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SUMMARY

In applications involving agricultural data, it is common to encounter semicontinuous variables that have a portion of
values equal to zero and a continuous, often skewed, distribution among the remaining values. Moreover, these variables often
show a spatial pattern. We develop a two-part geoadditive small area model that can deal with these issues. In particular, we
are interested in predicting the mean of a target variable with these characteristics for a collection of subsets of the population.
Direct estimation using only the survey data is inappropriate as it yields to estimates with unacceptable levels of precision. A
study of the Tuscan Agrarian Region (Italy) level means of the grapevines production illustrates this method.

Keywords : Generalized linear mixed model, Penalized splines, Semicontinuous data, Spatial dynamics, Zero-inflated data.

1. INTRODUCTION

In small area estimation the interest is usually on
the estimation of a parameter of a small area such as
the mean or the total of a variable y. Traditional area
specific (direct) estimates may not provide acceptable
precision for small areas because sample sizes are
seldom large enough in many small areas of interest.
This makes it necessary to borrow information across
related areas through indirect estimation based on
models, using auxiliary information such as recent
census data and current administrative data. The most
popular class of models for small area estimation (SAE)
is linear mixed models that include independent random
area effects to account for between area variation
beyond that explained by auxiliary variables (Fay and
Herriot 1979; Battese et al. 1988).

Under the classic SAE model we make the
assumption of independence of the area-specific
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random effects. If the small domains of study are
geographical areas, this assumption means that we don’t
take into account any possible spatial structure of the
data. It is reasonable, recalling the “first law of
geography”, to suppose that close areas are more likely
to have similar values of the target parameter than areas
which are far from each other. Thus an adequate use
of geographic information and geographical modeling
can provide more accurate estimates for small area
parameters. In addition, Pratesi and Salvati (2008)
pointed out that geographical small area boundaries are
generally defined according to administrative criteria
without considering the eventual spatial interaction of
the variable of interest. Given all these notes, it is
reasonable to assume that the random effects between
the neighboring areas (defined, for example, by a
contiguity criterion) are correlated and the correlation
decays to zero as distance increases.
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The first studies that connect spatial relationships
and SAE methods are Cressie (1991) and Pfeffermann
(2002). In the following years, many papers have been
published showing how the use of geographical
information improves the estimation of the small area
parameters, both increasing efficiency and diminishing
bias. We refer, among others, to Petrucci and Salvati
(2006), Singh et al. (2005) and Pratesi and Salvati
(2008). In all these studies, the classical hypothesis of
independence of the random effects is overcome by
considering correlated random area effects between
neighboring areas modeled through a simultaneously
autoregressive (SAR) process with spatial
autocorrelation coefficient pand a proximity matrix W
(Anselin 1988). However, following this approach, only
the spatial structure of the data at the area level is
considered and the information about spatial contiguity
of the small areas is used to built the proximity matrix
of the SAR process. When the spatial location is
available for every unit, the geographical coordinates
can be utilized as covariates of the SAE model.

A geoadditive model analyzes the spatial
distribution of the study variable while accounting for
possible covariate effects through a linear mixed model
representation (Kammann and Wand 2003). The linear
mixed model structure allows to include the area-
specific effect as an additional random components. In
particular, a geoadditive SAE model has two random
effect components: the area-specific effects and the
spatial effects.

The current Italian agricultural surveys fall in this
general framework where the “small area” commonly
refers to a local geographical area such as province,
municipality or municipality aggregations. Sample sizes
are usually too small to provide reliable direct estimates
for these small areas as the surveys are usually planned
considering regions as the more detailed estimation
level. The use of models for small area estimation
becomes crucial. Moreover, the spatial location of the
statistical unit (i.e. farm) to which the agricultural
variables (i.e. land by type of cultivation, amount of
breeding, productions, structure and amount of farm
employment) are referred is relevant in the analysis.
The spatial location of each farm has been collected for
the first time during the fifth Italian Agricultural Census
driven in year 2000 introducing a new challenge for the
statistical analysis.

