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SUMMARY

We use a transformed Fay-Herriot model to estimate wind erosion at the county level in lowa. A soil erodibility index is
available from administrative records for each county in lowa and is used to form the predictor. The response variable is the
soil loss due to wind as recorded in the 2002 National Resources Inventory. We propose bias corrected, and calibrated small
area predictors such that the weighted sum of the county predictors matches the state level direct estimate. The standard errors
are estimated by using a parametric double-bootstrap method. The small area predictions have estimated coefficients of variation

that average about three fifth of those of the direct estimates.
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1. INTRODUCTION

Wind erosion is a severe problem in some mid-
western states in the US and the resulting soil loss can
lead to decreases in soil productivity. Although some
work has been done by the Wind Erosion Research Unit
(WERU) to estimate wind erosion at the national level,
there has been little work to estimate wind erosion at
the county level. We propose estimating wind erosion
at the county level using National Resources Inventory
(NRI) data. A transformed Fay-Herriot model is used
to predict the county means. We include the design
weight in our proposed model in such a way that the
final estimates are calibrated with the state direct
estimate. A parametric double bootstrap method is used
to estimate the mean squared error (MSE) of the
proposed estimator. The proposed model fits the data
well and produces a mean squared error of prediction
that is approximately one half of the design standard
error for most counties.
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Section 2 gives an introduction to the NRI survey.
The problem of wind erosion and some previous results
are discussed in Section 3. In Section 4, we present
results from an exploratory study and in Section 5
calibration for estimated county means is discussed.
Section 6 discusses the estimation of the MSE for the
proposed estimators and Section 7 summarizes the
results.

2. THE NRI SURVEY

The NRI is a longitudinal survey conducted by the
US Department of Agriculture’s (USDA) Natural
Resources Conservation Service (NRCS) in cooperation
with the Center for Survey Statistics and Methodology
(CSSM) at lowa State University. The survey is
designed to assess conditions and trends for land cover,
soil, water, and related natural resources on non-federal
lands in the US. The NRI was conducted every 5 years
during 1982-1997. The basic design of NRI surveys is
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a stratified, two-stage area sample. The land area of
most states in the US is divided according to the Public
Land Survey (PLS) system and the PLS provides a
convenient structure for NRI sample selection and for
locating primary sampling units (PSUs) in the field. The
primary sampling units are also called segments. A
typical PSU in the midwest is a square, one half mile
on a side. PSU sizes vary and are somewhat smaller in
the East where the PLS does not apply. Three sample
points are selected within each PSU according to a
restricted randomization procedure, see Nusser and
Goebel (1997). The 1997 NRI contains approximately
300,000 PSUs and over 800,000 sample points.
Sampling rates generally range from 2% to 6% of the
land area, though rates occasionally fall outside this 6%
range. The sampling rate within a county is increased
when larger sample sizes are needed for special studies
or when heterogeneous patterns exist for soil types, land
uses, major land resource areas, or hydrologic regions
(Nusser and Goebel 1997). Since 2000, the original
structure of the NRI has been replaced by a two-phase
supplemented panel sampling design in which the 1997
NRI segments serve as a first phase and each year a
partially overlapping panel is selected through a
stratified sampling design as a second phase. The
second phase sample includes approximately 42,000
“core” segments that are observed every year. An
additional 30,000 segments are selected from the
remaining 268,000 PSUs each year to form a
supplemental sample. All points in every selected
segment are part of the annual sample (Fuller 2003).
Data are collected at two levels. Urban land, water, and
roads are collected at the PSU level whereas soil
properties, land use, and land cover are collected at the
point level.

3. VARIABLE OF INTEREST

Wind erosion is a serious problem in many parts
of the world. Areas susceptible to wind erosion include
parts of North Africa; the Near East; Asia; the Siberian
Plains; Australia; China; South America; and North
America (Wind Erosion Research Unit (WERU)),
http://www.weru.ksu.edu/new_weru/problem/
problem.shtml).

