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SUMMARY

Calibration techniques using auxiliary data offer efficient tools for design-based estimation of population totals and means.
In linear or model-free calibration, the weights are calibrated to reproduce the known population totals of the auxiliary variables.
A key property of model calibration is that the weights are calibrated to the population total of the predictions derived via a
specified model. We introduce model calibration methods for estimation of poverty rate for domains and small areas and
present some new semi-direct and semi-indirect calibration estimators. They benefit from spatial correlations of variables in
a hierarchy of regions or spatial neighbourhoods. Our study variable is binary and we use logistic mixed models under unequal
probability sampling. The properties (design bias and accuracy) of the estimators are compared with generalized regression
estimators and Horvitz-Thompson type estimators by using simulation experiments with unit-level register data of Statistics

Finland.
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1. INTRODUCTION

A calibration estimator is a weighted sum of
observed values of the survey variable, with the
weights constructed by using information about
auxiliary variables (Huang and Fuller 1978, Deville and
Sarndal 1992, Kott 2006, 2009, Sdrndal 2007). A
calibration equation is imposed: the weighted sample
sums of auxiliary variables reproduce the
corresponding known population sums. In other words,
if the estimator is applied to an auxiliary variable, the
known marginal total is obtained. This property is
important in the production of official statistics.
Calibration estimators are often considered nearly
design unbiased (the design bias is, under mild
conditions, an asymptotically insignificant contribution
to the estimator’s mean squared error, Sarndal, 2007,
p- 99). Accuracy improvement can be expected if there
is association between the study variable and the
auxiliary variables. Classical calibration methods are
often called model-free (Sarndal 2007), that is, it is not
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necessary to specify an assisting model, whereas an
explicit model is imposed in model calibration.

In domain estimation, estimates are required for
subgroups of population called domains. Examples of
domains are regions and demographic subdivisions
within regions. Estimation for small domains,
commonly known as Small Area Estimation (SAE), is
discussed for example in Rao (2003) and Datta (2009).
Lehtonen and Veijanen (2009) review model-free
calibration and generalized regression estimators in the
context of domain estimation.

In model calibration introduced by Wu and Sitter
(2001) and Wu (2003), a model is first fitted to the
sample. Calibration weights are determined using the
fitted values instead of the original auxiliary variables:
the weighted sample sum of fitted values must equal
the population sum of predictions. Chandra and
Chambers (2011) discuss model calibration for skewed
data. Montanari and Ranalli (2005a) introduce model
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calibration estimators that use nonparametric regression
methods and Montanari and Ranalli (2005b) discuss
multiple model calibration. Lehtonen et al. (2009)
introduce model calibration for domain estimation. Our
calibration equations specify that the weighted sum of
fitted values over a subgroup of the sample equals the
sum of predictions over the corresponding population
subgroup.

A model calibration procedure for domain
estimation consists of two phases. In the modelling
phase, a model is specified and predictions are
calculated for population elements by using estimated
model parameters and known values of auxiliary
variables. There is much flexibility in the model choice.
We have chosen a mixed model formulation involving
components that account for spatial heterogeneity in
the population (Lehtonen ez al. 2005). The predictions
are used in the calibration phase when constructing
calibration equation and a calibrated domain estimator.
There are different options also in this phase.
Calibration can be defined at the population level, at
the domain level or at an intermediate level, for
example at a regional level (neighbourhood) that
contains the domain of interest. Further, in the
construction of the calibrated domain estimator, a
“semi-direct” approach involves using observations
only from the domain of interest, whereas in a “semi-
indirect” approach, also observations outside the
domain of interest are included.

In constructing a calibration estimator for a
domain of interest, we consider the option of
“borrowing strength” by using information on study
variable from other domains deemed similar. If the
values of the study variable in neighbouring domains
are positively correlated, accuracy may be improved by
incorporating observations from related domains into
the estimator. Such estimators are called indirect in
contrast with direct estimators that only contain sample
values of study variable from the domain of interest
(Federal Committee on Statistical Methodology, 1993).
Estevao and Sarndal (2004) have argued that in a
general class of design-based model-free calibration
estimators, the optimal estimator uses data on study
variable solely from the domain of interest, without an
attempt to borrow strength from the other domains. We
introduce here calibration estimators that do not belong
to the class of estimators discussed in Estevao and
Sdrndal (2004). We discuss new indirect model

calibration estimators that aim to borrow strength from
neighbouring domains or larger regions with a property
of imposing small calibration weights outside the
domain of interest. Model-based indirect estimators
that borrow strength in terms of responses are not
studied.