Often agricultural variables present a
semicontinuous structure, which means that a variable
has a fraction of values equal to zero and a continuous,
often skewed, distribution among the remaining values.
In literature the “excess zeros” in data are usually
described by the zero inflated (ZI) regression models
that mix a degenerate distribution with point mass of
one at 0 with a simple regression model based on a
standard distribution. This is realized considering a pair
of regression models: a model, usually logit or probit,
for the probability of nonzero response and a
conditional linear model for the mean response given
that it is nonzero. The ZI models has been developed
to analyze count data, examples include regression
models for zero inflation relative to a Poisson (ZIP),
zero inflated negative binomial (ZINB) and zero
inflated binomial (ZIB). Lambert (1992), Hall (2000),
Ridout ez al. (2001) among others, had largely studied
these models.

Z1 models are also suggested when a huge number
of zeros occur in continuous data (Holsen and Shafer
2001; Gosh and Albert 2009) and their application is
common in zero inflated lognormal model with skewed
semicontinuous data. Frequently, in the context of
semicontinuous data these mixture models are referred
to as two-part models.

In this paper we present a two-part geoadditive
SAE model to estimate the per farm average grapevine
production in Tuscany at Agrarian Region level. The
two part-model and the geoadditive small area model
are considered separately in the literature, here we
combine them considering the grapevine production as
a semicontinuous skewed variable.

The article is organized as follows. The modeling
approach is presented in Section 2 while the application
of the model to agricultural real data is described in
Section 3. The conclusions in Section 4 point out some
problems found in the application and the future
research goals.

2. TWO-PART GEOADDITIVE SMALL AREA
MODEL

In order to predict the mean value at some domain
of interest of a variable that present a semicontinuous
structure and a spatial related pattern, we consider a
two-part model composed by a pair of geoadditive small
area models. The geoadditive model allows us to
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analyze the spatial distribution of the study variable
while accounting for possible covariate effects through
a linear mixed model representation, that permits to
include the area-specific effect as an additional random
component. The geoadditive small area model, which
corresponds to a particular specification of the
non-parametric SAE model introduced by Opsomer
et al. (2008), has two random effect components: the
area-specific effects and the spatial effects.

Let y; denote a non-negative semicontinuous
skewed response variable for the unitj (j = 1, ..., N))

. . . m
in small area i (l =1,...,m; Zi:lNi = N), X;; a vector

of p linear covariates associated with the same unit and
s;(se R?) the spatial location of the unit. We assume
that the response variable has a significant spatial
pattern and can be recoded as two variables,

{1 if ;>0

=1
/ 0 if y;=0

and

, | if ;>0
% " irrelevant  if y; =0

We model these responses by a pair of
uncorrelated geoadditive small area models. One for the
logit probability of /;=1 and one for the conditional
mean of the logarithm of the response E[log(y;) | Z;=1].

The logit model is
My = ot XgBy +h(sy) (M

where 77, = log (7;/ (1 — 7)), m;=P([;= 1), h is an
unspecified bivariate smooth function and u; is the area
specific random effect. Representing 4(.) with a low
rank thin plate spline (Ruppert et al. 2003, p.253) with
K knots

K
h(s) = fos + 8By + D %ibpls. 1)

k=1

model (1) can be written as a mixed model (Kammann
and Wand 2003)

N=Xp +Zy + Du (2)
with y ~ N(0, I Jand u ~ N(0, o.1,) and where

X = [1, xg , sg] is the fixed effect matrix for the

N population units;

«B= [ﬁo’ﬂg’ﬂf] with fy = a + [ is the
coefficients vector for the “parametric” portion of
the model,

e Y =[7 -, 7] Iis the coefficients vector for the
“spline” portion of the model;

e u = [uy, .., u,] is the vector of the area specific
random effect;
« D=[d,, ... dy]" withd,= (d, ... d,,)" and d;an

indicator taking value 1 if observation j is in small
area i and 0 otherwise;
*Z = [btps (s, X )lvxg = [C(Sij - Kk)]lsuszv