An extensive dry spell during the 1930°s produced
dust storms and catastrophic soil damage. Still today
wind erosion can severely damage agricultural land
throughout the Great Plains (WERU). Wind erosion is

responsible for about 40 percent of the total soil loss
in the US (Hagen 1994), and the percent can increase
in drought years (Hagen and Woodruff 1973). On
approximately 74 million acres of land in the US, wind
erosion is a dominant problem. The 1992 National
Resources Inventory (NRI) survey estimated 2.2 tons
per year soil loss due to wind erosion on non-federal
rural lands in the US.

Although several studies address the issue of
estimating soil loss at the national level, little effort has
been made to provide estimates of soil loss at a lower
level (e.g., county). Our objective is to produce
estimates of wind erosion for counties in lowa that are
susceptible to wind erosion. There are 44 counties in
Iowa where wind erosion is important and where wind
erosion data are collected. Data were used from the
2002 NRI survey for those 44 counties. It is not
practical to measure wind erosion directly for large
areas. Therefore the wind erosion equation (WEQ) is
used by several national agencies, including the NRCS,
to estimate soil loss due to wind. Wind erosion is
calculated as a function of several factors, including soil
erodibility, climate, slope, conservation practices, and
land cover (Woodruff and Siddoway 1965). We use
WEQO2 to denote the wind erosion calculated for the
year 2002. The measure of soil erodibility used in the
WEQ is called the soil erodibility index and is denoted
by IFact. A higher IFact value indicates greater
susceptibility to wind erosion. [Fact can be obtained
from the NRCS soil survey database available through
the NRCS Soil Data Mart (SDM) for each county in
the US. Since IFact is a soil characteristic, it changes
little over time. For this study, we use [Fact from the
soil science database as the predictor variable, and use
WEQO2 as the response variable.

4. EXPLORATORY ANALYSIS

Let y, be the survey weighted mean WEQO2 for
county i, and let x; be the mean IFact for the same
county, where i = 1, 2, ..., m. We first considered an
area level small area model in the original units.

The model in the original units (Model I) is
yi=pt Bixitute, ey

where £, and f; are unknown parameters, e, is the
sampling error and u; is the area specific random effect.
We estimate the parameters under the assumptions
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e, ind N(0, D,), u; ind N(0, 67); the e; and u, are
independent; and the D, are known. An overall PSU

variance (0'62) for the state was estimated as the pooled

within county variance for the 44 counties. The design
variance of the mean for county 7 with a sample size »,

is of/ni. The empirical generalized least squares
(EGLS) estimator of = (£, 3,)" is

B = X"V xy xTyly
-1
= |:2XiXiT (O'uz +Di)_1:| |:2Xiyi (0'3 +Di)_1]
i=1 i=1
)

where y = (.. . ., ym)T, x; = (1, xl-)T, X= (XT,Xg, s
x,), v =diag {0, + D,},. v = diag {6 + D},
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Fig. 1. Scatter plot of direct estimates for the mean WEQO02
and the mean [Fact
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Fig. 2. Residuals and estimated values for the model in
original scale

and 67 is an estimator of ¢7. For a set of scalars

{a,, a, ..., a,}, diag{a;}~| denotes a diagonal matrix
with elements a,, a,, ..., a,, and A’ denotes the transpose
of a matrix A.

Fig. 1 is a scatter plot of the mean WEQO02 and
the mean IFact, and Fig. 2 is the plot of the residuals
against predicted values obtained by regressing mean
WEQO02 on mean IFact. The residual for county i is 7;
=y, — By — B, where B, and f are the EGLS
estimators given in equation (2). Nonlinearity and
unequal residual variances are clear from the plot which
leads us to consider a transformation of y,. Several
transformations were considered, and a cube root

transformation of the mean WEQO2 fit the data
reasonably well.

The cube root transformed model (Model II) is
13 _ *

O =ht it t g, (€))
where u, ™ N(0, 62), & ™ N(0, D), u, and e, are
independent, and D, are treated as known. In the
remaining analysis the cube root transformation is

treated as known. The D; = (9y;/3)™' D,, where D; is
the estimated variance of ;.

