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SUMMARY

We consider the general problem of allocating funds from a fixed budget to the districts of a country according to the
values of a district-level indicator. The obvious approach might seem to be to efficiently estimate the relevant district-level
quantities, and then to apply the allocation scheme that would be optimal if these quantities were equal to the estimates. We
show that such a two-stage strategy is suboptimal. By a simulation approach, we find allocation schemes that are superior to
this strategy. We offer no single universal solution, but motivate the results by intuition. We discuss the implications of our
finding on the separation of the remits of a statistical agency and its client.
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1. INTRODUCTION

For a modern information-based government,
small-area statistics plays an important role in the
monitoring of various economic, social and
demographic indicators of the local administrative units
(districts) of the country. It is essential for devising
effective measures and incentives to reduce iniquities
and other undesirable differences among the country’s
regions or districts. Production of estimates for the
districts, which entails the conduct of national surveys,
construction of databases and statistical inference, is
usually the task of a statistical agency, such as the
Office for National Statistics in the UK, and taking
action based on the estimates, after synthesis with other
information, is the responsibility of a government
department or agency. This paper is concerned with the
separation of these two activities when estimation is
associated with appreciable uncertainty. Its conclusion,
based on a simulation study of allocating a limited
budget to the country’s districts, is that the activities
of the statistical agency (estimation) and of the
government (allocation of funds) have to be integrated.
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The method of allocation that would be optimal if the
relevant district-level (population) quantities were
established with precision is suboptimal when efficient
(small-area) estimates are used in their stead. We find
and motivate some inefficient estimators that result in
a better allocation of funds.

We consider the following problem. A (national)
government department wishes to allocate a fixed
budget B to its D districts according to district-level
quantities €, d = 1, ..., D. The sizes of the relevant
populations of the districts are N,. For instance, 6, may
be the unemployment rate and N, the size of the labour
force in district d. The department sets a threshold 7’
and establishes a unit value U, and would in ideal
circumstances award to district d a grant of size G, =
(8, — DN,U if 6, exceeds T, and no grant otherwise;
G, =0 when 8, <T. In the context of the unemployment
problem, the amount G, can be interpreted as awarding
amount U for every unemployed above the ‘tolerated’
level of unemployment 7. Two problems are
encountered. The quantities 6, are not known and have
to be estimated, and the fixed budget B may be
insufficient, B < G| + - + Gy,
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The former problem is addressed by estimating the
quantities @, from a survey or by combining
information from several sources. The latter problem
can be addressed by raising the threshold 7, reducing
the amount U, or by setting a shortfall S, for each
district and awarding only 4, = G,—S,. The award 4,
is always nonnegative, so 0 <S,< G,. In the setting we
consider, a government statistical agency supplies a set
of (nearly) efficient estimates § = (él 5 eees éD ) to the
department, which applies an algorithm for allocating
the budget, regarding the estimates @ as if they were
the population quantities 8= (6, ..., Gp).

We demonstrate that such a two-stage strategy is
suboptimal, even when both stages, estimation of &and
the algorithm for allocating B based on @ are optimal.
We compare allocations by their total squared shortfall,
S= S +..+53, and prefer allocations with smaller
S. The shortfall is a natural quantity for assessing the
failure of the allocation scheme in a district, and adding
up the squares amounts to penalising a large shortfall
more harshly then several smaller shortfalls in total.
Some alternatives to S are outlined in Section 2.1. When
S, are random quantities, based on estimators éd , We
consider the expected squared shortfall E(S) instead.

In the next section, we describe solutions for the
two stages and show, by example, that their
combination yields a disappointing result — a less
efficient estimator of @ leads to a superior allocation
scheme. In Section 3, we find allocation schemes that
are better than the default by using thresholds different
from 7. Section 4 addresses design of a survey on which
allocation would be based. The discussion in the
concluding Section 5 summarises the findings and
connects them to the government statistician’s remit.
We relate the conclusions to those of Shen and Louis
(1998) who demonstrated, in the context of small-area
estimation, that the property of efficiency is not
maintained by nonlinear transformations; for example,
the ranks of efficient estimators of &, ..., 6, are not
efficient estimators of the ranks of these quantities.
Different estimators should be used for ranking, for
estimating (or graphically representing) the distribution
of the district-level quantities and for making inferences
about the extremes and other summaries of 6,. See
Longford (2005a and b, Part II) for related discussion.