1/2 1<k<K
x [C(x, —Kk)Lh, (< Where C(v) = V> log||v]

and ¥, ..., Kg are the knots location of the spline

function.
The model for the continuous response is
log(y') = X*B* + Z'y* + D'u*+ ¢ 3)
where

o Y’ is the vector of length N ’ containing all relevant
)y values, the ones corresponding to /,; = 1;
e the residuals € are assumed to be distributed as

N(©,0;1,.)3

oy = [yf - 7/}2] is the coefficient vector for the
“spline” portion of the model;

* . .
eu = [uik s ufn] is the vector of the area specific

random effect;
* 7'~ N(0,631x ) and w” ~ N(0,07I ).

B" is the coefficients vector for the “parametric” portion
of the model, X, is the matrix of covariates relating to
the fixed effects and Z" and D’are the matrices of
covariates concerning the random effects due to the
spline and to the small area respectively. In our model
the same set of covariates may appear in the logit and
loglinear parts. Even if the same covariates are used in
both parts, it will be not generally true that X = X,
7" =7 and D" = D because model (3) applies only when
Vi> 0.

The loglikelihood under independence for
semicontinuous not clustered response variables is

o I 1-1
1= 3 log| 7;0)" (1-7;(0)) 7" |

i=1 j=1

m N; By
+ 3 D 1 log(f2(6))

i=1 j=1
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where @and ¢ denote the parameters for the two models
and £, is the generic model assumed for the nonzero
elements (not necessarily lognormal). The ML
estimation for such a model can be accomplished by
separately fitting a binomial regression model to the
indicator variable LG=1,..myj=1,..N) and a
model based on f, to the nonzero y; elements. The
simplification respect to the general ZI models for count
data can be done in the presence of semicontinuous
independent data. In this case a continuous distribution
has a null probability of yielding at zero and the
distribution in the mixture of each response is simply
defined by its own value.

Unfortunately this simplification may not occur for
clustered data (Olsen and Shafer 2001; Berk and
Lachenbruch 2002) because the cluster specific random
effects into the two models may be correlated. In a
recent paper, Zhang et al. (2006) apply a two part
hierarchical model with a correlated random effects
structure to analyze profiling providers in managed
health care. In order to evaluate the model assumptions
a comparison between the results and those obtained
fitting separately the two models is carried out showing
that the parameters estimated are similar (with the
exception of the correlation parameter that cannot be
estimated in the second case). Looking at these results,
we assume that the random effects relative to the two
models, one due to the logit probability and the other
to the logarithm of the mean conditional response, are
uncorrelated.

Now suppose to observe a sample from the
population, with the covariates and the spatial location
known for all the population units, the small area mean
can be estimated using the model-based mean estimator

~ 1 A
Y = ﬁ[ 2t X y,j] “4)
iljes, JER

where S;and R; indicate the sets of the sampled and non-
sampled units belonging to region 1.

The predicted values are

. L ) _ a R V..
Yij = 7;y; with §; = ﬂ'ijlexp(@j +%J (%)

A ET o FT N * A oA PN

where ¢lj = xl‘j ﬁ + Zl:j Yy + u; Vij = O, + di Gudi
T A%k %, . . *

+1z,' 6,2, , 7, is the i-th row of matrix Z" and

Yoo i

NV
exp((/),j +%)is the back log transformation. Since

A

N Vs
exp| ¢; + -~ |is a design biased estimator, we
l 2

introduce the factor /@J- that is the bias adjustment
suggested by Chandra and Chambers (2005) defined as

A 1. 1.,
Ay =1+ 5{%‘#1"(%)}

where G; = X;;T‘} ( B* )XZ vV ( B*) is the usual estimator

of Var(4") and V(ﬁij) is the estimated asymptotic

variance of f/,-j . Under ML and REML of the variance
components of (4), the estimated asymptotic variance
is obtained from the inverse of the information matrix.

