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SUMMARY

Recent advances in small area statistics applications raised the question on the influence of sampling designs on model
based estimates. On the one hand, weighting was introduced in the modelling (cf. You and Rao 2002). On the other hand,
Gelman (2007) argues that sampling designs with highly variable design weights should be avoided in order to support statistical

modelling and especially Bayesian modelling.

The present article gives some ideas on the interplay of modelling and survey weights based on a realistic simulation
study motivated by the experience from several research projects. Further, recommendations are given on how to control the
size of survey weights in optimal sampling designs via a box-constraint optimal allocation, introduced by Gabler et al. (2010).
A practical study gives some ideas on the impact of design-effects and the variability of design weights on model versus design-

based estimation methods.
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1. INTRODUCTION

Gelman (2007) reopened a discussion on the sense
of sampling designs by stating survey weights are a
mess. The main arguments are motivated by the
difficulty of drawing correct inferences in Bayesian
statistics once the data is gathered from complicated
sampling designs with high variations in survey
weights. This invited discussion lead to a vivid
discussion on statistical modelling using survey data.

Meng et al. (2009) emphasized that the spread of
survey weights should not exceed 10 and is
unacceptable beyond 100. If 7z, is the inclusion
probability for the i'th unit in the selected sample under
the sampling design S in a finite population with N
elements, the spread of design weights is defined by

max 7;
GF: = 15hJisN (1)
T
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which we denote as the Gelman-factor GF. The ideal
case for statistical modelling is the use of simple
random sampling where GF = 1. Business statistics
application in sample surveys, however, may lead to
very large Gelman-factors which may easily exceed
1,000 and, hence, are unacceptable following the
argumentation of Meng et al. (2009).

The question arises whether a large GF always
influences statistical modelling negatively or whether
certain alternative conditions may lead to varying
impacts of the GF on the reliability of modelling.
Consequently, one may be interested, whether problems
in statistical modelling also influences negatively
survey estimates which, in general, are restricted to
means, totals, and proportions, that are based on
statistical models.

In this paper, we focus on statistical modelling in
the small area estimation context. Special emphasis will
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be put on classical two-stage random sampling designs
which are common in many household surveys. The
impact of sampling designs on the efficiency of
estimates is thoroughly studied for design-based
methods. In the case of stratified random sampling the
solution is the optimal allocation (cf. Neyman 1934 and
Tschuprov 1923). One can also find in standard
textbooks (cf. Lohr 1999 and Sérndal ez al. 2003) that
cluster sampling, in general, reduces the efficiency of
the estimate. For small area estimation, it seems
necessary to guarantee minimal sample sizes in all
strata. An equal allocation ensures a good spread of the
total sample size over the areas which optimizes the
accuracy in each area. Costa et al. (2004) indicate that
a convex combination of equal and proportional
allocation is a compromise between national- and area-
level minimization of the MSE. Longford (2006)
proposes a sample allocation to the areas according to
a relative importance of area-specific variances.
Choudhry ef al. (2011) use non-linear programming
techniques to minimize the overall sample size while
considering certain minimal efficiency requirements
measured by the coefficient of variation on area and
aggregate estimates. We propose the use of a box-
constraint optimal allocation which minimizes the
2-norm of the vector of the relative root mean squared
errors of the estimates while considering certain
minimal and maximal sampling fractions (see Gabler
et al. 2010). This allocation can also be applied to
stratified random samples within the areas. Further, it
allows to control the Gelman-factors.

In the next Section, different sampling designs are
presented that are of interest for the Monte-Carlo study
following later. The focus is put on the recent
methodology of using box-constraints in stratified
random sampling. In the third Section, a selection of
classical and modern small area estimators are
presented which are widely used in practice. Section 4
gives an overview of the results from a comparative
Monte-Carlo study. The focus of the study is put on
showing the impact of design on the accuracy of the
small area estimates. The study is based on the synthetic
data set AMELIA (cf. Alfons et al. 2011) which
provides a highly skewed study variable.

2. SELECTED SAMPLING DESIGNS IN SMALL
AREA APPLICATIONS

Household surveys generally use two- or more-
stage designs mainly due to practical reasons. Within

the scope of two-stage designs stratified random
sampling and cluster sampling can be seen as two
opposite designs, especially by efficiency reasons. In
general, stratified samples may be used to gain
efficiency of survey estimates. In case size and standard
deviation of the strata are less correlated, the application
of the optimal allocation may lead to a further gain in
efficiency. The very low design effect, however, may
lead to highly varying design weights between the strata
which automatically yield a high GF. On the other hand,
cluster sampling may lead to large design effects
whereas it is unusual that the weights vary a lot. These
results are well-known for survey estimates in a design-
based framework but little is known about these effects
in statistical modelling or small area estimation.

