any small area estimate be
accompanied by an estimate of its MSE. Here the
prediction error of 8 is 6 —0 = a (§,-y,) =
a,.(h(t,)-y,). Replacement of 7, by 7. and n, by
N, —ny in (6) yields i(%,). Let £, represents BLUP-
type counterpart of the EBLUP-type 7, . The prediction
error of ® can be further simplified to § — 0 =
a.(W.)-y,) = a.(k(t.)-h(@.)+h(T.)-y,). The
mean cross-product error matrix is therefore MCPE (0)

= E[(0-0)(0-0)].

For an identity link function (linear mixed model),
following the work of Kackar and Harville (1984),
Prasad and Rao (1990) introduced an analytical
expression for the MSE estimate. Datta and Lahiri
(2000) and Saei and Chambers (2003) provided MSE
components under ML and REML estimates of variance
components. Singh et al. (2005) extended MSE
estimates to the correlated area random effects models.
Saei and Chambers (2003) gave an approximate MSE
estimate of the small area estimators under a
generalized linear mixed model. A similar approach was
used in estimating MSE of the LFS estimates by Molina
et al. (2007).

While the above approaches are concentrated on
deriving an analytical expression for the MSE estimate,
an alternative method has been introduced by using
resampling techniques. Jiang et al. (2002) proposed a
jackknife methodology for estimation under generalized

linear mixed models. Pfeffermann and Tiller (2005)
proposed a parametric and a non-parametric bootstrap
estimator of mean prediction errors under state space
models. Hall and Maiti (2006) proposed a double-
bootstrap approach for bias correction, which is
applicable for constructing bias-corrected estimators of
the mean squared error and for computing prediction
regions under general settings. Molina ef al. (2007) also
used a bootstrap technique under a multinomial logistic
mixed model. In this paper, we report mean square
estimates by using an analytical approximation
approach.

5. SIMULATION RESULTS

A limited simulation study was undertaken to
examine the performance of the model and method. The
survey variable is a multinomial with three categories
(trinomial), J = 3, and focus is the estimation of small
area totals for all three categories. The values u = [u,,
Uy, -y Upy, Upy] Were generated from a multivariate
normal distribution with zero mean vector and variance-
covariance matrix

o-noft )
&% b

The x, values were randomly assigned to values
of 0 and 1 and were also kept fixed throughout the
simulations. These u and x along with ¢; and 3, values
were used to generate 7;; = ¢; + X, + u,;, The values
7;; were used to generate population values using
model (3) for D = 40 areas. The generated population
values were 1, 2 and 3 according to first, second and
third response categories. Random samples of size n,
from N, were taken with n, increasing with d. The
sample size varied from 4 to 61. These sample sizes
were according to sampling ratios range of 0.0005 to
0.0035. The sample size was kept fixed for all 40 areas
throughout the simulations. The y,,; and y,; are then
obtained by aggregating non-sample and sample values
over combination of the area, x(0, 1) and response
category (J = 3). The sample data were used by two
models, new model and Molina et al. (2007), in
estimating the model parameters via REML. The
estimated parameters by two models were then used to
obtain two different sets of estimates. For the last
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response category, the small area total was calculated
by subtraction from total population for given area. The
totals for first two categories were obtained by

O=dy,+ AS,
2
= A, + AAN g =ng) exp(Eg Y1+ Y, exp(d,4))™" )
j=1

For a given area, the 0 is a vector of the estimated
values for the first and second category totals. The
process of generating population and sample data,
estimation of model parameters and calculation of i)
was independently replicated 1000 times. For each set
of estimates & and for each small area d, we then
calculated the actual and average estimated mean
squared errors

1000
ActMSE, = diag,| > (0, —0,) (6, —6,)/1000
k=1
000
EstMSE, = diag,| >, MCPE(6,)/1000
k=1

where diag, (X) denotes the d” element of the main
diagonal of X. Because of limited space, the results
were reported for just last category in model, category
2. The actual coefficient of variation

A/ ACtMSEd

1000

Y 6,;,/1000
k=1

ActCV, =100 x

and the estimated coefficient of variation

w’EStMSEd

1000

> 0,5;,/1000
k=1

EstCV,= 100 x

were then calculated, as was the average coverage of
the area d total by the nominal 95% confidence
intervals. The 2 in denominators indicates the second
category in the above equations.

We have also generated population data from the
model in Molina et al. (2007), i.e. a multinomial logistic
linear mixed model, with linear predictor was defined
by

le-j = 0!1 + xdl-,Bj- + Uy

This model was called a single random effect
model. The values u = [u,, u,, ..., up] were generated
from a multivariate normal distribution with zero mean
vector and variance-covariance matrix ® = ¢@I,,. The
whole processes of generating, drawing samples and
calculating area estimates in previous paragraph were
repeated except that the estimation was carried out only
by single random effect model.