2. SMALL-AREA ESTIMATION AND
ALLOCATION PROBLEMS

The problem of estimating €= (6,, ..., &) for a
partition (division) of a country, or of a similar domain,
is commonly referred to as small-area estimation
(Platek et al. 1987; Ghosh and Rao 1994; Rao 2003;
and Longford 1999 and 2005b, Part II). Its particular
challenge arises when the subsamples for one or several
districts (subdomains) are too small and direct
estimation, based solely on the values of the relevant
variable on the observed units in the district concerned,
is unsatisfactory. Following Fay and Herriot (1979) and
the development of empirical Bayes and multilevel
methods (Robbins 1955; Efron and Morris 1972;
Longford 1993; and Goldstein 2002), a concensus has
been formed that the direct estimator of 6, can be
improved by borrowing strength across the districts, that
is, by exploiting their similarity. This is in accord with
the theory of James and Stein (1961), although they do
not construct a solution, and the established small-area
estimators do not satisfy their theoretical standard of
admissibility.

Most approaches to small-area estimation can be
described as combining alternative estimators, the
unbiased but inefficient direct estimator and a synthetic
estimator that entails a model and its estimator for an
average district. When no information other than the
values of the relevant variable is available, this amounts
to setting

6, =(1+b)6,+b,0, (1)

where @ is an estimator of the national population
quantity € and b, a suitably defined coefficient. For
normally distributed outcomes, the empirical Bayes
approach yields

_ 1
1+nd(f)’

by 2)
where w is the ratio of the between-and within-district
variances, ® = o / o, @ its estimate and n, the
subsample size (or its equivalent) for district d.

For binary data, the rates (probabilities) € can be
estimated from the fit of a logistic regression model
with random coefficients. An alternative, related to
moment matching, is described and applied in Longford
(1999 and 2004). The between-district variance 0'12; is
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estimated as the part of the sample variance of the direct
estimators that is in excess of what would be expected
if the rates @, were identical:

& - %{EIN[, (@, -6) - i(l_%)@, (1_@,)}.

d=1
3)

As most of the district-level rates are estimated by éd
with large sampling variances, the sampling variance

of 6'12; is reduced when each term éd (1- éd )in (3) is

replaced by their approximate average § (1 — @ ). This
yields the estimator

The direct estimator @, is then combined with the
national estimator @, as in (1), with coefficient b, set
so as to minimise the mean squared error (MSE) of the
combination. The ideal coefficient b, depends on the
squared deviation (6, — 0)*, which is unknown and
could be estimated only with low precision. It is
therefore replaced by its district-level expectation 612; ,
which is estimated with much greater precision when
each of many districts has a substantial represention in
the data source (survey). The same coefficient b, is
obtained as in (2), although the variance ratio estimator
@ may be different. The uncertainty about @is easy to
take care of, although its impact on estimating 6, is
usually trivial. Addressing the uncertainty about 0'12;
presents a much sterner challenge. See Rao (2003) and
Longford (2005b, Part II, and 2007) for alternative
approaches.

2.1 Allocation of a Limited Budget

The optimal allocation of a limited budget is found
by minimising the total of the squared shortfalls,
S= 8%+ ...+ Sp . Objective functions other than S can
be adopted. These may incorporate exceptional
arrangements for some districts, contributions (losses)
according to different formulas for groups of districts
B

b

(e.g., regions), a steeper loss function, such as IS,
or a loss function with change points, reflecting the
critical nature of estimation errors that exceed a certain
level. In fact, the squared shortfall Sj as a (loss)
function of 4, has a change point at G for 4, > G,

there is no loss, and for 4, < G, the loss is quadratic,
equal to (G, —Ad)z.

When the ideal amounts G, are known the
minimum of S is easy to find. The solution is trivial
when B 2 G, = G, + ... + G); each district is awarded
the full grant G, and the distribution of the remainder
of the budget is immaterial. With an insufficient budget,
when B < G,, the method of Lagrange multipliers, or

substitution of S;= G, - B — S, — ... — Sp in the
expression for S, yields the condition

1 dS

—— =8,-(G.—-B-85,-...-8p) =0

for any district d # 1 with a positive award 4, Hence,
the districts that receive awards should share the
shortfall equally. If this average shortfall is greater than
G, for a district, then this district is reassigned to those
receiving no award, and the shortfall is distributed
equally among the rest. If such a reassignment takes
place the average shortfall is increased and further
districts may have to be reassigned to receive no award.
A reassignment should be carried out for one district
at a time and repeated as many times as necessary.