In order to appropriately investigate these effects
in small area statistics, the following sampling designs
are chosen for the comparative study:

Stratified Random Sampling with Equal Allocation

In this case, all strata have the same sample size.
The variation of the design weights depend only on the
strata sizes.

Stratified Random Sampling with Proportional
Allocation

The proportional allocation ensures a GF = 1. The
design effect depends on the variance within the strata
with respect to the study variable.

Stratified Random Sampling with Optimal
Allocation

Against real world application, we have chosen the
variable of interest to determine the within stratum
variance. This ensures a maximal gain in efficiency but
can be done only in simulations or cases were the
universe is known (theoretically). In general, this
allocation yields the largest GFs within stratified
random sampling. The design effect is minimal.

Cluster Sampling with Constant Cluster Size

In this case, the cluster sizes are chosen equal in
size. The GF depends on the number of clusters drawn
in an area with regard to the size of the area. In this
application the allocation used is a proportional
allocation of samples over the areas. As such, the GF
is moderate. The design effect, however, may be larger.
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Cluster Sampling with Random Cluster Size

In many applications cluster sizes are not fixed but
random. The variation of cluster sizes makes the
estimation more complicated. Also the total sample size
over all areas is not fixed. In this study, however, the
expected sample size is set to the same sample size as
in the before mentioned design.

These allocations are denoted by equal, prop,
optall, fix, and ran respectively. In all cases planned
areas were applied.

Comparing the above sampling designs, the
optimal allocation should deliver by definition the most
efficient estimates in classical sampling theory.
However, the GF may be very high. In order to control
it, Gabler ef al. (2010) have introduced the box-
constraint optimal allocation. Let 4, ..., 7, be a set of
design-based Horvitz-Thompson statistics on D areas
with according variances. Further, let m,, and M, be the
lower and upper boundary of the sample sizes in each
area (stratum). Then, the box-constraint optimal
allocation for a fixed total sample size with D areas and
H strata is the solution of

min  ||RRMSE(%,)

Ty s eves Ty s v A gy

2 2

where RRMSE denotes the relative root mean squared

error for a given estimator and n,, is the samples size
within area d and stratum /4. The solution can be seen
as a compensatory 2-norm functional of the root MSEs
of D area-specific estimates from either simple or
stratified random sampling within the areas. Hence, the
stratum-specific sample sizes are determined such that
the variances of the domain estimates are minimized
simultaneously according to the overall functional. The
box-constraint optimal allocation can be used to control
the GF by tweaking m,, and M,. Details of the allocation
and the analytic solution can be drawn from Gabler
et al. (2010) who used a small area combined regression
estimator. A numerical improvement and comparison of
iterative algorithms is given in Miinnich ez al. (2011).
In order to compare the impact of different GF bounds,
the parameters of interest are chosen as GF = 25, 10
and denoted opt025 and opt010 respectively.

3. SMALL AREA ESTIMATORS AND MODELS

Traditional surveys use design-based methods to
produce population figures. These methods usually need

a high number of observations per area in order to
obtain reliable estimates. In many surveys only small
sample fractions are available within certain areas
leading to imprecise design-based estimates. The
precision of an estimate is usually assessed within one
sample by an variance estimator for the point estimate.
When using design-based estimates like the Horvitz-
Thompson estimator (Horvitz and Thompson 1952),
which is design unbiased, the use of confidence
intervals as a measure of accuracy usually yields
reliable results. Model based small area estimators are
usually model unbiased but not necessarily design
unbiased (cf. Rao 2003). Biased estimates, however,
may have a negative impact on the coverage of
confidence intervals which cannot be observed using a
single sample but in simulation studies only. In the later
study, we will assess the quality of the different area-
specific point estimates using the RRMSE of the point
estimates on the one hand and the simulated coverage
rates on the other hand.

