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SUMMARY

Motivated by the problem of ‘quality filtering’ of estimated counts in U.S. American Community Survey tables, this paper
studies methods for placing confidence bounds on zero estimates within demographically cross-classified tables which are
estimated from complex surveys. While Coefficients of Variation are generally used in screening the quality of estimated counts,
they do not make sense for assessing validity of zero counts. The problem of assessment is formulated here in terms of (upper)
confidence bounds for unknown proportions. After summarizing published methods of constructing confidence intervals for
proportions based on survey data, we study methods of creating confidence bounds from small-area models including synthetic,
logistic, and variance-stabilized (arcsin square root transformed) linear models. The relations between these models and the
confidence bounds they generate will be illustrated on demographic (Age-Race-Sex) American Community Survey tables from
2009 data for large (population at least 65000) U.S. Counties.

Keywords : arcsin square-root transformation, Confidence bounds, Effective sample size, Fay-Herriot model, Quality filtering,

Synthetic model.

1. INTRODUCTION

As part of its general guidelines on quality of
released data, the US Census Bureau regularly checks
Coefficients of Variation of survey estimates before
their release. The American Community Survey (ACS),
the ongoing survey which was designed to replace the
decennial-census Long Form last used in 2000, is a
particularly prolific source of survey estimates at
various levels of aggregation and cross-classification
(http://www.census.gov/acs/www). In a process called
‘data quality filtering’ which is particularly elaborated
and documented in ACS, release of some tables of
estimates is prevented by rules relating to imprecision
of estimates due to extremely small sample sizes
(Starsinic 2009). These rules are generally expressed
in terms of Coefficients of Variation (CV’s) of the
survey estimates in individual table entries, although
special rules apply to entries with counts of 0, whose

E-mail address : evs@math.umd.edu

CV’s are not defined. Generally in ACS, tables are
filtered, remaining unpublished in American Factfinder
data releases if a table’s median CV among entries not

defined as subtotals or totals of other entries is greater
than 0.61.

Quality of survey estimates is generally
summarized in US government publications in terms of
CV’s. However, it is recognized (ACS Methodology
2010, Ch. 12, p. 12-4) that CV’s for zero estimates or
very small counts or proportions are either undefined
or not meaningful. The current ACS methodology for
defining an artificial ‘SE’ for cells with 0 estimates
(ACS Methodology 2010, p. 12-4) was developed in
Navarro (2001): in a cell with population size N within
which the proportion p is estimated and found to be
0, the convention is to define

N-SE(p)= CAve.Wt (1)
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where Avg.Wt is defined as the larger of the average
final person weight and the average ACS housing unit
weight, both averages being taken over each State for
estimates of cells that do not cut across State
boundaries. The constant C = 20 was chosen from data
analyses in 2001 of ACS 2000 data so that at least 90%
of confidence intervals [0, z ;s N SE(0)] contained the
corresponding 2000 census cell-count.

It is the purpose of this paper to compare and
develop methods for assessing quality of survey
estimates in settings, like those of many ACS tables,
where estimated proportions of the surveyed units
which have specified attributes are frequently zero or
very small. After relating confidence bounds for CV’s
to confidence intervals, through transformations of the
probability scale, in Section 2, we review in Section 3
the principal ideas for confidence interval construction
for unknown proportions in a survey setting. We turn
then in Section 4 to consider old and new ideas for
confidence interval construction in surveys based on
models. That leads us to the central topic of the paper,
the application of area-level estimation models to the
construction of upper confidence bounds (UCB’s) for
small survey-estimated proportions. The small area
estimation methods described in Section 4 are applied
to 2009 ACS data in Section 5. Findings and tentative
conclusions, with particular reference to proposed
methodology for ACS, are summarized in Section 6.

2. CV’s AND CONFIDENCE BOUNDS FOR
PROPORTIONS

The most common indicators of precision and
quality of survey estimators are Standard Errors and,
more particularly, relative Standard Errors as a fraction
of the expected (or estimated) attribute value. When a
positive average attribute value x for a population is
to be estimated from a survey, the relative standard error
of the survey estimator fI is

CV(2)=SE(a) & @)
the estimated Coefficient of Variation (CV) for the
estimator. Whether relative or absolute, these standard
errors are useful in comparing estimators from different
subpopulations or surveys because they are meaningful
in constructing confidence intervals. Under the large-
sample and large-population assumptions used to justify
approximate normality of survey estimators, a level
1 — « confidence interval for the unknown # is

Cl= 1 +2,,SE(f1)

= - (1 2,4 CV(R)) 3)
where z, = @ (1 - #) is the standard-normal (1 — 7)-
quantile and is @ the standard normal distribution
function.

Another interpretation of the CV is given by the
logarithmic transformation and the Delta Method. That
is, under assumptions justifying approximate normality,
for positive u the transformed estimator log( & ) is also
approximately normal, with standard error equal to the
CV of f1, and a confidence interval of approximate
level 1 — o for log(u) is given by

log(#) e log(f1) 2,5 CV (1)

Precision of estimation of & can be expressed
either through bounds on the CI width in the original
measurement scale & through SE( &), or through
bounds on CI width in the logarithmic scale log()

through 6\\/([1 ). It is in this spirit that we discuss
precision of estimation of unknown population
proportions & = p through transformations of p. The
primary tool is always the Delta Method, which for a

known smooth strictly monotonic transformation A(p),
with estimator p which is consistent and

approximately normal in large samples, says that

D 4 A
h(p)—h(p) = NQO, (W (P)SE( p))) “)
Our interest here is to study confidence intervals
for small p, based on survey estimators p . Precision

of estimation of p could be measured either on the
original probability scale or the /-transformed scale. In
order to measure precision when p is very close to 0,
particular interest centers on the transformation A(p) =

arcsin( \/; ) which is variance-stabilizing for binomial
sampling, as we now explain.