2.2 Simulated Version of the Country

In Section 3, we explore a range of estimators and
adjustments of the threshold in pursuit of an optimal
allocation of the budget B. They are based on a
simulated set of quantities 8= (6, ..., &) held fixed in
replications. The quantities & (district level rates of
unemployment) are plotted in Fig. 1 against the
population sizes of the districts. The population sizes
N, are themselves simulated, from a scaled beta
distribution with an admixture of normal, and the
maximum of the sample is multiplied by the factor 1.75
to represent the country’s capital. There are D = 100
districts.

The rates @, are generated from another scaled beta
distribution and are linearly combined with the
population sizes N, so that the correlation of {6,;} and
{N,} would be negative for the less populous and
positive for the more populous districts. The population
sizes are held fixed throughout, and all the results are
reported for this vector 6 until Section 4.1, where the
results for other vectors € are summarised. The
country’s population (labour force) is N =N, + ... + N,
= 25 million. The national rate = (N,6, + ... + Ny6y)/
D is equal to 9.26%, and the mean of the district-level
rates 6, is @ = (6, + ... + 65)/D = 9.37%.
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Fig. 1. The population sizes and unemployment rates of the
districts. Computer generated values.

The government department has budget B = 4
million units, and each unemployed in excess of the rate
of T =12%, marked in Fig. 1 by horizontal dots, is
associated with the ideal grant of U = 35 units. The
threshold level of 7=12% is exceeded by 20 districts
with total population 5.53 million (22.9%). The ideal
awards G, for these districts add up to 6.554 million
units, accounting for 187260 excess unemployed in
total. That is, there is a total shortfall of 2.554 million.
If sufficient resources were available and @were known,
the capital would receive a grant of 0.711 million. Only
one district would receive more, 0.850 million; its
population is 273400 and unemployment rate is 20.9%,
the third highest. In this setting, the optimal allocation
within the budget is positive only for thirteen districts,
with total squared shortfall of S. = 0.3704 x 10'%.
Henceforth we regard 10' as the unit for S and drop
this factor when reporting other values of .S or E(S). The
shortfall for each of these thirteen districts is 0.155
million; their total squared shortfall amounts to 0.3123,
84% of the total for the twenty districts that deserve a
grant.

Suppose a survey with sample size 9000 is the sole
source of information about 6. The survey has a
stratified sampling design with simple random sampling
within the districts, with subsample sizes n,
proportional to the subpopulation sizes N, The
subsample sizes of the four least populous districts are
38, 39, 40 and 41; the capital is represented in the
survey by 368 subjects. We emphasise that these sample
sizes are far too small for reliable direct estimation. By
way of illustration, suppose the district with sample size
n,; = 40 has unemployment rate 10% (&, = 0.10). The
standard error of the direct estimator is

1004/0.1x0.9/40 = 4.74%, so sample rates of 5%

(implying no problem with unemployment) and 15%
(acute problem) are quite plausible. Thus, indirect
estimation is indispensable in this context.

Trivial solutions include the same allocation of
40000 units to each district and allocation proportional
to the population size of the district. They are associated
with respective quadratic shortfalls of 2.811 and 2.673.
We will derive allocations that are far superior, but
these trivial allocations can nevertheless be used as
points of reference, together with the ideal quadratic
shortfall of 0.370. For example, we may assess the
value of an allocation scheme that results in a given
value of E(S) by the relative effectiveness

E = {2.673 —E(5)}/2.303,

so that £ = 1 corresponds to the ideal allocation and
E =0 to a totally ineffective use of the survey. We use
the allocation proportional to size as the reference,
because equal allocation would be considered as
inequitable even in the absence of any information
about the unemployment in the districts.

3. EXPECTED SHORTFALL WITH
COMPOSITE ESTIMATION

We consider the direct and composite estimators
of 9, éd and éd ,d=1, ..., D, and use them to allocate
the total budget naively, treating them as if they were
the underlying quantities 6,. In the simulations we
conduct, we replicate the processes of sampling and
estimation of éd , followed by evaluation of éd for
each district d, and calculate the squared shortfall S for
each set of D estimates. Each simulation comprises
5000 replications. To avoid any confusion, we refer to
a set of D estimators of @, used in an allocation scheme
as a single estimator.

