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SUMMARY

Design-based methods are generally inefficient for making inferences about small area proportions for rare events. In
this paper, we discuss an alternative hierarchical model and the associated hierarchical Bayes methodology. Sufficient conditions
for propriety of the posterior distributions of relevant parameters are presented.
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1. INTRODUCTION

Estimation of finite population proportions for rare
events in presence of small sample sizes received
considerable interest over the years. Design-based
methods given in standard text books (e.g., Cochran
1977) are not suitable for such estimation for number
of reasons. For given sample, the proportion estimate
as well as the associated standard error estimate often
turns out to be zero since small sample fails to detect
the rare event, giving misleading picture of the real
situation. The true variability is expected to be high due
to sample size and the associated normality-based
confidence interval is likely to be wide and may also
suffer from coverage error due to discreteness and
asymmetry of the underlying probability distribution.

To address this problem, commonly referred to as
the small area estimation problem, hierarchical models
that combine information from different sources have
been used in the past. A convenient way to implement
such models is to use hierarchical Bayes methodology
using Monte Carlo Markov Chain (MCMC). Using
design-based Monte Carlo simulation, Liu ef al. (2007)
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evaluated design-based properties of hierarchical Bayes
credible intervals for a number of area level models
where the sampling distribution of survey-weighted
proportions is assumed to be continuous distribution as
in the case of the well-known Fay-Herriot model (see
Fay and Herriot 1979). They noted the difficulty in
modeling the design-based estimates of proportions by
a continuous distribution since the sampling distribution
is inherently discrete due to small sample and binary
nature of the observations. An alternative approach
would be to model the binary observations. Such
methods are described in Rao (2003) and Jiang and
Lahiri (2006). In this paper, we provide hierarchical
Bayes methodology that can be used to produce small
area estimates of proportions for rare events and present
sufficient conditions for the propriety of the relevant
posterior distributions.

2. HIERARCHICAL BAYES METHOD

Let y; (0 or 1) be the observation for the jth
individual in the ith small area (i =1, ..., m; j =1, ...,
N,). Our interest is to make inference about the finite

population proportion ¥, = ZIJV’:I ¥ij ! Nj, where N, is
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the known population size of the ith small area (i = 1,
.., m). We assume that the following model adequately
describes the finite population.

Model

@) vyl 6 “d Bernoulli _exp(6)
' 1+exp(6)
(i) 6, ind N(x3. 1

(iii) 0 ~ Uniform(R?) independent of » ~ Gamma
(a2, b/2)

where a and b are known and % = (x;), ..., X;,) € R
=1 ..mj= ., N,). In different apphcatlons
small Values ofa and b are often recommended because
such choice produces vague prior on r. See Malec
et al. (1997) for a similar model for estimation of small-
area proportions of doctor’s visits using National Center
for Health Statistics data.

We assume a non-informative sample design. Let

s be the set of sampled units and y; = {yy;, ... yy,, -

Vouis s Yo - Inferences on ¥; will be based on the
posterior distribution of 17,, which can be computed

using the Monte Carlo Markov Chain (MCMC)
method. To calculate the Bayes estimator (the mean of
the posterior distribution of 17,-) it is equivalent to
calculate fori=1, ..., m,

N;
E[zyijlys]z sz+ZE(yl]|ys)
j=1 Jjes

JjEs
Now for j ¢ s,

E(yl'j |ys) = E(E(yy | 9[9 ys) |ys)

ZE( exp(el) |yv):
[+exp(@)

the posterior mean of 7, = exp(8)/[1 + exp(&)]. The

posterior mean and variance of Y; are given by

jes

E(%1y,) = %(Zyij"'(Ni_”i)E(”il)’s)) (1)
and
V(Y_;Iys) = V(E(Y_llys’et)lys)
+ E(V(E1y,.6)1y,)

N N. —n
_ (NIN,- i ] V(7 | y,) + ( NZ" ) E(z(1 = 7) | ).
)

Since the prior on J is improper, we need
conditions under which the posterior distribution of 6,
is proper. The following theorem ensures propriety
under certain conditions.

Theorem : Denote D = {i|1 <y, <n, — 1} :={d,,
sdgy < {1, o my where dy <d) <...d, Xp= (x4,
Xg, 5 Xd, ) and y, = 2’;”:1 Vij- Assume that 5 > 0 and

m—p +a> 0. If XX, is nonsingular, the joint posterior
probability distribution function of the &’s given y, is
proper.

Proof of Theorem: The joint probability distribution
functions of = (6, ..., 6,), J and r given y, for the
following two cases are different and so we need to
handle these two cases separately:

Casel. 1<y, <m-—1Vy (i=1,.. m).
Case 2. Assume that g <m of the y, ’s are neither 0 nor

n(i=1, .. m).