3. APPLICATION

3.1 Data and Model Estimation

The Italian Statistical Institute (ISTAT) drives an
Agricultural Census ten-yearly and a sample Farm
Structure Survey (FSS) two-yearly. Both in the Census
and in the FSS, the unit of observation is the farm and
the data of the surface areas allocated to different crops
are registered for each farm. In the FSS, until 2005, the
productions of each crop were also observed. The FSS
survey is designed to obtain estimates only at regional
level, therefore to obtain estimates at sub-regional levels
it is necessary to employ indirect estimators that
“borrow strength” from related areas. The indirect
estimators can be based on regression models that use
the variables collected at the census time as auxiliary
variables, known for all the population units, and that
can incorporate specific random area effects to account
for the residual between area variation. Moreover, the
Fifth Agricultural Census driven in year 2000 registered
the farms location on the territory and this geographical
location can be a particularly useful information for the
analysis of many phenomena concerning the
agricultural field (Bocci et al. 2006).

As mentioned before, we are interest in producing
the mean estimation of grapevine production for the 52
Agrarian Regions in which Tuscany region is
partitioned. The agrarian regions are sub-provincial
aggregations of municipalities homogenous respect to
natural and agricultural characteristics. The estimates
are referred to the 2003 year for which the data of the
FSS Survey are available. Auxiliary variables and
spatial information for each farms referred to 2000
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census time. Due to the high correlation values
observed over sampled data between the explicative
variables at years 2000 and 2003 (about 90% for the
grapevines surface), we suppose that the time lag
between the response and the explicative variables
should have a negligible effect. The available spatial
information consists in the universal transverse
Mercator (UTM) geographical coordinates of each
farm’s administrative centre.

The nature of the study variable does not allow the
use of classic small area methods that assume a linear
mixed model and don’t take into account the spatial
structure of the data. A large number of farms don’t
cultivate grapevines, and a few produce the majority of
the total region production. Moreover the cultivation
and consequently the production of grapevines for each
farm depends on the characteristics of the territory in
which the farm is located. Finally, the quantity of
grapevine produced by the same allocated surface may
change, depending on the soil productivity and on the
production choices of the farms (relative to the typology
and quality of the produced grapevine).

These practical considerations, confirmed by an
explorative analysis of the data, motivate our choice of
a two part model: a logit model for the probability of
nonzero grapevine production and a conditional log-
linear model for the mean of nonzero grapevine
production. The selection of the covariates among
several socioeconomic variables (including land use
information) available at the census time follows the
indications obtained from a stepwise regression analysis
of the data. For the logit model two auxiliary variables
are considered: the surface allocated to grapevines in
logarithmic scale and a dummy variable that indicate
the selling of grapevine related products, both at 2000
census time. In the conditional log-linear model we
include the same two variables plus the number of
working days done by farm family members in the 2000
year.

Moreover, since both the choice to produce or not
produce grapevines (/; = 1 or [, = 0) and the
conditioned level of production depend on the
characteristics of the farm’s location, in both the models
the response is assumed dependent on a smooth
function of the UTM geographical coordinates of each
farm’s administrative center, that is we adopt a
geoadditive model. Regarding the possibility to include

into the model the specific small area random effect, it

results significant only in the loglinear model.
Therefore, recalling (2) and (3), our chosen models are
n=Xp +Zy
log(y)=XB +Zy*+D'u +¢
The splines knots are selected setting K = 50 and
using the clara space tlling algorithm of Kaufman and
Rousseeuw (1990). The two models are estimated
separately, with, the logit one fitted through the
Penalized Quasi-Likelihood method using all the 2450
farms in the 2003 FSS sample, and the loglinear one
fitted by maximizing the restricted log-likelihood and
using only the 961 farms with a strictly positive value
of grapevines production.