With the direct estimators éd , E(S) is equal to
Sgir = 1.311, so that Eg, = 0.576. The difference
Sgir— S« = 0.941, or the S; /S« = 3.54-fold increase, can
be interpreted as the price of incomplete information.
Given a survey of respectable size, it is quite steep,
although a comparison on the square-root scale, as
Sdir /\/S_* = 1.88, may reflect this more
appropriately. It is therefore natural to look for
estimators more efficient than @, . However, with the
composite estimator we fare no better. Using it instead
of 6, results in E(S) equal to Semp = 1.388, exceeding
Syir by 0.077.
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Shen and Louis (1998) showed that using
b,=1/(1+n,®) in (1) amounts to too much shrinkage
for representing the district-level variation of @, by their
estimates. This problem is resolved with the coefficients
by =1— J1—b, ; the D estimates §;, =(1—b;)8, +
b:;é are dispersed as much as the estimated between-

district variance 612; . This motivates our exploration of
the shrinkage estimators (1) with the coefficients, or
estimates of,
by =1 —(1 = by

for ¢ > 0. These sets of coefficients generate a
continuum of estimators between the direct and
composite estimators. The exponent ¢ > 1 corresponds
to shrinkage greater than in the established composite
estimators. We summarise the efficiency of the sets of
D estimators based on an exponent ¢ by the average of

@ = 1 5. i
the MSEs, MSE = BZdMSE(qu 16,). or its

square root, estimated empirically. That is, let éd,i,
i=1, ..., R, be the values of an estimator éd of g, for
a given district d, obtained in the R = 5000 replications.
Then its MSE is estimated by

. 1& - 2

MSE (6;:6,) = EZ(@M -6,)

i=1
Given the large number of replications, the

sampling variation of this MSE estimator can be
ignored.

1.5

Expected loss (E + 12)

I I I
0.0 0.5 1.0

Shrinkage exponent q

The left-hand panel of Fig. 2 summarises the
values of E(S), denoted by S, based on these estimators
as a function of ¢. It confirms that efficient estimation
of @,, with ¢ = 1, is detrimental to effective allocation
of the budget B. Optimal allocation is attained for
g = 0.5, but S, is a flat function of ¢ in the vicinity of
0.5, so any choice in the interval ¢ € (0.4, 0.55) would
be suitable. The allocation based on the direct

estimators 6, is superior to any allocation based on

shrinkage with exponent ¢ > 0.8, and S, rises steeply
for such g.

For completeness, the right-hand panel displays
MSE? as a function of q, confirming that the

shrinkage estimators are more efficient (on average)
than the direct estimators (¢ = 0). In fact, MSE attains
its minimum for ¢ = 0.90, just short of ¢ = 1.0 which
is optimal according to a different criterion, averaging
over the (estimated) distribution of the deviations
6,— 0.

Fig. 2 conveys a discomforting message. Efficient
estimators do not yield an optimal decision (allocation).
The cause of this seeming contradiction is the
essentially small-sample nature of the estimators of &,
and their nonlinear involvement in the allocation
formula. An alternative class of shrinkage estimators is

based on the coefficients b; = fb, for a positive constant
/- It yields results very similar to those for b:; .

Average root-MSE (%)

I I I
0.0 0.5 1.0

Shrinkage exponent q

Fig. 2. The expected squared shortfall S, and the average root-MSE, VMSE? | as functions of the shrinkage exponent g.



36 Nicholas T. Longford / Journal of the Indian Society of Agricultural Statistics 66(1) 2012 31-41

3.1 Altered Threshold

The naive allocation scheme explored thus far may
be suboptimal because of the asymmetry in how the
shortfall is assessed. Failure to allocate funds to a
deserving district, for which éd < T < 6, amounts to
a relatively greater squared shortfall than allocating
funds to a district that does not deserve them, for which
éd > T> 6, and similarly for éd . This suggests that
erring on the side of greater allocation may have less
severe consequences. Of course, such an allocation has
to be adjusted to satisfy the budget constraint 4, + ... +
Ap < B, so the result may be that some districts get
smaller awards. A simple way of arranging a greater
allocation is by using, in conjuction with 8, or 6, , a
threshold 77 lower than 7. The assessment of such an
allocation by the squared shortfall S is with respect to
the original threshold 7, even when the awards 4, are
set with reference to a treshold 77 < T.

The expected values and the standard deviations
of the squared shortfall with the threshold set at 0.08
<T’ < 0.13 are plotted in Fig. 3 for the sets of direct
and composite estimators and for the (compromise)
shrinkage estimators based on the exponent ¢ = 0.5. The
minima of E(S) for the three (sets of) estimators are
attained at around 11.3% for the composite, 11.0% for
the direct, and 11.5% for the compromise shrinkage
estimator based on ¢ = 0.5. The minimum E(S), 1.260,
is incurred for the compromise shrinkage, 0.035 lower
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than the minimum for the composite estimator, which
is 0.014 lower than the minimum for the direct
estimator. The gains over the allocation scheme based
on T'= 12% are substantial for the composite estimator
and very small for the direct estimator.