Case 1

The joint probability distribution function of 6=
@, ..., 6,), 0and r given y, is given by

exp(6) Y’
0 O 1|y e< HH(1+exp(9)I

i j=1

1 Y 1 r o2
S x TTr exp| —=(6 — X8
(Hexp@)j Hr exp( 5 (6 = x0) )

x r2! exp(—br/?2).
Since
PNCEEIR
-5 (ZX,.X,.’) 5283 X6+ 3.6
= 5(X'X)5—25(X0) +199 l
= (06— (X' X) ' X'0Y(XX)(5- (XX)'X0)
+0 (I- XX'X)'x)e,

where X = (x, x,, ..., x,,)’, integrating with respect to

o, we have



Shijie Chen et al. / Journal of the Indian Society of Agricultural Statistics 66(1) 2012 121-124

| 123

mta-p_,
xr 2

T exp(6.y;.)

(6, 1|y o<
i (1+exp(6))"

X exp [—%(b +OU-X(X'X)™" X’)H)].
Integrating with respect to , we have
exp(6;y;)
Oy | |-———-
| H (1+exp(8))"

m+a—p

< [brora-xx'xy'x)0] °

exp(6.y;.)
<ceX s o L (LA 3
‘ H (1+exp(6,))" ®

for some constant ¢ since Q : = I — X(X'X)"'X" is
nonnegative definite. Thus the result follows from
= exp(6y;) _ o
J'_ B AN P J P 1= p) i dp < oo,
* (1+exp(6)))"
Case 2

Without loss of generality, let 1 <y, <n, -1, ..,
1<y, <n,—1.ThenD={l, .., ¢} and y,. = 0 or n
forg+1<i<mand

j j;z(e, 8 r|y,) drds ﬁd@.
i=1

L exp(6y;)

= ] ji:1(1+exp(9l-))n”

q q
X Hr% exp(—%(ﬁi - X6y )Hdﬂ
i=1 i=1

J' J' m exp(&- Y )

X
i= q+1(1+eXP(9))
q
X H P exp(——(@ — X5) ) H deo,
i=q+l1 i=qg+1
x 2 exp(—br/2)drdS.
Now,
J» J» H _exp(@y)
i= q+1(1+exp(0))

x H r exp(——(ﬁ '5)2) ]‘m[ de,

i=q+1 i=q+1

m
[T 48

i=g+1

<[.] H rzexp(——(e—x§))

i=qg+1

—Qr) 7.

Hence,
[ [x@38 r|ys)drd§l_m[d¢9l-
i=1

exp(6y;)

<@ . J, L1+ exp(@)"

q
X Hr% exp(—%(&i - X6 )Hdﬁl
i=1 i=1

x 17 drdS < oo (follows from Case 1.)

Corollary: If » = 0 and a > p + 1 — m, the joint
posterior probability distribution function of the 6’s
given y, is improper.

Proof of Corollary

{o:30 0 <

positive number. From (3) and noting that there exits a
positive constant ¢, such that

LetQ : = K }, where K is a fixed

exp(6,y;.)

0<c¢cy < ——————
(1+exp(6))"

<1V 6eQ,

we have in Q

m+a-p

¢ [606T * <x(d)y)<c, [606] * |

where ¢, and c, are positive constants. Hence, noting
that Q is nonnegative definite with rank m — p, if a >
p+ 1 —m, we have

m+a-p

jg[e’Qe]‘fde =+ oo

and impropriety follows.

Remark 1. For the well-known prior on 7 in which g(r)
r% Y o> (p—1—m)/2, or equivalently, for the prior
ond= %, h(A) < A2, N B<(m + 3 — p)/2, the posterior

probability distribution function of the &’s given y;, is
improper.
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3. CONCLUDING REMARKS

The hierarchical model presented in the paper
should work fairly well when we have exchangeability
within the small areas. However, in many applications
the assumption of exchangeability may not be
reasonable because of the complexity in the inherent
population structure. To deal with such complex
situations, one may consider inclusion of unit level
covariates. Also, the survey design may be informative,
which poses additional complexity in the hierarchical
Bayes methodology. The success of any hierarchical
Bayes method, just like any other model-based method,
depends on the underlying model. Thus the role of
model selection and model diagnostics cannot be
overemphasized. Finally, it will be instructive to
evaluate design-based properties of the hierarchical
Bayes procedures using Monte Carlo simulation similar
to that given in Liu et al. (2007). These topics will be
addressed in separate paper.
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