When the estimator p is based on independent
Bernoulli(p) sampling, with sample size n, its standard
error is +/p(l1— p)/n . Approximate normality holds
when »n is moderately large, and since the
transformation A(p) = arcsin(\/; ) has derivative #’(p)

= 1/(2+/p(1-p)), equation (4) shows that the

transformed estimator A( p ) is approximately normal

with variance 1/(4n) not depending on the probability
p being estimated. Thus, although the normality of p
is questionable when np is not large, the transformation
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h approximately frees the variance of p from
dependence on p, a very desirable property when p is
small.

More generally, the variance of a survey estimator
of a proportion p is given as

(SE( ) = deff - 1=/

p(1=p) )

where N is the population size and z the sample size
on which the estimator is based, and the so-called
‘design effect’ deff is defined as the ratio of the variance
of the estimator p under the actual complex survey
design to that under Simple Random Sampling. (Here
a factor N/(N — 1) is ignored in the formula for sample
variance of the attribute indicator over the frame
population.) As a result, we have the general
approximate distribution for a transformed survey-
estimator of proportion,

D _
arcsin (\/p) —arcsin({[p ) = N(O, deff -1 1/ N ) (6)
n

The corresponding upper confidence bound (UCB) for
p would be

p €0, sin® (arcsin (\/5)

+ 2, {deff (1 — n/N)/(4n)} )] (7)
Exact UCB’s in the setting of Simple Random
Sampling (without replacement) can be provided from
the hypergeometric distribution. See Buonaccorsi
(1987) for the test-based UCB, and Wright (1990) for
a related bound on its coverage. In many survey
applications, including ACS, the finite population
correction factor 1 — n/N in (5)—(7) can be replaced by
1 because # is much smaller than N. Then the square
of standard error in equation (6) can be re-expressed
as 1/(4 ny), where the effective sample size is defined
as ngy = n/deff. Thus the variance-stabilizing arcsin
square-root transformation retains the property of
stabilizing the variance of survey estimators of
proportions, with the necessary caveat that design
effects deff can vary from subpopulation to
subpopulation and cell to cell within a cross-classified
survey and can therefore not be regarded as quite
independent of the proportions p in different cells which

possess a specified attribute.

3. BOUNDS ADAPTED FROM BERNOULLI
SAMPLING

There is an extensive literature on confidence
intervals for unknown binomial proportions in non-

survey settings. We focus here on two papers which
summarized that literature, Korn and Graubard (1998)
and Liu and Kott (2009), in order to make an informed
choice, supported by simulations, of methods applicable
with survey estimators of proportion, including one-
sided intervals or intervals for very small proportions.

As regards confidence interval methods for
proportions estimated in Bernoulli, non-survey settings,
Korn and Graubard (1998) and Liu and Kott (2009)
take different approaches. Korn and Graubard favor the
Clopper-Pearson or ‘exact binomial” interval, which is
reliably conservative because it is based on exact
binomial tail probabilities. Liu and Kott instead
compare many one-sided intervals, preferring intervals
with coverage as close as possible to nominal over a
broad range of true proportions (again, under Bernoulli
sampling), without preferring conservative to anti-
conservative violations of nominal coverage
probabilities. They include several proposed
modifications of normal-theory-based intervals which
follow Brown et al. (2001, cited in Liu and Kott) in
incorporating small-sample Edgeworth-expansion

corrections for skewness of p . Liu and Kott (2009)

found the best among the various methods to be Cai’s
(2004) modification of the Brown et al. proposals,
along with a further Kott-Liu (2009) modification. They
provide a series of graphs showing the computational
performance of these and other intervals, over all p, for
moderate n. Their graphs also show that the interval (7)

based on A(p) = arcsin \/; through (6) is quite good

and slightly conservative for small p (say p < 0.2) but
seriously biased and anticonservative for larger p.

These Bernoulli-sampling intervals are made
relevant to survey practice in the same way in both
Korn and Graubard (1998) and Liu and Kott (2009).
These papers, and virtually all other design-based work
on confidence intervals for proportions in surveys,
propose to take the best available non-survey intervals
and apply them in survey contexts by replacing the
actual sample size n with the effective sample size
as defined above. (Korn and Graubard 1998 also refer
to their own earlier work justifying certain #-intervals
under strong survey-sampling assumptions. But the
main thrust of their paper is to propose the use of
effective sample sizes as described above.) The papers
of Korn and Graubard (1998) and Liu and Kott (2009)
support this approach with simulation studies which
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Table 1. Upper 95% confidence bounds (z =
Kott and Liu (2009), in the case p = 0.

z 4s) from methods compared by Korn and Graubard (1998) and

Method Formula !