The right-hand panel compares the (empirical)
sampling variation of the total shortfalls. It highlights
another problem with the allocation based on the
composite estimator — its uneven performance in
replications with settings 77 > 11%. In some
replications, the total squared shortfall S is quite small,
but in others it is substantial. The two other estimators
perform much more evenly. This is an unexpected result
because the values of the D estimates 6, are dispersed

less (around @ or 6) than the direct estimates éd for
every realisation of the survey.

3.2 District-specific Thresholds

If there were no shortfall and the value of &, were
known for a district d, then the allocation of G, to d
would incur no contribution to the squared shortfall S.
This suggests that S may be reduced by setting the
threshold 7" more flexibly as a function of the estimated
MSE. For a composite estimator, the MSE depends on
g, - 0)*, so it is estimated with poor precision. It is
more practical to estimate the averaged MSE, denoted
by eMSE:

eMSE (636, ) = Ep{MSE (6;: 6;.n, )}

—— Composite

— — Composite (q = 0.5)

Direct

Standard deviation of loss (E + 12)

8 10 12
Threshold (%)

Fig. 3. The expected squared shortfall E{S(7")} and the standard deviation _/var {S(T')} , as functions of the altered threshold 7.
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where the expectation is over the districts, but with the
sample size n, held fixed. It amounts to replacing

(8,— 6)* in the expression for MSE( § )5 6)) by oy, the
variance of the (population) rates 6, d =1, ..., D, in

agreement with the standard empirical Bayes method.
See Longford (2007) for details.

Thus, for a range of positive coefficients ¢, we set
the thresholds 7; = T'— 5, , where §; is the estimate
of the root-MSE of the estimator (6§, or ;) used in
place of @, Fig. 4 displays the results for
c €(—0.5, 1.0). The compromise shrinkage estimator
yields the superior allocation, with squared shortfall
1.264 for ¢ = 0.20. The minimum squared shortfalls for
the direct and composite estimators are 1.310 and 1.267,
attained with the respective coefficients ¢ =0.05 and
¢ = 0.40. For the direct estimator, E(S) depends on
¢ very weakly. For the composite estimator, E(S)
decreases steeply for ¢ € (0,0.3). The compromise
estimator is superior to the direct throughout ¢ € (0, 1)
and is nearly constant for ¢ € (0.1, 0.3).

The sampling variation, indicated by the standard
deviations of the squared shortfall in the right-hand
panel of Fig. 4, decreases substantially with ¢ for the
composite estimator and depends on it very weakly for
the direct estimator. The sampling variation for the
compromise shrinkage estimator is smaller than for the
direct estimator for all values ¢ > 0. The sets of squared
shortfalls in the replications are highly correlated.

—— Composite
— — Compromise (0.5)

* Direct

Expected loss

Threshold adjustment factor

In summary, setting the thresholds flexibly can
reduce E(S), but only by as much as reducing the
threshold uniformly. These two ways of altering the
threshold could be combined, by setting 7' L= T’ — ¢y,
but we believe that such a setting would be unstable
and highly contingent on the values of €.

3.3 Altering the Focus of Shrinkage

The shrinkage estimator in (1) can be interpreted
as pulling the direct estimator toward @ as a particular
focus. Altering this focus, and setting it to a constant
of our choice, defines another continuum of estimators.
This has an interpretation similar to altering the
threshold, but doing so flexibly, taking into account the
sampling variation of the direct estimator in a different
way than in the previous section, namely, as a nonlinear
function of 1 + n,@.

The results for these estimators are summarised by
Fig. 5 drawn using the same layout as Fig. 4. A
surprising outcome is that the optimal focus is greater
than the threshold of 12% for all three estimators. The
smallest E(S), equal to 1.2526, is attained for the
shrinkage exponent ¢ = 0.75. For ¢ = 0.5, E(S) depends
on the focus of shrinkage 7" very weakly, and is smaller
than for ¢ = 1.0 throughout the range 7’ €(0.09, 0.16).
In contrast, E(S) for ¢ = 1.0 depends on 77 much more;
it attains its minimum of 1.2585 at around 13%. Note

that for small ¢ the values b, are small, and so the
shrinkage does not have a strong impact even when the
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Fig. 4. The expected squared shortfall E{S(7” )} and the standard deviation /var {S(T)} - as functions of the threshold adjustment c.
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focus is far away from . In the limit, as q — 0, the
focus is irrelevant for the direct estimator.

The right-hand panel of Fig. 5 summarises the
uncertainty associated with a particular realisation of
the survey. It gives further support for the choice of a
focus in excess of the threshold 12%, and therefore way
beyond the focus of the composite estimator (8, a
random variable with expectation 9.3% and standard
deviation 0.3%).