As an application of model calibration, we
consider the estimation of poverty rate for regions.
Poverty rate is defined as the proportion of poor people,
with income below or at a threshold called poverty line.
Domain estimation of poverty indicators has been
recently studied by D’Alo et al. (2006), Fabrizi et al.
(2005, 2007a, 2007b), Tzavidis et al. (2007), Giusti
et al. (2009), Molina and Morales (2009), Srivastava
(2009), Haslett et al. (2010) and Molina and Rao
(2010). The estimation of poverty indicators for
population subgroups has been investigated extensively
in certain international research projects funded under
the European Commission Framework Programmes.
Recent examples are the AMELI project (Advanced
Methodology for European Laeken Indicators,
Lehtonen et al. 2011) and the SAMPLE project (Small
Area Methods for Poverty and Living Condition
Estimates); EURAREA (Enhancing small area
estimation techniques to meet European needs) is a
related former EU funded project on small area
estimation of poverty related indicators.

2. NOTATION AND MODELS

The fixed and finite population of interest is
denoted U = {1, 2,..., k..., N}, where k refers to the
label of population element. A domain is a subset of
population U such as a regional population. The
number of units in the domain is denoted by N,. In
sample s, the corresponding subset is defined as
s;= U, N s; it has n, observations. A small area is a
domain whose realized sample size is small (even zero).
The design weights a, are inverses of inclusion
probabilities 7, of the sampling design (a, = 1/7;,). The
domain structure we are considering is of an unplanned
type (Lehtonen and Veijanen, 2009, p. 222).

The domain total of a study variable y is defined
by
=Y g Q)
keU,

where y, denotes the value of the study variable for
element £.
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In order to account for possible differences
between regions, a mixed model incorporates domain-

specific random effects u, ~ N(0, O',f ) for domain U,
or regional random effects u, ~ N(0, o ) for region U,

where U, c U,. For domain-specific random intercepts,
a linear mixed model is given by

Y, = x\B +u,+ &, ke Uy, g~N(O, o).

For a binary y-variable, a logistic mixed model is
of the form

exp(x;f +uy)
1+exp(X;B +uy;) ’

E, i luy) =P{y,=1]ug B} =

where x, is a known vector value for every k € U and
B is a vector of fixed effects common for all domains.

The parameters P, 03 and o7 are first estimated from
the data, and the values of the random effects are then

A

predicted. Predictions ¥, =P{y, = 1| a,;p} are
calculated for every k € U. Lehtonen et al. (2005) give
several special cases of the model. Jiang and Lahiri
(2006) discuss predictors based on mixed models.

3. DESIGN-BASED ESTIMATORS

Horvitz-Thompson (HT) estimator (also Narain
1951) of domain total is a weighted sum of values in
the sample:

fh = Y, 4V )
ke s,

This is a direct estimator as it only involves
observations from the domain of interest. The estimator
is design unbiased but it can have large variance,
especially for small domains. HT does not incorporate
any auxiliary data.

Generalized regression (GREG) estimators
(Sdrndal ef al. 1992; Lehtonen and Veijanen 2009) are
assisted by a model fitted to the sample. By choosing
different models we obtain a family of GREG
estimators with same form but different predicted
values (Lehtonen et al. 2003, 2005).

Ordinary GREG estimator

tooreg = X, e+ 2, a (k= i) 3)
keU, kes,

incorporating a linear fixed-effects regression model is
often used to estimate domain totals (1) of a
continuous study variable. For a binary or polytomous
response variable, a linear model formulation will not
necessarily fit the data well. A logistic model
formulation might be a more realistic choice. LGREG
(logistic GREG; Lehtonen and Veijanen 1998)
estimates the frequency f; of a class C in each domain.
A logistic regression model is fitted to indicators
v, = I{y, € C}, k € 5, using the design weights. The
fitted model yields estimated probabilities

A

D =P{v,=1:x,, P}. The LGREG estimator of the
class frequency in U, is

fd;LGREG = z D+ 2 a, (Vg = Py)- 4

keU, kes,
Here the first term is the sum of predicted values

over the population domain. The calculation of p, for

all £ € U requires access to unit-level population data
on auxiliary variables. The last component of (4), i.e.
an HT estimator of the residual total, aims at correcting
the possible bias of the first part (synthetic estimator

of (1)).