20 10 5 3
arcsin sqrt sinz(z/(Z Jn ) 0.033 0.066 0.129 0.209
Hall (1982) (Zz2 + 1)/(6n) 0.053 0.107 0.214 0.356
Kott-Liu (2z2 + 1)/(3n) 0.107 0214 0.427 0.712
Clopper-Pearson 1+ ”/Fz,zn,os)_l 0.139 0.259 0.451 0.632

confirm that the idea works well in some stratified-
sampling examples.

The specific modifications of the confidence
intervals (3) via (5) which Liu and Kott (2009)
advocated were selected for overall performance under
a range of p’s, not particularly for their behavior when
p = 0. There is some interest in comparing these
proposed intervals for this specific case of 0 estimates,
to the arcsin sqrt interval (7), and to the Clopper-
Pearson interval advocated by Korn and Graubard
(1998). Table 1 shows this comparison: all of these
intervals are considerably more conservative than the
arcsin sqrt, which Kott and Liu (2009) already found
to be somewhat conservative near p = 0. Another more
complicated interval due to Cai (2004), highlighted by
Kott and Liu, gives corresponding UCB values .097,
.185, .343, .530. There is no reason to prefer any of
these other intervals to (7) for small or 0 values of p .
Note that in survey contexts, the values # in the Table’s
UCB formulas would be replaced by 7.

4. CONFIDENCE INTERVALS FROM MODELS

The purely design-based approach of the previous
section to constructing confidence bounds, treats
estimation within each cell of a cross-classified survey
separately. We consider next a series of model-based
methods, which aim to combine knowledge across cells
through models.

4.1 Types of Models

The easiest way to derive local-area estimates from
models is to assume that the target parameters contain
some of the same parameters that can be estimated
directly at higher levels of aggregation. This is the idea
of synthetic models. Rao (2003, Ch. 4) treats this idea
in the context of linear models to augment direct
estimation of the mean from surveys. Here, in

connection with the estimation of demographic
proportions at local areas of geography, the most natural
type of synthetic model assumption is that certain
conditional probabilities are the same for higher levels
of aggregation as for lower levels. The specific example
we consider below in the ACS concerns the probability
Pa| k. ©of a randomly selected individual in County ¢ to
fall in age-category a given that the individual falls in
demographic category k, where k= (g, r) is a composite
factor defined from gender g and Race group 7. The
synthetic assumption would be that this conditional
probability is the same as p(alk, s), the probability that
a randomly selected individual in State s falls in age-
category a conditioned on falling in demographic
category k, where s is the State containing county c. In
symbols, this synthetic model assumption can be written
in terms of unconditional probabilities within County
and State as

ps = p™ oSt [ b (8)
The next stage of complexity of models that can
be used to augment direct small-area estimators is the
Structure Preserving Estimation (SPREE) idea of
Purcell and Kish (1980) reviewed in detail in Sec. 4.2.5
of Rao (1993). This is a generalization of synthetic
models which relies on the existence of at least one
cross-classifying variable » which is predictive for a
and for which higher-level (e.g., State-level) marginal
counts N, . are known with high accuracy from other
sources. The SPREE method is essentially a calibration
idea which improves upon design-based methods which
rely exclusively on direct information about individual
cells developed only from the current survey. We do not
go into this idea in detail here because it does not seem
to offer promise in the ACS context discussed below.

A few authors (Noble er al. 2002, Zhang and
Chambers 2004) explicitly brought loglinear modeling
into Small Area Estimation near the time when Rao’s
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(2003) survey of the subject found little work to
summarize concerning small area applications of
loglinear modeling. Both of these cited papers explicitly
consider loglinear model generalizations of SPREE
estimation, and Zhang and Chambers (2004) are
particularly concerned with small-area estimation of
survey proportions. However, as in non-survey work,
loglinear models have generally been subsumed into
generalized linear models to accommodate continuous
covariates and also to allow extensions to mixed-effects
models, although loglinear or polytomous regression
models (Agresti 2002) more readily accommodate
constraints of response categorical probabilities
summing to 1.

There are other published models with a Bayesian
flavor applicable to the estimation of small proportions
from surveys. For example, Liu et al. (2007) and Chen
and Lahiri (2011) develop hierarchical models for
Bayesian small-area estimation of survey proportions.
We do not pursue Bayesian methods in this paper,
although a Bayesian approach could be taken to the
Generalized Linear and transformed linear models that
we consider next.

We focus on models which explicitly allow both
continuous and categorical area-level covariates, and
which can be applied in the ACS context, with or
without random area effects. Such models arise when
the population counts with a specified attribute in cross-
classified cells indexed by i have direct weighted
estimates Y, in a current survey, with observed vectors
X, of cell-level predictor variables, where cell i has
sample size (or effective sample-size) v, and known
population size N,.

With survey data given in the format above, a first
simple model is

round(Y; v/N;) ~ Binom(v;, p,),

pi= (1 +exp(=X; ) ©)
where round(x) denotes the rounded integer value of x.
The model is easy to fit and work with, but the sampling
variability is addressed only by the Bernoulli trial
assumption. Lack of fit might be partly addressed by
introducing a random intercept effect at cell level, but
such random-effect models are less easy to work with
than the mixed-effect version of the next model.