Four and three different combinations of variance
components were used in the simulations under a
bivariate and single random effect models respectively.
The variance components (¢, @,, ¢;) were (1, 0.25,
0.4), (0.25, 1, 0.4), (1, 1, 0.4) and (0.25, 0.25, 0.1) for
bivariate random component model. For single random
effect model, three different simulation values of ¢
were 0.5, 1.5 and 1 respectively. A single set of
regression coefficients was used in both bivariate and
single random effect models, i.e. o = 1, o, = 0.5,
B, =0.5 and B, = —0.5. The simulation results are
presented from a single random effect first.

Fig. 1 shows the average values of both the actual
coefficient variation (ActCV), estimated coefficient of
variation (EstCV) and estimated 95% coverage in
estimating totals for the second category. The horizontal
axis is sorted in ascending order of the area sample
sizes. The results show that estimated CVs are in very
close agreement with their actual values. They decrease
as area sample sizes increases. The estimated 95%
coverages are very close to 95% nominal value for all
40 areas regardless of their sample sizes. A similar
conclusion was obtained in the simulation study by
Molina et al. (2007). This does show that the adopted
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Fig. 1. Coverage, actual and estimated coefficient of variations,
ActCV and EstCV.
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mean square estimation approach works reasonably
well.

Fig. 2 shows the coefficient of variations for the
total estimators by application of Molina et al. (2007)
(a single random effect model) to data from model (10).
These show that for large variance components in
particular, estimated CVs are far from their actual
values, irrespective of the area sample size. Although
the difference between ActCV and EstCV is reduced for
small variance components, the differences are not
small and EstCVs are even less than 50% of the ActCVss.
This problem persists, albeit in a somewhat reduced
form, with the total estimators of the two other
categories, first and last (not reported here).

521
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Fig. 2. Actual and estimated coefficient of variations,
ActCV and EstCV, X_i denotes X for the simulation
data i.

The bivariate area random components model
(proposed model in this paper) performs much better
in this regard, with estimated and actual CVs for the
all variance component combinations being very close.
These, ActCV and EstCV values, are shown in
Fig. 3. As expected, CV decreases by increasing area
sample size.

The results, not reported here, show that there is
also a gain in efficiency from modelling correlation
between bivariate area random effects. These gains are
more pronounced for areas with small size. [rrespective
of potential increases in efficiency, an important gain
by a bivariate area random component is better
estimation of mean squared error. Molina ef al. (2007)
generally leads to severe underestimate MSE
estimation. An implication of this is a poor coverage
and records coverages very far from the nominal 95%
level. In contrast, a bivariate area random component
coverages are very close to the 95% level. Furthermore,

H
3814
Ya,
S *,
kS| ‘l"'. .
g 28 -~ e ',
i = v
N\
o118 \ A
= T
(0] bl sam: ve
Q >
o R
SOVTLEL P,
8 T : . \
1 1" 21 31
Area
—~ -~ ActCV_3 -t EstCV_3 = = ActCV_4 - EstCV_4

Fig. 3. Actual and estimated coefficient of variations, 4ctC} and
EstCV; X_i denotes X for the simulation data set i.

this overall good performance holds across all sets of
the parameter values investigated. Fig. 4 shows 95%
coverage by both bivariate area random component and
single random effect.
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Fig. 4. Coverage of nominal 95% confidence intervals (95%
Coverage) generated by Bivariate (B) and Single (S)
random effect model

6. APPLICATION TO UK LFS DATA

In this section we illustrate the preceding model
and method to the same UK LFS data in Molina ef al.
(2007). The LFS is the largest regular household survey
in Great Britian (GB) and it is the main source of
information on unemployment. The focus of this
application is estimating unemployment, inactive and
employee for the primary areas for UK resource
allocation, Unitary Authorities and Local Authority
Districts (UA/LADs). The data are available at six age
and sex (agesex) categories for each of 406 LADs.
There are 12 government regional offices (GOR) and
7 clusters. The cluster is a socio-economic classification
and seven clusters are rural areas, urban fringe, coast
and services, prosperous England, mining,
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manufacturing and industry, education centres and outer
London, and inner London. The number of registered
unemployed is the other variable that we are going to
use in modelling. As we expected, this is an important
predictor for unemployment and Fig. 5 confirms that
by showing a positive correlation between logit of
proportion of unemployed and logit of registered
unemployed. The number of registered unemployed is
given at six age and sex combinations/groups for each
LAD areas. The sample size varies from 2 to 633 for
LAD-age-sex combination. There is also a single LAD-
age-sex combination of zero sample size. The sample
size ranges from 52 to 2702 at LAD level.