4. SAMPLING DESIGN

The analysis in the previous section is concerned
principally with effective allocation of funds, as
assessed by E(S). Estimation is secondary, and emphasis
on its efficiency (small eMSE) would detract from this
task. In this section, we assume that a single budget is
available for the survey and allocation of funds, and
seek the optimal sample size for the survey. A survey
with a smaller sample size is cheaper and leaves more
funds for allocation, but the squared shortfall is likely
to be large because of estimation errors. With a larger
sample size the estimation errors are reduced but fewer
funds are available for allocation; shortfall is likely to
be smaller, although if too much is spent on the survey,
shortfall may arise due to insufficient funds for
allocation. In brief, the expected (squared) shortfall is
a U-shaped function of the survey costs.

Expected loss (E + 12)

Focus shrinkage

If we are committed to the class of stratified
sampling designs with simple random sampling within
districts, with subsample sizes proportional to the
district sizes, only one degree of freedom can be
manipulated in the design — the overall sample size.
We may search for the smallest sample size n for which
a pre-set squared shortfall S is not exceeded, or seek
the sample size for which S is minimised. Table 1 gives
the minimum squared shortfall and the corresponding
optimal focus for several shrinkage estimators and a
range of sample sizes. For comparison, E(S) with the
direct estimator is added in the right-most column. The
sample size for a set value of S: can reliably be
approximated by linear interpolation.

The table shows that the minima for each sample
size depend on the shrinkage exponent only slightly, but
are attained with very different foci. It may seem
counterintuitive that the optimal focus with g =0.5
increases with sample size so radically. However, for
large sample sizes the shrinkage coefficients b; are
smaller, so the amount of shrinkage, although much
greater than if the focus were set to the national rate
@, or to the threshold 7, remains moderate even for the
least populous districts. In fact, the dependence of E(S)
on the focus is very weak for ¢ =0.5. We emphasise that
the shrinkage estimators with focus set to 6 lead to
much less efficient allocation. For example, for sample

— Shrinkage exponent 1

- —075

Standard deviation of loss (E + 12)
0.26
I

I I I
0.12 0.14 0.16

Focus shrinkage

Fig. 5. The expectation and standard deviation of the squared shortfall as functions of the focus of shrinkage.
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Table 1. The minimum expected squared shortfall for several sample sizes and shrinkage exponents. The columns headed
‘Shortfall’ give the minimum E(S) with the corresponding standard deviations in parentheses underneath.

Shrinkage exponent
q=0.75 q=0.50 g=0

Sample Optimal Optimal Optimal Direct
size Shortfall focus Shortfall focus Shortfall focus estimation

9000 1.2584 1.2526 1.2546 13112
(0.2525) 0.125 (0.2642) 0.130 (0.2699) 0.145 (0.2917)

12000 1.1305 1.1280 1.1156 1.1670
(0.2392) 0.125 (0.2380) 0.130 (0.2408) 0.155 (0.2585)

15000 1.0306 1.0317 1.0189 1.0602
(0.2160) 0.125 (0.2172) 0.130 (0.2191) 0.150 (0.2311)

20000 0.9156 0.9127 0.9111 0.9369
(0.1863) 0.120 (0.1895) 0.130 (0.1901) 0.160 (0.2011)

25000 0.8313 0.8263 0.8243 0.8509
(0.1650) 0.115 (0.1674) 0.135 (0.1679) 0.160 (0.1776)

40000 0.6931 0.6918 0.6899 0.7013
(0.1247) 0.110 (0.1235) 0.140 (0.1248) 0.180 (0.1315)

size 25000, E(S) with the composite estimator (g = 1)
is 0.8792, with standard deviation 0.1885, greater by
0.048 (5.5%) than with the optimal focus 77 = 11.5%.
With a smaller exponent (¢ = 0.5), we gain both
stability and a lower minimum.

If the funds for allocation and for the conduct of
the study originate from the same source the problem
of how to split the funds for the two activities has to
be addressed. Suppose an increase of the sample size
by 1000 is associated with the additional outlay of
50000 units. So, after a survey with sample size of
15000, the funds for allocation would be reduced to 3.7
million, and with 25000 to 3.2 million.

Table 2 displays the minimum squared shortfalls
for the same sample sizes as in Table 1. The row for
n =9000 is copied to make the comparisons easier.