One well known and stable design-based estimator
for area means is the GREG estimator:

N —r A 1 A
Aa GrEG, = Xgf+— Y W (ig—x54B) ()
Nd i=1 [N 7

d

with B = XWx) ™ XW,y, (4)

(cf. Sdrndal er al. 2003), where ,B* is the solution to
the linear regression model (4). W, is a diagonal matrix
of the weights w, ., y; . is the variable of interest, and
x; . and X, are the auxiliary information (the first
column being 1 for all units) of the i“th household
within the sample and register respectively for a given
cumulation of areas *. If * = d then the cumulation is
the area and if * = g the cumulation is a union of
sampling units or areas to sensible groups. With
GREGA we denote a regression estimator that uses the
B, whereas the GREGC uses a f3. over the whole
sample and, hence, is a combined regression estimator.
As variance estimator, we use the classical residual
variance estimator considering the estimated regression
coefficient and the design in use (cf. Lohr 1999). An
extension of the GREG approach to categorical data can
be found in Lehton and Veijaen (2009), (1998).

Another approach to the estimation of small area
means is proposed by Battese et al. (1988). The
methodology underlying the proposed estimator can be
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seen as a unit-level mixed model (cf. Jiang and Lahiri
2006). Usually a two-level mixed model is used. The
unit-level variation is often referred to as sampling
variance, and the area-level variation as area effect.
Both are assumed to be normally distributed with mean
zero and variances o, and o, respectively. The variables
x, X and y are defined as before. V' is the block diagonal
variance covariance matrix as defined in Rao (2003,
p- 135).

4 uLEBLUP = Xdﬁ + iy
A2
N (oA N [0}
ﬁd = yd( —xdﬁ),and Vi = = )
2 O
6, +—+%
ny
B = (x’V“lx)_l x'Vly ®))

In the standard unit-level model the design weights
are not being considered. Reliable results are thus only
to be expected under simple random sampling. The use
of design weights for estimating the 3 vector

A

1
B = (eviwvix) Xvoiwv iy (6)
may help to correct for unequal probabilities in
sampling. The unit-level model without considering
weights will be called ULEBLUP the one with the
weighted S will be called ULWEBLUP.

In order to measure the accuracy of these small
area estimates, we use the Prasad and Rao (1990) MSE
estimator which is divided into three components in the
following way:

MSE (%4 geLup W) = 814 W) + 8.4 (W) + 283, ) (7)

The three components are :
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Since ¥ = (o,,,0;) is unknown, g,,() and
834 (W) are used to estimate g,, and g5, The estimator

814 W) for g, () is biased. For this reason Prasad and
Rao (1990) use a bias corrected estimator
81aW) + g3,(@) which leads to the estimator in
equation (7). Prasad and Rao (1990) show that the

estimators for the components have only a bias of low
order.

A general presentation of this MSE estimator may
be found in Datta and Lahiri (2000). The estimation of
the ,B and the # for the two level mixed model can
be found in Battese e al. (1988). For more complex
models see Rao (2003) chapters 5-8. An extension to
this model for binary data including MSE estimators
is proposed by Gonzalez-Manteiga et al. (2007).

You and Rao (2002) show a way how to
incorporate design weights directly into the small area
modelling. Further, they estimate the £ under
constraints, such that they achieve a self benchmarking
property to the national estimate. This estimator will
be called YOURAO and is given by:

A A p— Sy A — T P,
Ra.xourao = FunYaw + (Xa — Tas¥aw) Ba
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= Xg By + gy ®)
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7y 7y
Yaw = zwidyiw Xaw = zwidxid
i i

and [ = (XWX = 735X 45" WX =743X45)).
The proof and properties of this estimator can be drawn
from You and Rao (2002). Torabi and Rao (2010)
propose a second-order approximation to the (MSE) for
the YOURAO estimator. They achieve by this
approximation a nearly unbiased MSE estimate.
However, for large datasets this estimator needs some
additional algorithmic extension to be included in the
simulation study.

In many applications no unit-level information is
available. For these cases Fay and Herriot (1979)
proposed the so called Fay-Harriot estimator. This
estimator is closely related to the ULEBLUP (see Datta
and Lahiri 2000). In the case of the Fay-Harriot model
all information is only available on aggregate level:

Aa, aeBLUP = X B+l ©)
where i; is estimated like in equation (5). This
estimator will be referred to as ALEBLUP. As well for
the ALEBLUP as for the YOURAO estimator the MSE
estimation is done via the Prasad and Rao (1990) MSE
estimator (7).
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4. SIMULATIVE ASSESSMENT
4.1 Design of the Simulation Study

The aim of the simulation study is to evaluate the
influence of the above sampling designs on a standard
small area setting. As simulation population, the
synthetic data set Amelia is used (cf. Alfons et al. 2011).
It consists of approximately 3.7 Mio. households in 78
areas with a varying size from 3427 to 243092
households. The sample size is 6000 which yields an
overall sampling fraction of approximately 0.16%. The
simulation set-up was chosen similarly to Burgard and
Miinnich (2010).