The regression parameters of model (3) were
estimated using the EGLS (2) and the between area
variance parameter was estimated using the REML. The
GLIMMIX procedure in SAS is used to estimate the
parameters of the model. Parameter estimates and their
standard errors are given in Table 1. Both regression
parameters are significant at 0.05 level. The estimate
of ¢ is about 1.5 of the standard error. The likelihood
ratio statistic for testing 0'3 =0is ;(12 =3.59 with a p-
value of 0.06. The average sample size is 15.68 and the
variance of mean erosion is 0.0204 for a sample of size
16. Thus the estimated o> is about 0.43 of the variance
for an average sized sample.

Table 1. Parameter estimates and their standard errors for the
cube root transformed small area model.

B 104, 1007
Estimates 0.804 0.199 0.088
Standard Errors 0.026 0.025 0.062
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Cube Root of Mean WEQO02
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Fig. 3. Scatter plot of the cube root transformed mean WEQ02
and mean [Fact
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Fig. 4. Residuals and estimated values for the transformed model
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Fig. 5. Normal quantiles plot of residuals for the
transformed model

Fig. 3 shows a scatter plot of the cube root of the
mean WEQO02 and the mean IFact. The residual
plot for the fitted cube root transformed model (3) in
Fig. 4 supports the linear model. The normal quantiles
plot for the residuals from the transformed model is
given in Fig. 5. A test of normality for the residuals was
performed by using the Kolmogorov-Smirnov test
(Conover 1999, Section 6.2). The Kolmogorov-Smirnov
D statistic is 0.08 with a p-value greater than 0.15.
Overall, the transformed model provides a reasonable
fit to the data.

The empirical best linear unbiased predictor
(EBLUP) of 4, = x! B +u; for a linear model is given

by
&= Fiy+(1-5)x B (4)
=x B+70y-x B). (5)
where
7 = (6, +D) 67, (6)

Prasad and Rao (1990) expressed the MSE of the
EBLUP (5) as

Elf - uT = g (0'3)+ 82i (0'3)‘F 83i (0'3) (7
where
8ii (0'3) = (0'3 +D; )_lo-L%Di (%)
is the MSE when Band o7 are known,
82i (0'3) - (l_%)zxiT
-1
[i xx (0 +D, )_1] x; ©
i=1
is the effect of estimating B , and
& (02) = D (o2 +,) 7 (6%) (10)

is the effect of estimating 0'3, and \7(6'2) is the
asymptotic variance of 6‘3 . The asymptotic variance of
the residual maximum likelihood (REML) estimator of
o2 is (Rao 2003)

u

1
V(6?) = 2[2(03 +Dl~)_ZI

an

i=1



Pushpal K. Mukhopadhyay ef al. / Journal of the Indian Society of Agricultural Statistics 66(1) 2012 65-74 69

The MSE in (7) can be estimated by

mse[;] = 8,(67)+ 8(67) +285(67)  (12)

where 67 is the REML estimator of o (Prasad and
Rao 1990).

Because a transformation of 'y, is used, the standard
small area predictions (5) and the estimation of MSE
(12) need to be adjusted. For the transformation, the
sampling model can be written as

wB=u+e, (13)
where ,u,-* are the unobserved small area means in the

transformed scale, el-* ind N(O, D;k), andi=1,2,...
m. The linking model can be written as

t = fy+ B+, (14)
where u; ind N(O, 0'3) , and u, and e, are independent.
Therefore, the small area parameter of interest in
the original scale is defined as 4, = (& ) =
(B, + Bx, + u;)’. Although the design expectation of y,
is the same as the small area parameter of interest for
the untransformed model, this is no longer valid for the
transformed model. See Rao (2003), section 10.4 for
details. Therefore a bias corrected small area predictor
is necessary. Slud and Maiti (2006) proposed a bias
corrected small area predictor for a small area

parameter that is a smooth monotone function, 4, of ,uj .
The approximately bias corrected estimator is

i = h(6)E[h(B)1/E[h(§)] (15)

where E() is an estimator of E(-) that is obtained by

substituting (f, 6‘3) for (f, 0'3) , and E(") is an
asymptotically correct expression for the expectation.
Following Slud and Maiti (2006), we propose,

-1

s = 00"+ a=g00 BY {307+ /3)2}
{3&3+(xfﬁ)2} (16)

for the cube root transformed model, where f is the

EGLS estimate of £ 7, = (0' + D, ) 62, and 67 is
the REML estimator of o7 .