The table indicates that the optimal sample size is
somewhere in the range 20000 — 25000. For example,
for ¢ = 0.5, the optimal sample size is close to 21000
(E(S) equal to 1.0707). The exact determination is not
useful, because the minimum squared shortfall is a flat
function of the sample size in this range, and the
optimum is bound to depend also on the values of 6,
on which our analysis is conditioned. The allocation
based on direct estimation is consistently less optimal
than the allocations based on shrinkage estimators with

a selected focus, although the differences decrease with
sample size. For shrinkage estimators, the dependence
of E(S) on the focus becomes weaker with the sample
size, and for n = 40000 the difference between the
optimal focus and focus @ is of the order O(0.01).

4.1 Sensitivity Analysis

While illustrating that efficient estimation of &is
not in accord with effective allocation of funds is
relatively easy, finding an (almost) optimal allocation
is much harder because we have to rely almost
exclusively on a search based on simulations. We have
to respond to the concern that relatively small changes
in the settings of the simulations may result in
substantial changes in the relative sizes of E(S). In
particular, we have to explore the results for different
vectors of rates 6. The smallest E(S) is bound to depend
on @ a great deal, but it suffices if there is a setting
(exponent ¢ and focus &) for which E(S) is close to its
minimum for all plausible values of @ (distributions of
the district-level rates).

One set of simulations, with 5000 replications,
takes about 60 seconds of CPU time, so extensive
exploration of scenarios is feasible, even though the
results are difficult to summarise in a compact
fashion.We have found that the empirical Bayes
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Table 2. The minimum expected squared shortfall for several sample sizes and shrinkage exponents, with the funds for
allocation adjusted for survey costs (50000 units for each 1000 subjects above the sample size 9000).

Shrinkage exponent

g=1 q=075 q=0.50 g=0

Sample size Optimal Optimal Optimal Direct
(Total alloc.) Shortfall focus Shortfall focus Shortfall focus estimation

9000 1.2584 1.2526 1.2546 13112
(4.00 x 10'2) (0.2525) 0.125 (0.2642) 0.130 (0.2699) 0.145 0.2917)

12000 1.1692 1.1679 1.1558 1.2046
(3.85 x 10'2) (0.2378) 0.125 (0.2370) 0.130 (0.2405) 0.150 (0.2553)

15000 1.1133 1.1155 1.1036 1.1467
(3.70 x 10'2) (0.2143) 0.125 (0.2160) 0.125 (0.2182) 0.155 (0.2330)

20000 1.0767 1.0822 1.0710 1.1039
(3.45 x 10'?) (0.1870) 0.110 (0.1871) 0.125 (0.1892) 0.160 (0.1990)

25000 1.0880 1.0938 1.0835 1.1087
(3.20 x 10'?) (0.1648) 0.105 (0.1655) 0.125 (0.1721) 0.160 (0.1717)

40000 12927 1.2958 1.2883 1.3047
(2.45 x 10'?) (0.1221) 0.105 (0.1203) 0.145 (0.1222) 0.180 (0.1272)

shrinkage is not optimal in any setting, and the
shrinkage exponent should be set between 0.5 and 0.75.
The threshold 7 is always a better focus of shrinkage
than the national rate 6 (or 6, the average of the
district-level rates).

5. DISCUSSION

We have presented a simulation-based method for
improving the naive allocation of a fixed amount of
funding to the districts of a country, according to a
policy described by an allocation formula. We assumed
a threshold for making grants that is attained by a
minority of the districts. In the first step, we reduced
the threshold for making awards. In the second, we set
district-specific thresholds. In a transparent system, the
first step would attract little controversy, but the second
may appear as objectionable to districts for which more
relevant information is available. This can be
interpreted as a conflict between the appearance of
fairness and effectiveness of the allocation procedure.
However, interpreting district-specific thresholds as
unfair to some districts would be appropriate only if the

district-level quantities & were determined with
precision.

By way of an illustration, consider one district with
little information (large MSE of éd) and one with a
lot of information. Suppose their values of 6, coincide
and are smaller than the threshold. The ‘small’ district
will have greater probabilities P( éd > T) and
P( éd > T), and so its expected award will be greater
than for the ‘large’ district. Although the rare awards
to the large district (in replications) will tend to be
greater, the two factors are unlikely to cancel out.

An element of unfairness and inefficiency of the
allocation scheme with district-specific thresholds is
due to biased estimation of MSE( éd ; 8, arising from
the use of eMSE instead of MSE (Longford 2005b,
Chapter 8; Longford 2007). In any case, the
improvement made in the second step over the first is
small and it may be expedient to forego it.