Motivated by the variance-stabilizing relation (6),
giving sampling variability a standard form not
depending on the unknown proportion, we model

transformed cell probabilities arcsin(\/;i ) linearly, as
arcsin( /Y, /N; )= X/ +u, + &,
£~ N(o,%} u,~N@O, ) (10)

1

where the error terms u; and &, are independent of each
other and also across index i. For o> = 0, (10) is a
variance-stabilized linear model; with general o, it is
an arcsin-square-root transformed Fay-Herriot (1979)
model; and in what follows we also sometimes fit the
model without terms &. When there is only one error-
term in (10), the model has only fixed effects, and the
cell proportion p; = sin’( X/B) is the target parameter.
When both ¢ and the area random effects u; enter the
model, the latter account for otherwise unmodeled
differences in proportion between cells. In that case,
p, = sin( X/B + u,) is the target parameter in cell i, and
the transformed EBLUP predictor (Rao 2003) for p,
based on the model is

a; X,-'/? + 7 (arcsin(\/Y; /N;) — X,-'B) ,

N

&2 +1/(4v)

an

4.2 Confidence Intervals for p from Models (9)
and (10)

Each of the models (9) and (10) provides
confidence or prediction intervals for cell probabilities
p; in moderate to large sample settings, by way of
asymptotic standard errors and the Delta method.
Software estimating model (9) provides an asymptotic

variance-covariance matrix V, for the maximum

likelihood estimator B , from which it is easy to check
by the Delta method that the asymptotic variance of the
estimator of p, is given by

Var ((l + exp(—X,-',B'))_1 - Di )

N 2
_ exp(X;/[) ,
o XiVpXi
(1+exp(X;0))
leading to the Confidence Interval expressed in
terms of the logistic distribution function

qe)=e(1 + e and p; = q(X/B) as
pi€qXip) = o2 q(Xi’,B)(l—q(X,-’/?))

[X,.'Vﬁxl~ ]”2 (12)
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Similarly, when parameters (3, 0°) are estimated
in model (10) by maximum likelihood, a variance-

covariance estimator VB is also produced, leading to

the following Prediction Interval for p, based on

(10)=(11) :

presin’ (2,0 {0-70" X/ VX,

+(1—;7,-)6'2}1/2) N[0, 1] (13)

Other, more precise variance estimators could be
used in this interval as discussed by Rao (2003), but
the number of small areas in the ACS application is
large enough that higher order corrections may not be
important.

In each of the intervals (12) and (13), replacing the
lower endpoint by 0 and /2 by a provides a one-
sided upper-bounding interval.

4.3 Prediction Intervals for Y;/N; from Models

(9) and (10)

In order to examine the fit of models (9) and (10)
on ACS data, we consider also the prediction intervals
for Y;/N; derived from these models, respectively based
on the predictors (1 + exp (—B’X,-) )"' and max(0,
min(sin’( a; ), 1)). Large-sample prediction intervals are
easily derived by considering the approximate
distribution in each case of the difference between
Y;/N; and the predictor, on the respective logit and
arcsin-square-root scales. For the logistic model, the
prediction interval obtained by the Delta method is

Y,/ N, € q(X]B) + 20/00(X{B) (1= q(X[B))

[1/v,. + X,.'Vﬁx,.]llz (14)

while in the transformed Fay-Herriot model, the interval
is

arcsin(\[Y;/N;) € a; £ (1=%) 24/2
(X[VaX; +6% + 1w (19)

5. ACS DATA ANALYSES

The application of small-area models of the types
described in Section 4.1 to produce confidence or
prediction bounds for attribute survey proportions p;
within cells i depends strongly on finding adequate

explanatory variables X;. As has been discussed in
previous papers (Noble et al. 2002, Zhang and
Chambers 2004, and Liu et al. 2007), models for
proportions in large demographically cross-classified
surveys are naturally hierarchical in the sense that
related proportions at higher levels of aggregation
provide natural predictors. The higher-level proportions
will often be well estimated by direct design-based
survey-weighted estimators.

The U.S. American Community Survey (ACS)
provides a rich test-bed for small area models of
proportions. In this paper, we restrict attention to
proportions within Race-by-Sex groups within Counties
which are particularly large, that is, which have 65000
or larger census population.

However, the ACS has one further feature which
has a strong impact on demographically cross-classified
analyses at the county level, namely that the population
totals are controlled (i.e., raked or calibrated) to updated
census totals (U.S. Census Bureau Estimates, Overview
document 2011) at the level of cells defined through
County demographic groups. These controls imply
(Asiala et al. 2010) that the population in the cross-
classified cells defined by County and Sex and 6
mutually exclusive Race/Ethnic groups and 13 Age-
groups are constrained to be equal to the corresponding
population totals in the updated Census. The Race/
Ethnic groups used in defining these cells are: Hispanic,
Non-hispanic White, Non-hispanic Black, Non-hispanic
American Indian or Alaska Native, Non-hispanic Asian,
and Non-hispanic Native Hawaiian or Other Pacific
Islander. The age-intervals defining the age-groups used
in controls are: 0-4, 5-14, 15-17, 18-19, 20-24, 25-29,
30-34, 35-44, 45-49, 50-54, 55-64, 65-74, and 75+.