5. AREGRESSION BASED CALIBRATED
SMALL AREA ESTIMATOR

If a domain with acceptable direct estimates is
divided into a number of small areas, then it is often
desirable that the weighted sum of the small area
predicted means be the same as the direct domain mean.
For the NRI survey, it is desired that the design
weighted predicted county means equal the state direct
mean because the state estimate has been released.
Small area estimates such that the weighted sum of the
estimated county means equals the direct estimate of
the state mean are said to be calibrated. The direct
estimate of the state mean (SDE) is defined as SDE =

2?1:1(Wiyi)/2?1:1

based estimate (SME) is defined as SME =
2?1:1(%&,-)/2?:1(%) , where the w; is the survey

weight associated with county i, y; is the direct county

mean, and £ is a model-based small area prediction.
We define the relative absolute calibration (RAC) error
by RAC = |SME — SDE| / SDE. The RACs for the
untransformed and transformed models are 1.2% and
7% respectively.

(w;) and the state level model

To see why calibration at the state level is not
necessarily achieved through the proposed model based

estimators, consider model I with O',f known. The
normal equations for estimating 3= (4,, 3,)" for model
(1) are given by

XVvixp=xr'y (17)

where X is the design matrix for the model I, V =

diag{(oﬁ + Di)_l},'n g andy =0,y - ym)T. One of
1=
the normal equations for £ can be written as

,10'+D

But for . can be written as,

A; from (5), Zﬁlw,ﬁl
2 vill Z W - ZW
i=1 = =

If w; o< Di_ the second term in (19) is zero by (18)

and the calibration condition is achieved. Several
approaches have been taken to obtain a calibrated

;=2 B (19)
D

1
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estimator. For example see Fuller (2009). Following
Wang and Fuller (2002), we include an additional
variable in the small area model. The proposed
estimator will have the properties of EBLUP under the
model and will be fully calibrated. For the

untransformed model, we include x,, = Dw; as a
covariate.
Model I(b):
Vi =Bt Bx;+ Boxy tupte, (20)

where £, is a fixed parameter and 4, B, u, and e; are
defined in model 1. As before, we assume u; ind

N(0, o, 2y, e, ~ N(O D)) and u; and e, are mutually
Byt Bixyi+ Boxy

independent. Small area means, 1, =
+ u;, are estimated by

=3+ A=) B+ B+ Br). 2D

where B and 7, are given in (2) and (6) respectively.

From one of the normal equations for  when 0'3 is
known,

L 1
i=2’10'2+D

i

{Dwy; — DiwiBO - Diwixilgl

~Owy =0 (22
But using the predicted mean from model I(b),

Z,lwzﬁ Z,ylzz

i=10y

~ADwy; - w. B

-Dwx, B - (D,-w,-f By (3)

The second term on the right side of the equation

in (23) vanishes by (22). Therefore we achieved
calibration by including x,; in model I. We can test the
significance of calibration by conducting a significance
test on f3,. If model I is correct then by including x,,
we have included an unnecessary variable. Note that

when & is unknown, we replace ¢ in equation (18),
(19), (22), and (23) with a suitable estimator, 6, and
the overall calibration condition remains valid.

Proposition (5.1) gives a method for obtaining
calibrated predictors that is appropriate for models
where a function of y; is linearly related to x;.