The conclusions of our study imply that the
established organisation of statistical work by one party
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(the statistical office) producing estimates of relevant
quantities, with indication of their precision, and
another applying their algorithm for decision making,
is ineffective when the latter algorithm uses nonlinear
transformations of the estimates. The source of the
problem is the fragile nature of statistical efficiency in
sub-asymptotic samples: if an estimator f is efficient
for & a nonlinear transformation g(£) need not be
efficient for g(& ). Reporting estimated standard errors
or other measures of uncertainty about the estimated
parameters is not satisfactory unless the uncertainty can
be incorporated in the client’s algorithm. In brief, the
combination of the two stages, estimation of & and
allocation based on @, is not optimal when the two
stages are optimal, but are performed separately, the
second treating @ as if it were 6; the two stages have
to be integrated.

The EM algorithm (Dempster et al. 1977), applied
with @ regarded as the missing information, provides
an example of such an integration in the context of
estimation. It is not applicable in the allocation problem
directly because of the discontinuities involved, because
there is no short list of (linear) sufficient statistics for
the second stage, and a criterion other than maximum
likelihood is used. However, the theory of the EM
algorithm provides an explanation for the ‘paradoxes’
observed.

Finding analytical support for the empirical
conclusions of this paper is an outstanding challenge.
A simpler problem, of deciding between two groups as
to which one has a greater expectation, when losses
(negative utilities) associated with the two kinds of bad
decisions are specified, is solved in Longford (2012).
The problem addressed in this paper is much more
complex, because it involves several groups (districts)
and their utilities are linked by the limited budget.

ACKNOWLEDGEMENTS

Part of the research for this paper was conducted during
the author’s visiting appointment in the Department of
Economics and Business, University Pompeu Fabra,
Barcelona, Spain. Support by the Grants SAB2004—0190 and
SEJ2006-13537, is acknowledged.

REFERENCES

Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977).
Maximum likelihood for incomplete data via the EM
algorithm. J. Roy. Statist. Soc., Ser. B39, 1-38.

Efron, B. and Morris, C.N. (1972). Limiting the risk of Bayes
and empirical Bayes estimators —Part II. The empirical
Bayes case. J. Amer. Statist. Assoc., 67, 130—139.

Fay, R.E. and Herriot, R.A. (1979). Estimates of income for
small places: An application of James—Stein procedures
to census data. J. Amer. Statist. Assoc., 74, 269-277.

Ghosh, M. and Rao, J.N.K. (1994). Small area estimation:
An appraisal. Stat. Sci., 9, 55-93.

Goldstein, H. (2002). Multilevel Statistical Models. 3" ed.
Edward Arnold, London.

James, W. and Stein, C. (1961). Estimation with quadratic
loss. In : J. Neyman (ed.), Proceedings of the Fourth
Berkeley Symposium on Mathematical Statistics and
Probability, 1, pp. 361-379. University of California
Press, Berkeley, CA.

Longford, N.T. (1993). Random Coefficient Models. Oxford
University Press, Oxford, UK.

Longford, N.T. (1999). Multivariate shrinkage estimation of
small-area means and proportions. J. Roy. Statist. Soc.,
Ser. A162, 227-245.

Longford, N.T. (2004). Missing data and small-area
estimation in the UK Labour Force Survey. J. Roy.
Statist. Soc., Ser. A167, 341-373.

Longford, N.T. (2005a). On selection and composition in
small area and mapping problems. Statist. Methods
Medical Res., 14, 1-14.

Longford, N.T. (2005b). Missing Data and Small-Area
Estimation. Modern Analytical Equipment for the Survey
Statistician. Springer-Verlag, New York.

Longford, N.T. (2007). On standard errors of model-based
small-area estimators. Survey Methodology, 33, 69-79.

Longford, N.T. (2012). Comparing normal random samples,
with uncertainty about the priors and utilities.
Scandinavian J. Stat., 39; to appear (DOI: 10.1111/
j-1467-9469.2011.00743 ).

Platek, R., Rao, J N.K., Sarndal, C.E., Singh, M.P. (1987).
Small Area Statistics. An International Symposium.
Wiley and Sons, New York.

Rao, J.N.K. (2003). Small Area Estimation. Wiley and Sons,
New York.

Robbins, H.E. (1955). An empirical Bayes approach to
statistics. In : J. Neyman (ed.), Proceedings of the Third
Berkeley Symposium on Mathematical Statistics and
Probability 1, pp. 157-163. University of California
Press, Berkeley, CA.

Shen, W., and Louis, T.A. (1998). Triple-goal estimates in
two-stage hierarchical models. J. Roy. Statist. Soc., Ser.
B60, 455-471.