In 2009, there were 805 Counties with 65,000+
population. Our source of cross-classified data is the
so-called ‘race-iterated’ series of tables considered for
publication by the ACS. Two examples of such table
series are :

(1) (B0O1001) Population by Race (7 mutually
exclusive groups), Sex, and Age (14 groups),
within (805) Counties;

(2) (B17001) Poverty status (income above/below
Poverty level in last 12 months) by Race (7
groups), Sex, Age (13 groups) within (805)
Counties.
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The age-groups used in the published ACS tables
are slightly different from those used in population
controls, but the totals for groups 45-54, 55-64 and 65-
74 used in example model analyses below are precisely
controlled. By contrast, the Race groups appearing in
ACS published tables are not exactly the same as those
used in controls, except for the two final groups
H=Hispanic and [=White alone not Hispanic. The
control groups explicitly exclude hispanics from each
non-hispanic group, while the first seven Race groups
used in the ACS tables do not. The first 7 Race Groups
in the ACS race-iterated tables are: A=White alone,
B=Black alone, C=American Indian or Alaska Native
alone, D=Asian alone, E=Native Hawaiian or Other
Pacific Islander alone, F=Some Other Race alone, and
G =Two or More Races alone. The word “alone’ enters
here because current U.S. censuses and the ACS allow
respondents to choose multiple racial classifications.

5.1 Demographic Data Structure and Effective
Sample Size in ACS

The models discussed in Section 4.1 are applied
here primarily to a data structure defined from the
purely demographic tables B01001 mentioned above.
(For analyses of the related but different data structure
of B17001, with poverty-indicator as response, see
Section 5.4 below.) Cells are defined by cross-
classifying County by Race by Sex are indexed by
i=1,...,805#7*2=11270. Counts N, are the total
cell populations, and the response variables Y, are
defined as the direct weighted survey estimators of
population counts within specified Age-intervals, such
as the count of individuals Age 45-54 within cell 7.

Table 2. Numbers of zero-population county-by-race-by-sex
cells out of 1610 in 2009 ACS in the 65000+
population counties, by Race group.

Race Group A|lB|C|D|E]|] F|G

# Zero-pop Cells [ 0 | 17 | 167| 42 |1005| 57 | 2

Predictor variables considered as entries of .X; in
modelling Age-Group Count responses by cell for each
Race include:

» Race, Sex, State (52) or Region (11) factor

(dummy) variables;

* FracWh, FracB, FracAs = fraction of population
respectively in A, B, and D race groups in County

» Agefrac = fraction in Age-gp in State by Race by
Sex cell

» AgfrRg = fraction in Age-gp in Region by Race
by Sex cell

* PCT-URBAN = percent of County in Urban
blocks

plus possible interactions of these variables. Predictor
fractions are recoded to logit(max(1/(2N), min(x, 1 —

L/EZN))).

Some of the 1610 County-by-Sex cells for each
Race group in the 805 large-population counties have
0 population. Table 2 shows the numbers of zero-
population cells (out of 1610) by Race Group. The
American Indian and Alaska Native category C and
Native Hawaiian and other Pacific Islander category E
have many zero cell-populations, heavily depending on
region of the U.S. So in developing examples below,
we restrict attention to the other 5 race groups and to
the 669 counties for which all county-by-sex cells of
those 5 race groups have updated-census cell population
greater than 70. Within the remaining 5 * 669 * 2 cells,
the ACS 2009 sample-sizes ranged from 1 to 33240,
with median 54.

Since the County-Race-Sex cell population totals
N, in ACS tables are (almost, except for the slight
disparity in defining Race groups discussed above)
controlled to the values from the updated census, there
is little variability in them even though they are derived
from survey data. This effect of population controls on
variability persists down to the level of Age-groups
within County-Race-Sex cells, as can be seen in the
calculated design effects displayed in Table 3. While
many complex multistage and survey designs result in
design effects ranging from 1.5 to 7 or more, here the
design effects are generally of order 0.1 to 0.3. Recall
that the reciprocal of the design effect is a multiplicative

Table 3. Design-effects by age-group for County-Race-Sex
cells restricted to the (669) Counties with 65000 +
population and cells of population > 70 for all ACS
Race groups other than C and E.

45-54 55-64 65-74
Min. 0.0152 0.0155 0.0098
IstQ 0.1602 0.1195 0.1379
Median 0.2308 0.1844 0.2179
Mean 0.2584 0.2120 0.2441
3rdQ 0.3291 0.2822 0.3339
Max. 2.4653 0.8481 0.8710
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factor converting sample size to effective sample size:
this is a range of design effects far different from those
used in previous simulation studies like those of Korn
and Graubard (1998) and Liu and Kott (2009) in
connection with Section 3 to support the use of non-
survey Confidence Intervals with effective sample sizes
on survey data. For this reason, we use actual sample-
size numbers rather than effective sample-sizes as v; in
the models fitted below.

5.2 Results and Model Checks on ACS Data

The data structure created to fit models (9) and
(10) to Age-group proportions within County-Sex cells
for each specified Race is {(Y}, N,, X)) 1338 with cell-
index restricted to the 669 counties with counts > 70
for race groups A, B, D, F, and G, and where X, are
vectors of predictor variables including dummies for
sex and region as well as the transformed age-group
proportion Agefrac within state-by-sex aggregates.
Predictors other than Agefrac, Region, AgefrRg are
defined at county level.