In the MLGREG estimator (Lehtonen and
Veijanen 1999; Lehtonen et al. 2005; Torabi and Rao
2008), we use an alternative logistic mixed model for

(4) involving fitted values p, = P{v, =1] 6,;x,, B
instead of the fixed-effects logistic model. The random

effects are associated with domains U, or with larger
regions U..

4. MODEL CALIBRATION

In population level calibration (Wu and Sitter
2001), the weights must satisfy calibration equation

Swz =Y 5= (N,Z ﬁi} (5)
i€s ieU ieU

where z = (1, 3;). Using the technique of Lagrange
multiplier (1), we minimize

z (W, —a )* —ﬂ'(Zw.z. _ Z Z.)
(lk o '

kes ies ieU

subject to the conditions (5). The first part of the
equation is the distance between the weights w, and the
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known design weights a;. The latter part corresponds
to the constraints (5). The equation is minimized by
weights

wiAd) = g0+ 1z), (6)

where

C(E R R

ieU i€s i€s

In domain estimation, these weights are applied
over a domain: the estimator is

fd;pop = 2 Wi Yk (7)

kes,

A straightforward generalization of the population-
level calibration equation is a domain-level calibration
equation

ies, ieU, ieU,;

deizi = Z g = (Nd’ D 5’1‘)9 (8)

where the weights w; are specific to the domain. From
(8) we see that the domain sizes must be known. We
minimize

2
Z(dea—ak)_%(z Wai% — Z Zi)
k

ies, ies, ieU,

subject to the calibration equations (8). The solution
is wy, = wy(4,), defined by (6) for

(R B (E]

ieU; i€s, i€s,

The domain estimator is then a weighted domain
sum

fas = Y, Wan- )
kes,

We call this estimator “semi-direct”, as the sum
only contains y-observations from the domain of
interest. It is not a direct estimator, however, as the
weights are determined by a model that is fitted to the
whole sample. Sum of estimators (9) over domains is
not necessarily equal to the model calibration estimator
for the population; this property holds for estimators

(.

The domain totals of auxiliary variables are not
always known in calibration. This is the main

motivation of Estevao and Sirndal (2004) to define
calibration using marginal totals known over calibration
groups, such as larger regions. In the context of model
calibration, the calibration equation is defined over
domain-dependent sets C; > U and r; = C,; N st

D wazm =Y,z (10)

ier ieC,

The weights are wq;, = w; (4,) defined by (6) for

Aca = ( Z g~ Zaizij(Zaizizi’)_l-

ieC, ier ier

The semi-direct estimator is then a weighted
domain sum

Yea = Z Wek Vi - (1)

kes,

We introduce next various new “semi-indirect”
estimators. They are weighted sums over a set that is
larger than the domain of interest. Our goal is to
“borrow strength” from other domains, in an attempt
to reduce mean squared error. A semi-indirect domain
estimator incorporates whole sample, an enclosing
aggregate of regions in a hierarchy of regions or the
set of neighbouring domains, including the domain
itself. A neighbourhood of a region comprises regions
that share a common border with the specified region
or regions with centre closer than a given distance
threshold. Strictly speaking, the neighbour relation does
not have to be symmetric. Neighbourhoods may utilize
spatial correlations better than a more rigid hierarchy
of regions.

In a semi-indirect estimator, we use, as in (10),
supersets C; D U, of domains with corresponding
sample subsets 7, = C, M s. They could contain genuine
subsets of other domains, but in our simulations they
are composed of domains. In contrast with (11), we
define the domain estimator as a weighted sum of all
observations in 7

fd;r = Z Wk Vi (12)
ke
The calibration equation is

>owiz =Y, % (13)

ier ieU,
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Note that the sum on the left side of (13) extends
over r,; which corresponds to population subset C, a
larger set than U, on the right side of the equation. To
satisfy (13), the weights must be smaller than in (11).
In order to reduce design bias, the weights should be
larger in the domain than outside it. We have required
that the weights w,, are close to weights g, in the
domain and close to zero outside the domain. In other
words, the weights should be close to I{k € s} a, = 1 4a,
{y = Itk € s,}). The weights minimize

D W — L)

ker, O

subject to the calibration equations (13) when

Wae = Lyay + Aagzis

A= ( A )( 3 aiziz,-')_l.

ieU,; iern iern

This idea is similar to ideas presented by Singh
and Mian (1995) in the context of calibration based on
auxiliary variables.