Logit (Prop-unem)
N

7 6 5 4 3 2 -4 0 1
Logit (Prop-registered)

Fig. 5. Scatter graph of logit of the proportion of unemployed vs
logit of the proportion of registered unemployed.

Table 1 sets out the parameter estimates and
associated standard errors for two multinomial logistic
linear models fitted to these data, with the response
variable in each case corresponding to the number of
inactive, unemployed and employed people observed on
each LAD-agesex combination. Model 1 and 2 are
multinomial logistic linear models with bivariate and
single LAD random effect respectively. A third model
relaxes the dependence assumption in Model 1 and
assumes LAD effects for inactive and unemployed are
independent. The parameter estimates are not reported
here for this model. All three models are fitted using
REML.

Examination of the results for Model 1 show that
there is statistically significant variation between LADs
for inactive category (@ = 0.02 with an estimated
standard error of 0.003). This between LADs variation
is also significant for unemployment category (@, =
0.016 with an estimated standard error of 0.006).
Furthermore, the two LAD random effects are

correlated with estimated covariance of ¢; = 0.008 and
estimated standard error of 0.003. The estimated
correlation between two LAD random effects is p =
0.45. Both other models, 2 and 3, support the
conclusions by Model 1 on LAD effect that is a
statistically significant variation between LADs. In term
of the fixed effects/regression coefficients, there is not
much choice between three models. The differences
between regression coefficient estimates are negligible
or very small. The gender, both covariates associated
with the registered unemployed, registered unemployed
and registered unemployed total, are statistically
significant. Under Model 1, the estimated values are
0.053 and 0.383 for registered unemployed and
registered unemployed total respectively. The estimates
are both positive, and this backs up the relationship
between number of unemployed and registered
unemployed in Fig. 5. In contrast, there is no evidence
of an interaction between age and sex, with Wald

statistics (B7 [var(B)]"'B) of 3.5 and 3.7 for the inactive
and unemployed categories respectively. A part from the
government office region (GOR) for unemployed
category, all other covariates in the model are playing
important role on the inactive and unemployed total
variations. For the category inactive, Wald statistics are
91.2, 39.5, 147 and 39 for age, GOR, interaction
between age and registered unemployed and cluster
(Socio-economic classification) respectively. Similar
Wad statistics are 7.7, 12.2, 18.3 and 38 for the category
unemployed. These conclusions are also supported by
other two models. Under Model 2, the Wald statistics
for inactive and unemployed categories are 88.8, 10.1,
41.9, 150 and 8.54, 11.2, 16.4, 36.9.

The estimated coefficients and predicted values of
area (LAD) random effects are used to calculate
EBLUP-type estimate of totals number of inactive and
unemployed people for each 406 LAD in UK. This is
a composite estimate, a combination of observed values
in sample and predicted values of non-sample. The
EBLUP-type estimates of the reference category,
employed, are obtained by substruction from LAD total
population. The performances of three models are
compared in estimating of the totals inactive and
unemployed. Although the results in previous paragraph
supported a category-specific LAD random effect, the
small variance component estimates did not make a big
changes in estimating regression coefficients and
associated standard errors by Model 1 from other two
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Table 1. REML parameter estimates (est), standard errors (se) and ¢ (¢ = est/se) for bivariate area random component and
single random effect models fitted to LFS data.