The dependent variable is the total disposable
household income (HY020) which is generated
according to the structures found in the EU-SILC data.
It is a skewed variable with some extreme outliers. In
Fig. 1 a density plot of the HY020 variable is drawn.
Each curve represents one area. As can be seen on the
left part of this figure the mass of the distributions of
variable HY020 are overlapping over all areas.
Nevertheless, the means and outliers are very different.
On the right hand side one can see that there are some
very extreme outliers in both directions.
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Fig. 1. Density plot of total disposable household income (HY020) in each area
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In order to outline the assets and drawbacks of the
above mentioned designs and allocations in the small
area context it is important to have stereotype scenarios.
These are created by controlling the scale and the
variability of the dependent variable within the strata
or clusters. This is achieved by assigning the
households to three different groupings (rand, sort, and
raso) each describing five equally sized strata.

rand: The households within each area are randomly
assigned to five strata.

sort: The five strata are the quintiles of the HY 020 by
area.

raso: Is a mixture of rand and sort. Stratum 1 contains
every 5’th household along the sorted HY 020, the strata
2-3 are the first and second quartile from the remaining
households respectively, and the strata 4-5 are randomly
assigned from the remaining households.

The strata of the groupings are then used as strata
for the stratified designs. To the stratified designs the
five in Section 2 explained allocations are applied. For
the cluster designs with fixed cluster sizes (fix), clusters
of size ten are created within in each stratum. If the
stratum size is not a multiple of ten, then some clusters
only have the size of nine. In the cluster designs with

Table 1. Ratios of the design weights

random cluster sizes (ran) the households are assigned
again randomly within the strata to clusters. The cluster
sizes were set to 5-15 households. Of every cluster size
there are approximately the same amount of clusters
within each stratum. The expected sample size is set
to be equal to the case of proportional allocation for
the respective grouping. For the simulation study
10,000 samples were drawn for every cross
combination of groupings and allocations.

In Table 1 the ratio of the design weights over the
whole population is stated. The third column shows the
GF for all the scenarios. The other columns show the
ratios of symmetric quantiles according to their naming.
One can see that the GF in the case of the designs equal,
prop, fix, ran does not change with the grouping since
the designs do not depend on the variable of interest.
Further, in the case of the grouping rand the ratios of
designs weights do not vary very much between the
different designs. However, only a slightly higher ratio
for the optimal allocations opt010, opt025, and optall
can be observed. This results from the fact that the
stratum-specific variances do not vary much under the
grouping rand. The GF for the opt010, and opt025
allocations is slightly over 10 and 25 respectively. This
is due to the fact that the above described allocation
scheme does produce decimals and not integers. Thus,

Allocation Grouping GF q95/q05 q80/g20 q60/g40
Cluster Designs
fix all equal 4.25 1.18 1.08 1.02
ran all equal 4.00 1.18 1.08 1.02
Stratified Designs
equal all equal 66.54 8.70 1.61 1.12
prop all equal 2.04 1.08 1.04 1.01
opt010 rand 3.93 3.14 1.31 1.07
raso 11.85 10.62 5.03 1.14
sort 12.82 9.87 5.25 1.21
opt025 rand 7.68 3.20 1.32 1.07
raso 31.56 19.00 542 1.11
sort 31.68 27.67 9.22 1.25
optall rand 7.68 3.20 1.32 1.07
raso 78.55 29.93 6.56 1.12
sort 128.55 48.51 10.10 1.23




Ralf T. Minnich et al. / Journal of the Indian Society of Agricultural Statistics 66(1) 2012 145-156

151

the allocated sample sizes have to be rounded and the
GF differs from the theoretical one. Due to the low
sampling fractions in the strata the rounding does have
a significant effect on the design weights. However, the
effect of the box-constrained optimal allocation scheme
on the GF is evident.