Proposition 5.1. Let the small area model be
J/, = h(Z[)a
zi=Bt fx;tute, (24)

where f, and [, are regression parameters, e, are
sampling errors, ; are area specific random eftects, /()
is a smooth function and 7 = 1, 2,....,m indexes the m

small areas. Assume e; ind N(0, D)), u; nd N(o, o?).
e; and u; are independent, the D, are known,
1 1
_ (A2 2 s (a2 A2 A2
Vi = (au+D,-) o, Vi = (O'M+Dl~) 0,/,0, 1s an
estimator of 63 , and w, are the survey weights. Let,

5 = B+ B
My = %+ 7z = 2)1, (25)

~1
& = (fovf 1] Sévli-a,)  (26)
i=1 i=1
and
& =Wy, 27)

where (3, /) is the EGLS estimator of (4, /), and
v; are constants. Then

= [, + 0 (28)
is a fully calibrated estimator of 4; in that 2;":1”’1)’1

_:E:l 1’

Proof of Proposition 5.1. Note that by equation (26)
for any v,

m
Z (yl /:zp,i - &VVI'Vl') = 09 (29)

but from equation (28),

Z S = S - ) (30)
i=1 i=1
= Doy = f, = oww) G1)
i=1

Therefore for any choice of v, estimator (28) is
fully calibrated.

We apply Proposition 5.1 to Model II to construct
calibrated estimators of the small area means. We
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= (=% on
w,(1— ) with v, =(1—7;) to obtain @& =3.14 x 107
The calibrated predictor is

regress the adjusted residuals g

~ n ~ A3
Hicg = {Zi +7 (5 _Zi)}
+(3.14 x 100w, (1-7), (32)

where the least squares standard error of & is 3.32 x
107,

Fig. 6 shows a plot of design unbiased county
means and predicted means from the small area models.
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Fig. 6. Predicted small area means for the transformed estimator,
bias corrected estimator, and calibrated estimator

Predicted values from the transformed and bias
corrected estimators are very close for all counties. All
calibrated predicted values are larger than the predicted
means because w;(1—7) is always positive and the
sum of the original predicted values is less than the
weighted state total.

6. MSE ESTIMATION

An estimator of the MSE of prediction for the
untransformed model is given in (12). However, the
result is not easily extended to the transformed model
or to the calibrated estimator that are required for this
dataset. An alternative approach is to use a replication
based estimator of the MSE. Hall and Maiti (2006b)
proposed a parametric double-bootstrap, and Hall and
Maiti (2006a) proposed a non-parametric double-
bootstrap method to estimate the MSE. We computed

the parametric double-bootstrap estimator for the
transformed estimator ( Z; 7 ), bias corrected estimator

(4 g ), and the calibrated estimator (& g ) for the
transformed model. Given the normal probability plot
of Fig. 5, a parametric bootstrap based on the normal
model is a reasonable approach. The first bootstrap
samples are obtained by sampling independently from

uf ind (0, 62),and ¢ ind N(o, D) where 8 and
6‘,3 are the estimated values of S and O',f from the

transformed model and D, are the design variances in
the transformed scale. Compute the bootstrap estimate
p, 6‘31) of (B, 0'31) by using data from the first
bootstrap samples. The second bootstrap samples are
I ind

i —~

obtained by sampling independently from u

N(O, 631), and ei” ind N(O, D,-*). The estimation
method can be described as follows. Let f,, A, and

6'3 denote the EGLS estimates of £, £, and 63,
respectively, for the transformed model. Let u =
(uy, ... um)T, and e = (ey,.. ., em)T.

e Repeat forr=1to R

o Generate u'” ¢ N(O, 6‘,3 ), and €/ ind N(0,
D" so that they are independent

o Compute {y*} W = X +ul® + ¢

o Compute the EGLS estimators A", and

621 ; and the small area predictor ,LAt,-I(r)
o Repeat fors=1to S

- Generate u' ™ N(0, 2", and
ellr ) ind N(0, D*) so that they are
independent

. Compute {y2}109) = x 10 4yl 9
+ e/l s)

= Compute the EGLS estimators ,3 Hrs).

A21(r,s) .
u B

and & and the small area

predictors A
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o Compute MSE(Z?

_ g Zle (ﬂl_u(r, 9 _ gl )2,

where g9 = x gl 4 ,H10r9)

e Compute v|; = MSE,;

R (8-

i ()

where [ 1)

= xf+u
o Compute vy, = E (MSE,,) = R_IZleMSE(zri)
Finally, the double-bootstrap estimator of the MSE
of f; is given by
mse(f;) = vy, + m_ltan_l{m(vll- =V} Vi 2 Vy

V2 [ vy, + m ™ m(vy, — i)} vy < v (33)

The two-case definition of the mse in (33) is used
to ensure that the estimator is always positive. MSE of
predictions for the transformed estimator, bias corrected
estimator, and calibrated estimator are computed by
using the double-bootstrap estimator (33) with R = 220,
and § = 100. On average, the double-bootstrap MSEs
are about 0.999 of the naive bootstrap MSEs.