Model 1 Model 2
Inactive Unemployment Inactive Unemployment
Est SE  Est/SE| Est SE  Est/SE | Est SE  Est/SE | Est SE  Est/SE
¢ 0.020 0.003 7.873 0.018 0.002 7.824
?, 0.016 0.006 2.718
¢ 0.008 0.003 2.789
Inact o, 1.131 0.163 6.936 1.133  0.158 7.164
Unem a, 0.391 0.386 1.013 0316 0.383 0.826
Sex B, | -0.054 0.171 -0.318 |-1.834 0.750 -2.445|-0.084 0.170 -0.492 [-1.729 0.749 -2.309
Age B, | -1.020 0.155 —6.586 |-0.348 0.380 -0.916|-0.995 0.154 —6.444 [-0.382 0.379 -1.009
By | -1436  0.151 -9.541(-0.773 0361 -2.142|-1.410 0.150 -9.397 | -0.824 0.359 -2.293
Age*Sex b, 0.266 0.236 1.127| 1.430 0.797 1.793| 0.286 0.236 1.213| 1.342 0.796 1.687
Bs | -0.167 0222 —0.754| 0938 0.795 1.180|-0.159 0.222 -0.716 | 0.873 0.794  1.100
ﬂ6 0.006 0.043 0.144 |-0.035 0.079 -0.436| 0.006 0.041 0.145|-0.028 0.079 -0.352
by 0.071 0.038 1.858 |-0.016 0.073 —-0.216| 0.071 0.037 1.924 |-0.008 0.073 —0.110
By 0.094 0.062 1.510| 0.157 0.098 1.599| 0.096 0.060 1.604| 0.160 0.099 1.625
5y 0.217 0.084 2.577|-0.013 0.118 —-0.113| 0.210 0.080 2.631| 0.022 0.118 0.186
By | 0.049 0.058 0856 0.131 0.091 1.442| 0.046 0.055 0.830| 0.155 0.090 1.725
GOR By | 0031 0.043 0.719| 0.006 0.075 0.082| 0.028 0.041 0.675| 0.018 0.074 0.247
B, | —0.060  0.050 -1.212| 0.035 0.080 0.442|-0.060 0.047 -1.259| 0.031 0.079  0.394
Bi5 | —0.025 0.041 -0.607 | 0.035 0.076 0.461|-0.027 0.040 —0.668 | 0.043 0.076  0.573
By | 0173 0.052 3356 0.088 0.086 1.030| 0.168 0.049 3.396| 0.107 0.086 1.247
Bis | —0.043  0.045 -0.962 | 0.075 0.077 0.967|-0.037 0.043 -0.874| 0.057 0.076  0.749
B | —0.023  0.051 -0.440 | -0.066 0.082 -0.814|-0.028 0.049 -0.568 |-0.033  0.080 -0.409
B, | 0102 0.035 2936 0.005 0.064 0.079| 0.103 0.033 3.095| 0 0.064 —0.003
Big | 0.105 0.038 2.748| 0.118 0.064 1.835| 0.107 0.036 2.938| 0.118 0.064 1.849
Cluster B | —0.025 0.035 -0.695| 0.072 0.066 1.088|-0.022 0.034 -0.660 | 0.058 0.066 0.884
By | 0202 0.036 5.621| 0213 0.058 3.670| 0.205 0.034 5964 | 0203 0.058 3.518
By | 0.016 0.060 0269 -0.017 0.092 -0.186| 0.016 0.058 0.272|-0.011 0.092 -0.119
By | 0.154 0.085 1.818| 0.069 0.125 0.553| 0.152 0.081 1.879| 0.092 0.125 0.733
Reg By | 0.184 0.039 —4.725| 0.503 0.106 4.753|-0.194 0.039 -5.003 | 0.517 0.105 4.909
Reg*Age- | f,, | —0.083 0.034 -2.464 |-0.368 0.150 -2.450|-0.086 0.034 -2.564 |-0.351 0.150 -2.345
Sex Bys | —0.003  0.043 -0.069 [-0.307 0.099 -3.102| 0.001 0.043 0.027 |-0.312 0.099 -3.167
By | 0428 0.043 10.020 [-0.068 0.092 -0.736| 0.433 0.043 10.160 | -0.080 0.092 -0.866
By, | 0.104 0.061 1.695| 0275 0.174 1.585| 0.106 0.061 1.729| 0262 0.173  1.510
Brg | —0.364 0.055 —6.661 | 0.047 0.167 0.280|-0.364 0.055 —6.665| 0.039 0.166  0.232
Total-Reg | B,y | 0.437 0.044 10.040 | 0.383 0.083 4.584| 0.448 0.042 10.570 | 0.349 0.082 4.236
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models. Results on Table 1 indicate that classical model
test is unable to discriminate between three models if
the aim is the inference on regression coefficients. In
this case, a bivariate random component model gains a
little over a simple single random effect model, Molina,
et al. (2007). Moreover, the gain in efficiency would
be negligible or small by a bivariate random component
model, Model 1, if the predicted values of LAD random
effects are excluded in estimation small area totals.
However, in the simulation study in previous section,
the small area estimates did not behave very well when
a single random effect model, Molina ez al. (2007), was
applied to the data generated by a bivariate random
component models. This poor performance was evident
in all different variance component combinations in
particular for large variance components. There was
also evident of more gain in efficiency by modelling
the correlation between category-specific area random
effects. Under Model 2, the standard errors, in particular
for the category unemployed, are severely
underestimated. The average estimated the mean
squared errors are 2788604.23 and 162737.80 for the
totals inactive and unemployed estimators respectively.
Model with independent category-specific area random
effects overestimates the mean squared errors with the
estimated average values of 3323591.44 and 403398.80
for the totals of inactive and unemployed estimators.
The averaged ratios between two mean squared error
estimates by Model 2 and Model 1 are 0.87 and 0.54
for categories inactive and unemployed respectively.
These values are 1.023 and 1.274 in comparing Model
1 with the third model (model with independent
category-specific area random effects). Fig. 6 presents
mean squared error ratios in estimating the totals of
inactive and unemployed for all 406 LADs. The
horizontal axis is sorted by LAD total population.
Fig. 6(a) shows the ratios between two mean squared
errors by Model 2, Molina ef al. (2007), and Model 1.
While these ratios are almost all over 80% for the
inactive category, they are less than 50% for a
significant number of LADs for the unemployed
category. Under Model 2, the underestimation of mean
square errors is more pronounced for large LADs. The
impact of modelling the correlation between
categoryspecific area random effects on the mean
square error estimates are depicted in Fig. 6(b). These