The resulting spatial smoothing of the probability
of production 7; and of the nonzero log-production
log(y’) is presented in Fig. 1. From these maps, it is
evident the presence of a spatial dynamic in the
probability of grapevine production (first map) and of
both a spatial dynamic and small area level effect in
the level of grapevine production (second map).

The estimated models parameters (presented in
Table 1) are combined with the census values of the
136817 non sampled farms using (5) to obtain the
grapevine production predictions. Since in two agrarian
regions there are no sampled farms with strictly positive

value of grapevines production, in this regions the éj
are calculated using the synthetic predictor ¢?l =
xZTB* + Z;Tf/*. Finally, expression (4) is applied to

obtain the predicted agrarian regions means showed in
Table 2 and Fig. 2.

The map of the estimated agrarian region means
presents an evident geographical pattern, with the
higher values in the areas belonging to the provinces
of Florence and Siena (the well known zone of Chianti)
and the lower values in the north mountainous area of
the provinces of Massa Carrara and Lucca, confirming
the pattern of the expert’s estimate means produced by
ISTAT. [Statistics are produced using expert
information. Data are provided by local authorities that
collect experts evaluations on area and yield of different
crops. The auxiliary information could be included in
expert’s estimate, such as verifying the availability of
external sources (e.g., professional bodies or
associations of producers, administrative sources,
auxiliary sources of data related to the cultivation being
estimated). (Source: “ISTAT Information system
on quality of statistical production processes”,
http://siqual.istat.it/)]. These expert’s estimates are
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Fig. 1. Spatial smoothing of the probability of production 7; and of the nonzero log-production log (y”)
Table 1. Estimated parameters of the logit model and of the conditional log-linear model*.
Logit model Log-linear model
P Esti Confidence P Esti Confidence
arameters stimate Interval arameters stimate Interval
Fixed Effects Fixed Effects

Intercept 17.2292 | (-23.818 ; 58.276) | Intercept —0.5709 |(-0.2501 ; 23.866)
X coordinate 0.0710 |(—0.8436 ; 0.9857) | X coordinate 0.4730 |(-0.0130; 0.9591)
Y coordinate —0.3965 |(—1.1956 ; 0.4026) | Y coordinate —0.0081 |(-0.5179 ; 0.5018)
log(grapevine surface) 1.9745 (0.9118 ; 3.0372) | log(grapevine surface) 1.2694 (1.2059 ; 1.3328)
grapevine products 1.0636 (0.0358 ; 2.0915) | grapevine products 0.6701 (0.5163 ; 0.8239)

selling selling
family members 0.0004 (0.0002 ; 0.0006)

working days
Random Effects Random Effects

o, 0.2124 (0.0204 ; 2.2059) 0'; 0.2394 (0.0795 ; 0.7204)
o, 2.9930 (2.9102 ; 3.0781) 0': 0.2189 (0.1242 ; 0.3855)
: 0.8973 (0.8570 ; 0.9396)

* Intercepts and coordinates coefficients are not significant, but required by the model structure.
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Mean Grapevine Production
1.81 - 5.94

[ 1594-15.35

B 15.35-31.90

I 31.90 - 132.59
B 132.59 - 254.34

Fig. 2. Agrarian region level estimates of the mean grapevine
production.

obtained by determination of a crop specific coefficient
of soil productivity and are released at provincial level.
To better compare them with our results, we calculate
the agrarian region level expert’s estimate (shown in
Fig. 3) by multiplying the agrarian region grapevine
surfaces at year 2000 with the coefficient of soil
productivity at regional level. The comparison of
Fig. 2 and Fig. 3 confirms that our estimates present
the same pattern of the expert’s estimates.