The most striking finding in fitting models (9)—
(10) in non-white racial groups is the paucity of strongly
significant predictor variables other than the Agefrac
synthetic variable. Consider, for example, the logistic
regression models (9) for Age-Group 45-54 in the Black
only and Asian only ACS Racial groups (groups B and
D, as in Table 2 and preceding text). In these models,
only the Agefrac variable is extremely significant, with
respective z-values 15.2 and 17.6, and coefficients 0.99
and 0.98, making the logistic model (9) essentially the
same as the synthetic model (8).

By contrast, for Age-group 55-64 several other
variables also seem significant, as can be seen in the
analysis of deviance, for the complete model selected
for the Black only race-group:

ANALYSIS OF DEVIANCE-Logistic Model, Black 55-64

Df | Deviance | Resid. Resid.
Df Dev

NULL 1337 | 1983.2
Agefrac 1 490.74 1336 | 14924
FracB 1 49.12 1335 | 14433
PCT _URBAN 1 13.29 1334 | 1430.0
FracWh 1 7.46 1333 1422.6
FracB:PCT URBA | 1 12.06 1332 | 1410.5

We illustrate the quite different model selected for
the Asian race-group through the coefficients

STANDARDIZED COEFFICIENTS-Logistic Model,
Asian 55-64

Estimate | Std. z Pr
Error value >l2)
(Intercept) 0.1590 | 0.0990 1.606 | 0.1084
Agefrac 1.1625 [ 0.0516 | 22.537 | 1.8e-112
PCT URBAN| 0.0153 | 0.0026 5.844 | 5.09e-09
FracAs —0.0563 | 0.0103 | —5.465 | 4.63e-08

In Age-group 65-74, within both Races, the same
variables are significant as in Age-group 55-64, except
that FracWh is dropped as insignificant in the Black
race-group. When predictors other than Agefrac are
significant, as in the two models just displayed, the
coefficient of Agefrac differs from 1, and the model
goes beyond (8).

When the transformed linear models (10) were
fitted with u; but no & terms, slightly different
predictors beyond Agefrac were found significant: in
Age-group 45-54, only FracB was highly significant in
the Black race group, and in the Asian race group
nothing beyond Agefrac was significant; in Age-group
55-64, FracB was highly significant in the Black race-
group, as was FracAs in the Asian group. Lastly, models
(10) with random effects u; and sampling errors & were
fitted in the same three age-groups for each of the Black
and Asian race-groups, and showed exactly the same
significant variables as in the model (10) model fits
without &,

As described in Section 4.3, nominal 95%
prediction intervals for sample proportions Y/N, were
computed from each of the fitted models, partly as a
way of assessing fit of the models by calculating the
proportion of such confidence intervals containing the
actual observations Y/N,. In the present ACS setting,
because of the county-level demographic population
controls, the observations Y;/N; are guaranteed to be
close to the corresponding proportions from the
decennial census updated to 2009. Table 4 displays the
two-sided coverage and median widths for the 95%
confidence intervals (14) for Y/N, derived from model
(9) and prediction intervals (15) from the arcsin square-
root transformed Fay-Herriot model (10) including both
the random effect and sampling error terms. The
predictors included in each model, for respective Race
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Table 4. Coverage (fraction of 1338 cell proportions Y;/N,
falling in intervals) and median widths for 95%
logistic and arcsin transformed prediction intervals
for age-group proportions, presented by race-age

groups.
Race | Age Pred.Int.(14)d Pred.Int.(15) -
Med. Med.

Group Coverage wiZth Coverage wiflth

Black 45-54 | 85.6% | 0.143 85.9% 0.124
Asian 45-54  76.5% | 0.253 78.1% 0.227
Black 55-64 | 82.7% | 0.114 83.7% 0.100
Asian 55-64 | 69.1% | 0.196 71.4% 0.163
Black 65-74 | 71.9% | 0.080 73.2% 0.048
Asian 65-74 | 55.6% | 0.134 58.1% 0.084

and Age groups, are precisely those described in the
preceding paragraphs and displayed analysis-of-
deviance and coefficient tables as being significant.
However, for all of these cases the prediction intervals
based on models including only Agefrac as a predictor
(which were calculated, but are not shown) were
different by at most a few per cent in coverage or width
from the intervals summarized in Table 4.

Table 4 says that on the ACS demographic table
data, the two types of model, (9) and (10), lead to
prediction intervals with very similar coverage rates,
while the interval widths are clearly smaller for the
prediction interval based on the transformed Fay-
Herriot model. However, neither model fits well, in
view of the great disparity between the nominal
coverage rate of 95% and the actual coverage rates seen
in the Table. The sense of coverage displayed here, as
a summary statistic, is the average coverage over groups
of cells, as in Zhang (2007).

There are many ways that the large-sample
coverage for prediction intervals based on models like
(9) and (10) can fail. In the numerous cells with small
sample size, the normal distribution behavior of
observed cell proportions in (9) is not valid. Similarly,
in (10), for small-sample cells there is no real
justification for the normality of the sampling-error
terms &, while there was never a compelling reason to
assume the cell random effects u#, were normal.

15 20
I
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10

o o (]

01 00 041 02 03 04
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Fig. 1. Histogram of residuals from transformed Fay-Herriot model
fit to ACS 2009 Age-group 55-64 within Black Large-county
cells.