5. AT-RISK-OF POVERTY RATE

Poverty rate is defined in terms of equivalized
income, a household’s total disposable income divided
by its “equivalent size”. It is attributed to each
household member, including children (European
Commission, 2006). Equivalized size of a household
is a sum of weights of its members. The OECD
modified scale assigns weight 1.0 for the first adult,
0.5 for every additional person aged 14 or over, and
0.3 for every child under 14.

At-risk-of-poverty threshold, or poverty line, is
60% of the median equivalized income of persons in
the whole population. People whose income is below
or at the poverty line are here referred to as “poor”.
To estimate the reference median income M, we first
present the HT estimator of the distribution function
of equivalized income in the whole population. The
distribution function of y in U is

Fi(0) = % Y Iy <t}

keU

This is estimated by HT:

. 1
Fy(0) = = N ad{y <t}

kes

where the estimated population size is N = Z @ .
kes

M is obtained from I:“U as the smallest y, (k € )

for which ﬁU (y¢) > 0.5. In the special case ﬁU k)

= (0.5 for kth observation in sorted y, the median is the
average of y, and y; 4

At-risk-of-poverty rate is the proportion of poor
people in a domain with equivalized income at or
below the poverty line. Our goal is to estimate

1
Ry=— > 1{y,<0.6M.
Ny keU,
HT-CDF estimator of poverty rate is based on the
HT estimator of the distribution function. The
distribution function defined in domain U, is estimated

by

~ 1
F,;(t) = =

z al{y, < 1},

d kes,

where N, = z a; . The poverty rate is then estimated

kes,

by
Frur = F;(0.6M). (14)

To estimate domain poverty rate by LGREG,
MLGREG or model calibration, we first estimate the
domain total of a poverty indicator v, = I{y,< 0.6 M },
which equals 1 for persons with income below or at
the poverty line and 0 for others. The estimate of the
domain total 7, is then divided by the known domain
size N, (or, its estimate 1\7d ). For example, the
MLGREG estimator of the poverty rate is

Ja:MLGREG

N, (15)

T4;MLGREG =
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6. MONTE CARLO EXPERIMENTS

Design bias and accuracy of estimators of poverty
rate were examined by design-based simulation
techniques. An artificial population of one million
persons was constructed from real income data of seven
NUTS (European Union’s Nomenclature of Territorial
Units for Statistics) level 3 regions in Western Finland.
Household attributes such as demographic composition
and equivalized income were obtained from registers
maintained by Statistics Finland (the attributes of the
household head were obtained from a sample but some
auxiliary information of other household members had
to be imputed). The population was still realistic
enough for a simulation study.

In the simulations, K = 1000 samples of n = 5000
persons were drawn with without-replacement
probability proportional to size (PPS) sampling from
the unit-level population. For PPS, an artificial size
variable was generated as a function of the socio-
economic status of household head. People with low
income appear in samples with larger probability than
people with large income.

Our models incorporated the following auxiliary
variables: age class (0-15, 16-24, 25-49, 50-64, 65-
years), gender with interactions with age class, socio-
economic status of the household head (wage and
salary earners, farmers, other entrepreneurs, pensioners,
and others), and labour force status (employed,
unemployed, and not in workforce). We created
indicators for each class of a qualitative variable. The
models were fitted by R function glmer (package
Ime4), with design weights incorporated into the fitting
procedure. As domains we used the 36 NUTS4 regions.
The NUTS classification is hierarchical: each NUTS4
region is contained within a larger NUTS3 region.

From each sample, the following quality indicators
were calculated for each domain estimator: absolute
relative bias

1 ﬁi A
— 2. Gy —6))
K2

Oy

ARB =

and relative root mean squared error

1 & . 5
— Y Oy —6)p)
K=
RRMSE =
6

We present the averages of RRMSE over domain
classes defined by expected domain sample size: Minor
(0-50 units), Medium-sized (50-100) and Major
(100-) domains.

We compare three different models (Table 1). In
the common logistic fixed-effects model (a), there are
no domain-specific terms. The logistic mixed model (b)
contains regional random intercepts associated with
NUTS3 regions. The mixed model (c¢) contains domain-
level (NUTS4) random intercepts. Design weights were
incorporated into the fitting of each model.