4.2 Results of the Simulation Study

The following graphs give an overview of the
efficiency of the mean disposable income small area
estimates under the different designs and groupings.
Figs. 2 and 3 compare the impact of the grouping on
the estimates. As can be seen in Fig. 2 in the case of
rand, the allocation of sample sizes to strata does not
have a strong effect on the RRMSE of the considered
estimators. This is due to the fact that the stratification
does not partition the population in more homogeneous
sub-populations. As such, the optimal design does not
depart much from the proportional allocation case as
the variances within strata are all very similar. In this

0.0 02 0.4 0.6 0.8
] ] ] ] 11 ] ] ] 11 ] ] ]

setting, the small area estimators ULEBLUP,
ULWEBLUP, ALEBLUP do behave slightly better than
the classical GREG estimators. Further, it can be seen
that the GREGC outperforms the GREGA in this setting.
This is due to the fact, that the GREGC uses all
information available in the sample to estimate the £.
Thus, the estimation is more stable than in the case of
GREGA where only the sampled observations in one
area are used. This pattern holds for all scenarios in this
simulation setup as can be seen in Fig. 3. Here, the
estimators GREGA, GREGC, ULWEBLUP are
compared under the groupings sort and raso and
different sampling designs. In the cases of the stratified
allocations with equal and prop allocation, the grouping
has almost no effect on the RRMSE of the estimators.
In contrast, for the optimal allocations the RRMSE is
even higher in the case of the grouping sort compared
to raso. This is due to a more unstable 3 estimation
because of very small sample sizes in strata with low
variability of the variable of interest.

0.0 02 0.4 0.6 0.8
11
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Fig. 2. RRMSEs of the mean income estimates under the grouping rand
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Fig. 3. RRMSEs of the mean income of GREGA, GREGC and ULWEBLUP under grouping sort and raso.
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As expected, one can see that the optimal
allocation compared to the proportional allocation
improves the estimation in terms of RRMSE. Further,
the GREGC yields the best results for the optimal
allocation under sort. Surprisingly, the GREGA with
optimal allocation seems to perform better under raso
than under sort. In case of small sample sizes or small
supports for the S estimates, the interaction between the
estimates of the auxiliary variable and the f’s cannot
be neglected which results in higher variances of the
GREGA. Similar observation have been made in the
German Census research project. The combined
regression estimators outperformed separate regression
estimators even if the areas are not very small
(cf. Miinnich et al. 2012). However, these differences
tend to be very small and the results cannot be
generalised.

In case of the cluster design, one can observe
strong effects of the grouping on the performance of
the estimators. For all estimators the RRMSE under the
grouping sort is higher than under raso and rand.
Hence, the well-known cluster effect in design-based
theory seems also to play a role in modelling, most
likely by the indirectly reduced sample size due to
clustering. Also important to note is that the impact of
clustering is more evident than a high GF. The effect
of varying cluster sizes results in slightly higher
RRMSE:s. This little impact was expected due to the
little variation of cluster sizes, which may be much
more evident in practice. Hence, it seems also worth
controlling the variability of cluster sizes for statistical
modelling.

In Fig. 4, different small area estimators are
compared. The impact of the sampling designs on the
unweighted small area estimator ULEBLUP is very
strong. In this case, we can easily recognize the
influence of the GF which is even more problematic
under the grouping sort. Once an optimal allocation is
applied, the RRMSE of the ULEBLUP rises
considerably. Especially in the situation where the
optimal designs from a design-based perspective is most
efficient (combination sort and optall) the ULEBLUP
is near to useless. For the unweighted estimator, the GF
really shows to be an appropriate indicator for the
possible design impact. The lower the GF is, the lower
is the RRMSE.

In the situation of raso, the optimal allocation
schemes do not have very different effects. Hence, the
restriction of the GF is not necessary. In contrast, when
the [ is estimated using the design weights like the
ULWEBLUP then the unit-level small area model can
gain efficiency by the design. Again, in the case of
cluster designs, both models ULEBLUP and
ULWEBLUP do have an higher RRMSE. The inclusion
of design weights in the estimation of the £ does not
play a major role in this comparison as the design
weights do not vary too much.

In many applications only aggregate data are
available for small area estimation. In this case an area
model has to be used. As can be seen in Fig. 2, in the
nice case where the allocation has almost no effect on
the inclusion probabilities, the ALEBLUP performs very
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Fig. 4. RRMSEs of the mean income estimates of YOURAO, ULEBLUP, and ULWEBLUP




Ralf T. Minnich et al. / Journal of the Indian Society of Agricultural Statistics 66(1) 2012 145-156

153

00 02 04 06 08 10 1.2
| | | | | | | | | |
sort sort
ULEBLUP ALEBLUP
Srs HHoD [ Ole)
equal | @ [
?rog H-HD ® 0
optO1 ar -8 4 | {87
opt025 Q- -8 | b -
optall |- T8I - {®F 40
fix oHE© O HEl- KD
ran oHEP O |-l @D
raso raso
ULEBLUP ALEBLUP
Srs HHD [ Ole]
equal [+ w
r08 HHID [ e}
opt01 | O 1 g 89
opt025 | 8- H-0 O
optall | - | HE-l O
fix oD O HHO
ran & _ )] O HHD
T T T T T T T T T T T T T T
0.0 02 04 06 08 10 1.2