Checking for non-normality of residuals in either model
confirms that the failure of distributional assumptions
used in the prediction intervals is a likely reason for
the failures of coverage seen in Table 4. This use of
histograms of residuals as model diagnostics is not
common in works on small-area estimation, but has
been used before, for example in the paper of Slud and
Maiti (2011). We emphasize the models (10), because
these are the models we propose for future use. A
histogram of residuals on arcsin-square-root scale from
the predictions (11) in the model for 55-64 within Black
cells is plotted in Fig. 1. It is typical of many other such
histograms, not shown: the empirical distribution of
residuals is essentially bimodal (with a small mode near
the lower extreme), skewed, and heavy-tailed.

Since the residuals are so non-normal, we propose
a modification of the confidence intervals (13) to reflect
the skewness and long tails. In place of the symmetric
percentage points + z,, appearing in (13), there should
instead appear the /2 and 1 — /2 quantiles of the
approximately standardized residuals

(arcsin (JY,-/N,- )— X;B)

- > 172
(X719, + 6% + 14}

(16)

This modification of (13) is implemented in the
next subsection, where model-based UCB’s are applied
to cells with estimated proportions of 0.
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5.3 Confidence Bounds for Estimated Proportions
of 0

In the examples considered above, age-groups
45-54, 55-64, and 65-74 were viewed as subsets of
Black and Asian county-by-sex cells within large ACS
counties with positive sample-size. In the 2009 ACS
data, many cells contained no sampled individuals in
these age-groups, as summarized in Table 5. In those

Table 5. Numbers of county-sex cells out of 1338 for Black
and Asian which have 0 sampled individuals in
specified age-groups, in ACS 2009.

Age-
Race-group geefoups

45-54 55-64 65-74
Black 99 143 269
Asian 182 282 464

cells, it is interesting to compare the UCB’s for
proportions of the cell-population falling in the
respective age-groups derived from single-cell CI’s to
those based on the model-based CI’s. The brief
comparison undertaken here is restricted to the single-
cell arcsin-square-root UCB (7), using deff= 1, versus
the UCB based on the arcsin square-root transformed
Fay-Herriot model, through (13) modified by the
empirical quantiles of the standardized residuals (16).
Table 6 displays the median, upper-quartile, and
maximum of the UCB’s generated by the two arcsin-
square-root transformed methods (7) and (13) for the
cells within the separate model-based analyses by
race-and age-group. This comparison shows that the
single-cell method (7) often leads to much larger UCB’s
than does the model-based method (13), perhaps

Table 6. Upper confidence bounds for proportions p; in age-
groups within cells for Black and Asian race, where
sampled counts in age-group are 0.

Cell-based UCB Model-based UCB

Race

Age-gp

Med

Q3

Max

Med

Q3

Max

Black
Asian
Black
Asian
Black

Asian

45-54
45-54
55-64
55-64
65-74
65-74

0.106
0.127
0.072
0.093
0.054
0.073

0.182
0.207
0.156
0.158
0.107
0.128

0.536
0.535
0.536
0.535
0.536
0.535

0.136
0.129
0.068
0.076
0.027
0.029

0.145
0.144
0.076
0.089
0.032
0.036

0.184
0.188
0.086
0.152
0.062
0.061

unnecessarily large. Note that even the relatively
smaller UCB proportions arising from the model-based
method will involve some large counts, based on larger
cell populations. It is not clear yet whether the model
underlying (13) is sufficiently reliable to become a
general method of quality assessment for zeroes in
purely demographic ACS tables. We next consider
analogous models for ACS tables with poverty-status
as response-variable.

5.4 Analyses with Poverty-indicator Response

We consider now an analogous model-fitting
exercise and UCB calculation for the ACS table series
B17001 in which a Poverty-status indicator is tallied
within a County by Race by Sex by Age-Group cross-
classification for counties with 65000+ population. The
frame population now consists only of those individuals
for whom poverty status could be determined, so is
slightly smaller than in tables B0O1001. The response
variable of interest is the survey-weighted direct
estimate ¥; of the number in poverty within each County
x Race x Sex x Age-group cell. There are again many
such cells with very small population and sample, so
we restrict attention to 10322 cells defined in the
following way:

o Counties are restricted to the 650 (a proper subset
of the 669 considered before) in which all County
X Race X Sex population counts are greater than
70, when Race groups are restricted to A,B,D,F,G;

o Age-groups are restricted to 45-54, 55-64, 65-74
and Race-groups to A, B, D, and County X Race
X Sex x Age cell counts are all at least 10.

All of the 10322 cells i defined in this way had
population size N, = 10 and sample size v, > 1. These
cells form a subset of the array of 11700 cells with 650
Counties, 3 Race-groups, 2 Sexes and 3 Age-groups.
The predictor variables used in fitting models of type
(10) for the expected proportions Y/N, were selected
from among the following along with their interactions:

e PovSyn, a synthetic variable defined for each cell
i as the arcsin-square-root transformed proportion
of the State population that is in the same Race,
Sex and Age category as cell i;

o dummy variables for Sex, Age-group, Race;
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o RacFr = logit-transformed proportion of County
population in the same Race category as cell 7; and

o URB = arcsin-square-root transformed fraction of
County in urban blocks.