In Table 1, we use the following labels for the
methods:

Default Direct HT-based estimator (14)

LGREG Indirect GREG estimator (15) assisted
by a logistic fixed-effects model

MLGREG Indirect GREG estimator (15) assisted

by a logistic mixed model

SD-population Semi-direct estimator (7) based on the
original method of Wu and Sitter

(2001)

SD-domain Semi-direct estimator (9) incorporating

calibration at domain level

SD-regional Semi-direct estimator (1)
incorporating calibration (10) over

NUTS3 regions

SD-spatial Semi-direct estimator (11) based on

calibration over a neighbourhood

SI-population Semi-indirect estimator (12) defined as

a weighted sum over the whole sample

Sl-regional Semi-indirect estimator (12) over

enclosing NUTS3 region

SI-spatial Semi-indirect estimator (12) over a
neighbourhood containing regions

sharing a common border
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Table 1. Mean relative root mean squared error (RRMSE)
(%) of poverty rate estimators over domain size
classes, under three different logistic model

formulations.

Expected domain

Estimator sample size All
Minor | Medium| Major

(a) Logistic fixed-effects (common) model
Default 41.1 28.9 18.0 | 26.7
LGREG 39.6 28.7 17.8 | 263
Model calibration estimators
Semi-direct estimators
SD-population 42.7 29.4 18.5 | 273
SD-domain 40.4 28.5 17.8 | 263
SD-regional 42.6 29.3 182 | 27.1
SD-spatial 42.5 29.4 183 | 27.2
Semi-indirect estimators
SI-population 39.7 28.7 17.8 | 263
Sl-regional 39.7 28.6 17.8 | 26.2
Sl-spatial 39.7 28.6 17.8 | 26.2

(b) Logistic mixed model (NUTS3 level)

MLGREG | 396 | 286 | 178 | 263

Model calibration estimators

Semi-direct estimators

SD-population 42.7 37.9 26.4 | 34.4
SD-domain 40.4 28.5 17.8 | 26.3
SD-regional 42.6 29.3 182 | 27.1
SD-spatial 42.5 29.4 183 | 27.2
Semi-indirect estimators

SI-population 39.7 28.6 17.8 | 263
Sl-regional 39.7 28.6 17.8 | 26.2
Sl-spatial 39.7 28.6 17.8 | 26.2

(c¢) Logistic mixed model (NUTS4 level)
MLGREG | 306 | 286 | 178 | 262

Model calibration estimators

Semi-direct estimators

SD-population 42.8 433 334 | 39.7
SD-domain 40.4 28.6 17.8 | 263
SD-regional 42.6 29.2 182 | 27.1
SD-spatial 42.4 29.3 183 | 27.2
Semi-indirect estimators

SI-population 39.7 28.6 17.8 | 26.2
Sl-regional 39.7 28.5 17.8 | 26.2
Sl-spatial 39.7 28.6 17.8 | 26.2

Calibration at domain level (8) results in a better
estimator than calibration at population level (5). All
the methods were nearly design unbiased: maximum
ARB over all model choices and domain size classes
was below 1.65% (results of ARB not shown). The
semi-direct estimators calibrated at population level (5),
regional or neighbourhood level (10) did not perform
better than the default method. The semi-indirect
methods were usually more successful.

The choice of the model did not have much effect
on most estimators. In semi-direct method, population-
level estimators showed bad performance when using
mixed model with regional random intercepts. The
model calibration estimators did not outperform the
generalized regression estimators.

7. CONCLUSION

At least in the smallest areas, the semi-indirect
model calibration estimators involving calibration at the
level of regions or neighbourhoods (13) had smaller
RRMSE than the semi-direct estimators (9) calibrated
at domain level. The semi-indirect methods were also
better than corresponding semi-direct methods based
on calibration equation (10). Thus, borrowing strength
by our approach may be a reasonable strategy, given
that the domain sums of predictions are known.
However, when the domain sums are not known, the
methods of Estevao and Sadrndal (2004) are still
applicable.

The differences between the semi-indirect
methods are small. If there is a lot of spatial variation,
calibration equation based on neighbourhoods might be
preferred. The best model calibration methods were not
significantly better than the generalized regression
estimator assisted by logistic mixed model. A technique
using spatial mixed models with correlated random
effects (e.g. Chandra 2009) would provide an
alternative to the model calibration methods discussed
in this paper.
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