3.2 Variability Measure

In order to give a first evaluation of the uncertainty
associated with our predictions we computed the
predicted mean-squared error (PMSE) for the small area
estimates by using a parametric bootstrap with 1000
replications.

Bootstrap replicate observations are generated as
n’ = Xp +Zy"
log(y") = XPB +Zy" +D*u” +¢ (6)

where Y%, v, u"® and €” are bootstrap replicates of the
random components in the model. In principle there are
various possibilities to draw such replicates. A natural
way to do this is to make use of the stochastic models

Estimative Mean Grapevine Prod.
1.03 -10.72

[110.72 - 27.52

B 27.52 - 58.47

I 58.47 - 101.12
B 101.12 - 291.68

Fig. 3. Expert’s estimates of the mean grapevine production at
agrarian region level.

¥ ~N(0.671; ) and u” ~ N(0, 621 )

with fitted variance parameters.

Once the bootstrap random components and errors
have been generated, the linear predictors n° and
log(y?) are constructed by using equation (6) and then
n” and )" are obtained using inverse logit transformation
and unbiased log-back transformation Finally the values
of the indicator variable I’ are generated performing for
each unit a Bernoulli experiment with probability of

success equal to the corresponding ﬁ'll]’ y’? is obtained

as y’=1° 1" and the mean of its values for each area

§7 are evaluated.

Drawing B bootstrap samples obtained in this way,
the PMSEs for the small areas estimates (showed in
Table 2) are obtained by

1 5 ~b T/bz
Elz,l(yl' -y )
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Table 2. Agrarian region level estimates of the mean grapevine production with predicted root mean squared error

(PRMSE) and coefficient of variation (CV%). (Regions in order of increasing sample size)

Agrarian Region n Estimate PRMSE CV %
04605 — Montagna Litoranea della Versilia 4 1.81 0.75 41.53
05004 — Colline Litoranee del Monte Pisano 4 3.35 0.73 21.65
04601 — Garfagnana Occidentale 5 2.71 1.20 44.46
10001 — Alto Bisenzio 6 3.39 0.85 24.96
04604 — Montagna della Val di Lima Lucchese 10 2.77 0.76 27.46
04808 — Colline di Incisa in Val d’Arno 10 50.18 8.53 17.00
05104 — Colline dell’Alta Valle Tiberina 11 12.23 3.35 27.37
05102 — Alto Tevere 12 7.65 2.14 28.03
05201 — Versante Orientale dell’ Amiata 12 7.31 2.30 31.50
05005 — Colline Litoranee del Medio Cecina 14 18.35 2.63 14.33
04802 — Montagna di Vallombrosa 16 44.75 7.08 15.82
04602 — Garfagnana Centrale 18 3.04 1.12 36.90
04603 — Garfagnana Orientale 18 2.71 1.13 41.73
04504 — Colline della Lunigiana Sud-occidentale 20 291 1.99 68.43
04801 — Alto Santerno e Alto Lamone 20 5.61 1.49 26.50
04503 — Montagna Litoranea di Massa 21 2.38 1.53 64.40
10002 — Colline di Prato 21 12.73 02.12 16.68
05002 — Colline tra Era e Fine 26 12.04 2.09 17.39
04809 — Pianura di Fucecchio 27 50.33 9.03 17.94
04502 — Montagna della Lunigiana Sud-orientale 29 4.53 2.75 60.60
04804 — Colline del Medio Valdarno 29 61.09 11.62 19.01
05003 — Colline dell’alto Cecina 29 5.64 1.08 19.14
05101 — Casentino 30 17.72 3.11 17.55
04501 — Montagna della Lunigiana Settentrionale 32 4.72 2.99 63.39
05204 — Colline di Siena 33 19.63 4.46 22.72
04805 — Colline di Firenze 34 19.79 5.08 25.69
05203 — Colline del Chianti 34 254.34 63.31 24.89
04803 — Colline del Mugello 40 48.00 7.92 16.49
05301 — Versante Occidentale dell’ Amiata 40 5.94 2.46 41.48
04901 — Colline Litoranee di Livorno 45 7.17 2.11 29.45
04806 — Colline della Val d’Elsa Inferiore 48 132.59 19.61 14.79
05105 — Colline della Media Val di Chiana 48 18.65 5.28 28.32
05207 — Colline di Val d’Orcia 50 23.49 8.61 36.65
05202 — Colline dell’Alta Val d’Elsa 51 82.49 23.92 29.00
04807 — Colline del Greve e del Pesa 56 244.39 50.82 20.79
05006 — Pianura di Pisa 59 4.62 1.12 2431
05307 — Pianura di Grosseto 60 18.90 5.79 30.63
05103 — Colline del Valdarno superiore 62 31.90 7.99 25.06
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Agrarian Region n, Estimate PRMSE CV %
05206 — Colline dell’Alta Val di Chiana 63 2.25 20.42 28.26
05001 — Colline del Valdarno Inferiore 65 24.28 391 16.12
04703 — Colline dell’Ombrone Pistoiese 71 8.63 1.98 22.97
05205 — Colline di Val d’Arbia 77 79.36 17.78 22.40
05302 — Colline dell’Ombrone 77 10.55 3.66 34.69
05304 — Colline Litoranee di Follonica 80 15.35 3.72 24.22
05303 — Colline del Fiora 92 46.70 15.74 33.71
04902 — Colline Litoranee di Piombino 95 20.34 4.41 21.66
04606 — Pianura della Versilia 108 2.45 0.79 32.30
04702 — Colline della Val di Nievole 110 3.14 0.97 30.97
04607 — Pianura di Lucca 112 7.14 2.12 29.68
05106 — Colline di Arezzo 114 22.36 5.58 24.96
05305 — Colline Litoranee dell’ Albenga 117 55.22 15.30 27.71
04701 — Montagna di Pistoia 185 3.28 1.00 30.34