Fig. 5. RRMSEs of the mean income estimates of the unweighted models

well. In Fig. 5, the ALEBLUPB and the ULEBLUP are
compared. As can be seen, both estimators have similar
problems with the sampling design. However, the
ALEBLUP is still more negatively influenced by high
GFs which results in much higher RRMSEs.
Surprisingly, little differences can be observed between
equal and prop allocations.

In Fig. 6 the 95% confidence interval coverage
rates are plotted against the mean confidence interval
length divided by the true mean. Ideally the points for
the areas would lie on the left of the 95% line, the more
to the left the better. As could be seen in the Fig. 3 the
GREGC outperforms the GREGA in terms of RRMSE
in almost all cases. In Fig. 6 one can further observe
that also the variance estimates for the GREGC
performs better than for the GREGA. The residual
variance estimator seems to be negatively influenced
by the higher variability of the festimates. Enhanced
residual variance estimation methods may reduce this
effect (e.g. Sdrndal et al. 2003, p.401).

Further, the cluster designs show a negative effect
on the coverage rates which follows from relatively
poor variance estimates. Amazingly, also the GREGA
and GREGC have serious problems which partly is
dependant on the grouping. The effect seems to be

induced by the skewed distribution of the variable of
interest.

Another interesting finding is that in case of the
grouping rand the MSE estimate for the ALEBLUB
measures the variability of the point estimate quite
accurately in all designs. However, if the grouping
departs from randomness the MSE estimates perform
rather poorly, in case of optimal designs they are
useless. A little surprise was the impact of sorting on
the YOURAO under cluster sampling. It is not clear
whether this can be reduced by using the Torabi and
Rao (2010) MSE estimator instead of Prasad and Rao
(1990).

Finally, Fig. 7 indicates that the unweighted
methods show much larger design effects than all other
estimators. In these cases, sampling designs with a high
GF seem to be worst.

In general, one would recommend using weighted
small area estimators. These work fine as there is not
unfortunate clustering where the clusters are effected
by some pre-sorting. Without random groupings, the
impact of the settings is much less than in the other
cases. An alternative approach to incorporate sample
information can be achieved by augmenting the model
with design variables (cf. Verret ef al. 2010).
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Fig. 6. Confidence interval coverage rates versus lengths for mean income estimates

5. CONCLUSION AND OUTLOOK

The aim of the paper was to investigate the
influence of design weights on different small area
estimators. According to Gelman’s critique on survey
weights, we were interested whether the major
problems arise in surveys with a high GF or whether

further issues have to be acknowledged.

In the Monte-Carlo study, a set of different

estimators and designs were compared under 3
differently grouped population. One could observe that
a high GF within stratified designs really gives an
impact on modelling. However, this negative effect can
be reduced considerably by using design weighted

regression methods, and especially the YOURAO
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Fig. 7. Design effects for the grouping sort

estimator. Further, including box-constraints in the
allocation seemed to be a helpful tool in order to control
the GF and ensure minimal efficiencies in the area-
specific estimates. Major negative effects occurred in
cluster sampling once some pre-sorting could be
observed within the data. In case of random allocation
of the clusters the estimators were much more stable.
This effect is also known from design-based theory.

As can be seen in Fig. 1 the data contains some
influential outliers. These outliers may inflict heavily
on the estimation of models leading to bad estimates.
One way to overcome these peculiarities is the
application of robust methods. Two such robust small
area methods are the outlier robust EBLUP estimator
for linear mixed models from Sinha and Rao (2009) and
the robust M-quantile approach from Chambers and
Tzavidis (2006). If spatial dependencies are present in
the data, then spatial robust small area models may be
applied, as the spatial robust EBLUP (SREBLUP)
proposed by Schmid and Miinnich (2012) or the M-
quantile geographically weighted regression model
proposed by Salvati et al. (2011).

Further, one should note that the given designs
omitted the appearance of unsampled areas. In case of
unsampled areas or domains caution has to be taken,
that the selection of the area with allocated samples is
independent from the variable of interest. Otherwise

adapted small area estimators under informative
sampling (Pfeffermann et al. 2006) have to be applied.
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