1.1

MSE Ratio

MSE Ratio

MSE Ratio

1 201 401
LAD
x InActive o Unemployed
Fig. 6. Ratio of MSE estimates (a) Model 2 over Model 1 (b)
independent category-specific area random effects model
over Model 1 (c) Model 2 over independent category-
specific area random effects model.
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are ratios between two mean squared errors by
independent category-specific area random effects and
Model 1. For the inactive category, category with large
values, the MSE ratios pattern is similar to the pattern
in Fig. 6(a). The LAD total population has a little or
no influence on the MSE ratios and the pattern is almost
flat. The maximum gain in efficiency is 6% by
modelling the correlation between category-specific
area random effects. As in Fig. 6(a), the performance
of a bivariate random components model more
pronounced in estimating total of category unemployed,
category with small values. However, the pattern is
more promising and it is different to that in Fig. 6(a).
The MSE ratios are decreasing by increasing total LAD
population and are approached to 1 for large of the
LADs. A large number of the LADs gain more than
30% in efficiency by modelling the correlation between
category-specific area random effects. The maximum
gain is 55%, and there are 25 LADs with the gain more
than 45% in efficiency.

Although not presented here, in the simulation
study, the performance of independent category-specific
area random effect model was much better than a single
random effect model when they applied to the
multinomial data that were generated by a bivariate
random components model. For the category inactive,
the ratios between two mean squared error estimates,
independent category-specific area random effect model
and Model 1, follows the same pattern as in Fig. 6(a)
with the values slightly smaller. The category
unemployed shows a major change. The MSE ratios are
not sharply decreasing by increasing total LAD
population for the category unemployed. Fig. 6 about
here

7. CONCLUSIONS

In this paper we introduce a multinomial logistic
linear mixed model with a bivariate random component
for estimating totals of inactive, unemployed and
employed people at subregional level. The model allows
the area random component to be varied by the response
category (category-specific area random effects). It also
assumes that the area random effects for two categories
unemployed and inactive are correlated. In particular,
bivariate random effects are embedded into the
multinomial logistic linear model, where area random

effects in both unemployed and inactive are assumed
to follow a bivariate normal distribution. This model
is compared with two other models, independent
category-specific random effect model and a single
random component model, Molina ef al. (2007). In
application to UK LFS data, the bivariate random
components model indicates the existence of
statistically significant LAD heterogeneity for both
inactive and unemployed categories. The two random
components are also significantly correlated. Although
the estimated variance components are small, the gain
in estimation efficiency in particular for the category
unemployed is not ignorable. The proposed model
benefits from both category-specific LAD random
effect and correlation between them. If both of them
are ignored, Molina et al. (2007), the mean square
errors especially for the category unemployed, a
category with small values, are severely underestimated.
The interesting is that the poor performance increases
by increasing LAD total population.

Results from a small scale simulation support this
conclusion, in the sense that the mean squared error
estimates of the total estimators, in particular for
categories with small values, are underestimated if the
category-specific area random components are ignored
when modelling data that includes such effects. Our
proposed model has the potential to lead to substantial
increases in prediction efficiency of total estimators for
small areas when there is considerable variation
associated with category-specific area random effects.
The results also show that the estimates of mean square
error calculated under the model with correlated
category-specific area random effects are much more
accurate than those based on the model with the
independent category-specific area random effects. As
a consequence, confidence intervals based on these
estimates of mean square error tend to be more accurate,
in the sense of achieving their nominal level of
coverage.
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APPENDIX A

The variance-covariance matrix in equation (9) of
the Section 3 is completed by determining its derivative

elements. Let A = ¢, ¢, — ¢52 , derivatives of the inverse

. . . | .
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Replacement of the above derivatives into (9) in
Section 3 yields asymptotic variance covariance for ML
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