As noted by Opsomer ef al. (2008) a drawback of
this parametric bootstrap approach is that it could lead
to biased inference if the distributions for the random
components are misspecified. Moreover a double-
bootstrap procedure able to capture also the variability
of the variance components should be a better choice.
Research in a more accurate method to estimate the
uncertainty of our predictions would certainly be
warranted.

4. FINAL REMARKS AND FORTCOMING ISSUE

The interest in spatial data analysis is increased in
every area of statistical research. Particular interest is
given to the possible ways in which spatially referenced
data can support local policy makers. Geographical
information is frequently available in many areas of
observational sciences, and the use of specific
techniques of spatial data analysis can improve our
understanding of the studied phenomena. Moreover, it
is recurrent, not only in agricultural field but also in
many other applications such us environmental and
biomedical ones, to encounter variables that have a
proportion of values equal to zero and a continuous,
often skewed, distribution among the remaining values.
The two part model represents the leading suggested
in literature for this sort of variables. However, there
seems to be no studies which combine jointly small area
estimation (SAE), models for overdispersed or zero-
inflated data and spatial data.

We have developed a two-part geoadditive model
under the framework of small area estimation (SAE)
and we demonstrate its practical usefulness by
estimating the per farm average grapevine production
in Tuscany (Italy) at agrarian region level.

While the two-part model provides the flexibility
to model data in accordance with a scientifically
plausible data generating mechanism and the results are
encouraging, further research is necessary to better
analyze the variability and to develop a better method
for estimating the mean square error of the mean
predictor. Another aspect that we should investigate is
the use of a two-part small area geoadditive model with
a correlation between the random effects of the two
parts of the model. Such a situation leads to a likelihood
that does not factor in two separate components, that
is the two models cannot be fitted separately. Finally
we would like to underline that in literature the
application of the two-part model mainly concern
biomedical data, however our results show that this kind
of model could be usefully employed in other
application fields.
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