The double-bootstrap MSEs have large variances
compared to the estimated MSEs because of the
relatively small R. We use the order one variance in the
cube root scale and county IFact to smooth bootstrap

MSEs in the cube root scale. Let v; = (62 +D;)

D67 be an estimate of the first order term in the

Table 2. Summary statistics for the predicted means.

variance of the predictor in the cube root scale. Let

-1
V;ii =1+0.5n I:Z?:l(xi —)_5)2] (x — x)* be a crude

approximation for a multiple of the order n™' term in
the variance of the prediction in the cube root scale.

Let b be the double-bootstrap estimate of the MSE in

the cube root scale, and b, be the double-bootstrap
estimate of the MSE in the original data scale for
county 7. The smooth estimate of the MSE in the cube
root scale is

Ak

b

% A
;T Vi T O (34)

where ¢ is the regression coefficient for the regression
of b —w; on v;l»j. Let ¢, = b {3(xf3)*} be the
transformed estimate for the MSE in the original scale.
The smooth bootstrap estimates for the MSEs in the
original scale are the fitted values from the regression
of b, on ¢; without an intercept.

7. SUMMARY OF RESULTS

Statistics for the original direct estimators, the
predicted means using the transformed predictor, the
bias corrected predictor, and the calibrated predictor are
given in Table 2. The table has four pairs of rows. The
first pair is for the direct estimates. The first row gives
statistics for the direct estimator, where, for example,
the median of the 44 direct estimates is 0.514. The
second row gives statistics for the estimated coefficient

of variation, denoted by a’ . The a’ for the direct
estimator are calculated using the back transformed D; .

First Quartile Median Mean Third Quartile Range
Original Estimated 0.196 0.514 0.696 0.970 3.477
Mean cv 0.426 0.514 0.534 0.645 0.707
Simple Predicted 0.216 0.488 0.637 0.859 2229
Predictor (35) cv 0.248 0.290 0.310 0.364 0.377
Bias Corrected Predicted 0.232 0.509 0.658 0.881 2.256
Predictor (16) CV 0.273 0.319 0.342 0.401 0.416
Calibrated Predicted 0.254 0.532 0.683 0.906 2.228
Predictor (32) cv 0.252 0.294 0.315 0.370 0.383
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The estimates in the second pair of rows are
obtained by constructing the EBLUPs in the cube root
scale and then transforming back to the original scale.
That predictor is,

e = O+ A=5) BY (35)

For the transformed estimator, the mean of

predicted values (0.637) in Table 2 is the simple average

of predicted values for the 44 counties. The mean CV

(0.310) in Table 2 is the average CV for the 44
counties.

The third and the fourth pairs of rows in Table 2
are for the bias corrected and the calibrated predictors,
respectively. The bias correction increases the
predictions by an average of about 0.02 which is about
3% of the average. Calibration increases the predictions
by about 0.05 relative to the simple predictions. The
average of model CV s for the calibrated estimator is
31.5%, and the average of model CV's for the bias
corrected estimator is 34.2%. The average CV s for the
direct estimates is 53.4%. The third quartile of CVs
the model a’s for the calibrated estimator (37.0%)
and the bias corrected estimator (40.1%) are also lower
than the third quartile of the CV's for the direct
estimates (64.5%). The model CV s for all three small
area predictors are smaller than the CV s for the direct
estimates in all counties.
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Fig. 7. Coefficients of variation for the small area predicted
values and the direct estimates

Fig. 7 is a plot of CV s for the calibrated estimator
plotted against the CV's for the direct estimator. The
CV s for the model estimates are 50% to 88% of the

corresponding CV s for the direct estimates. As is usual
in small area estimation, the gain from model
predictions are larger for areas whose direct estimators
have large CVs.
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