The model of type (10) fitted to these data has
estimated coefficients and standard errors as follows:

Term Coef SE

Const —0.0154 0.0072
PovSyn 1.0050 0.0180
URB 0.0068 0.0049
RaceB 0.0408 0.0057
RaceD 0.0395 0.0074
RacFr 0.0535 0.0041
URB:RacFr —0.0219 0.0034

with random effect o> estimated as .00358 with
standard error .00011. Other coefficients, for dummy
variables for Sex and Age, were only barely significant
and not predictively useful. In this instance, although
there were several useful predictors beyond the
synthetic variable PovSyn, the coefficient for the
synthetic variable was indistinguishable from 1. A

histogram of the standardized residuals (16) from this
model were found to be slightly asymmetrically
distributed, skewed to the left, but to have
approximately normal tails, with upper 95% quantile
of 1.957 in place of the nominal 1.645.

The fitted transformed Fay-Herriot model just
described was next applied to construct UCB’s for cell
population proportions in poverty for those cells where
the direct estimates of poverty rates are 0, just as was
previously done for cell proportions in Table 6.
Table 7 displays, by Race and Age categories, the
numbers of cells with direct poverty-rate estimates
Y/N; of 0, along with the purely cell-based 95% UCB
(7) for poverty rate and the model-based analogue (13).
It can be seen in this Table that for those Race x Age
categories with large numbers of (mostly very small)
cells with ¥; = 0, the model-based UCB’s are generally
much tighter than the cell-based UCB’s. In the White
or A race group, the cell counts N, were generally larger,
and there were relatively few cells with ¥; = 0. The
fitted model in the latter cells tended to predict poverty
rates sufficiently greater than 0 that the UCB’s were
actually larger than the cell-based UCB’s. These results
seem reasonable and suggest a further data setting
where model-based UCB’s could be used to assess the
merit and publishability of direct estimates of 0.

Table 7. Upper 95% confidence bounds for proportion in Poverty with cells defined by (County, Race, Sex, Age), by purely
Cell-based calculation (7) or model-based (13).

Cell-based UCB Model-based UCB

Race Age-gp ncell Med Q3 Max Med Q3 Max
White 45-54 5 0.011 0.015 0.016 0.034 0.043 0.063
Black 45-54 296 0.208 0.524 0.536 0.168 0.213 0.446
Asian 45-54 703 0.207 0.524 0.536 0.066 0.097 0.269
White 55-64 15 0.008 0.011 0.023 0.034 0.044 0.066
Black 55-64 353 0.294 0.527 0.536 0.076 0.102 0.336
Asian 55-64 667 0.093 0.158 0.535 0.076 0.089 0.152
White 65-74 65 0.014 0.019 0.037 0.043 0.054 0.092
Black 65-74 367 0.293 0.528 0.536 0.164 0.209 0.620
Asian 65-74 535 0.298 0.530 0.535 0.112 0.146 0.553
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6. SUMMARY AND CONCLUSIONS

This paper has expounded the following points:

e Usable methods do exist for Upper Confidence
Bounds (UCB’s) for estimated proportions 0 based
on single cells of tables.

o Extending these methods to surveys requires
‘effective sample sizes’, which is problematic for
surveys like the American Community Survey
where population-controls can lead to design
effects much less than 1.

o UCB’s for ACS cell proportions have been
developed based on small-area style models which
‘borrow strength’ across cells.

e In exploratory analysis of ACS demographically
cross-classified tables with age-group as the finest
subdividing category, the synthetic-model
predictor Agefrac has in almost all cases been the
only important predictor in the fitted small area
models.

e In ACS tables with Poverty indicator nested within
demographically cross-classified age-group as the
finest subdividing category, preliminary analysis
finds several strongly significant predictors in
addition to the synthetic predictor PovSyn.

The outcome of this study is a proposed method
based on an arcsin square-root transformed Fay-Herriot
model. Such extended random-effect synthetic models
allow reasonable estimation of cell-level random effect
variances, along with EBLUP prediction and confidence
bounds.

Proposed Method: Fit a transformed Fay-Herriot model
of the form

arcsin(\/Yi/Ni )= b, Synth, + u, + ¢, (17)

in terms of a synthetic predictor Synth,, adding in other
highly significant predictor terms AX; when they can
be found. The basic model (17) resembles the synthetic
model (8) when there are no other strong predictors, but
it also ‘borrows strength’ for estimating variances
across cells in different demographic categories and
counties. From the EBLUP predictors (11), UCB’s can
be constructed from data for p, as the one-sided CI’s

(13). In case the empirical distribution of the residuals
(16) is very non-normal, due to skewness and long tails,
the normal percentage point z, appearing in the UCB
from (13) should be replaced by the empirical 1 — o
quantile of the standardized residuals (16).

This method is simple enough to use in the
intended application of upper confidence-bound
construction, applicable even when many single-cell
Y;’s are 0. ‘Effective sample sizes’ remain a problem
in the context of ACS demographic tables, but may still
prove useful in connection with the proposed method
in other survey applications. However, additional
research is needed, both in ACS and other contexts, to
confirm that this method performs satisfactorily in
capturing accurate estimates (validated from
supplementary surveys or censuses) of the desired small
proportions.
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