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SUMMARY

Users of small area estimates (SAEs) produced by national statistical offices often require that published SAEs are coherent
with survey estimates or benchmark totals published at national or state levels. In some countries, this requirement is mandated
by legislation. Ensuring the coherence of SAEs with published statistics not only helps reassure users about the quality of the
SAEs, it can also help correct for model misspecification bias. In previous small area applications carried out at the Australian
Bureau of Statistics (ABS), coherence with broader level published estimates was achieved after the small area estimation
process by using a technique such as iterative proportional fitting. However, the disadvantages of this approach were firstly,
the lack of integration with the small area estimation process itself, and secondly, the fact that the mean square error estimates
did not take proper account of the constraints imposed.

In this paper we use the Lagrange mulitplier method to adapt the penalised quasi likelihood (PQL) approach applied to
random effects logistic models, to take account of the additivity contraints placed on SAEs. We trial four levels of survey
estimates as benchmark constraints to examine the impact on estimates and relative root MSEs (RRMSEs). We find that survey
benchmark estimates with low levels of sampling error have a very small impact on estimates and RRMSEs, whereas finer
level benchmarks with high sampling error, result in increased and highly volatile estimates of RRMSEs.

Keywords : Small area estimation, Logistic binomial, Random effects, Benchmarks, Constrained regression, Lagrange multipliers.

1. INTRODUCTION is considerable research work going into developing
methodologies for producing benchmarked SAEs for
more conventional SAE models. You ef al. (2002) and
Datta et al. (2010) looked at the problem of
benchmarking SAEs in the context of Bayesian model
estimation. Ugarte et al. (2008) derive a small area
estimator with restrictions applied, for the linear
random effects model. In the terminology of Datta
et al. (2010), benchmarking may be internal or external.
Internal benchmarks are usually the regional estimates
from the survey used to fit the small area model.
External benchmarks are totals obtained from some
administrative data source not used as auxiliary

Consistency and coherence are two important
statistical quality dimensions covered in the “7
Dimensions of Quality”. Users of small area data based
on official statistics expect that the small area estimates
provided to them are both consistent and coherent (ABS
2009), with respect to the small area data package and
other published official statistics. Small area estimates
that are not coherent with the published survey
estimates on which they are based, will struggle to gain
credibility with users. Pfeffermann and Barnard (1991)
developed a methodology for benchmarking SAEs in
the context of a multilevel linear model. Currently there
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information in the small area modelling process. In this
paper we will be focusing on an application involving
internal benchmarking, although the methodology can
be readily applied to external benchmarking.

The ABS has investigated the feasibility of
producing SAEs for all three labour force statuses
(employed, unemployed and not in the labour force)
using logistic random effects models. The purpose of
this paper is to derive an adapted maximum penalized
quasi-likelihood (MPQL) approach for estimating a
GLMM with additivity constraints on the SAEs
predicted from the model.

2. THE CONSTRAINT

Before we discuss the constraints in detail, we
briefly present the model under consideration. Let y be
a C x 1 vector of counts of a random variable ¥ with
distribution Binomial (n; p), where C is the total
number of binomial classes, n is the corresponding
vector of sample sizes for each binomial class and p
are the corresponding binomial probabilities. Given X,
a C X P matrix of covariates, Z, a known C X D design
matrix (where D is the number of small areas) and
u ~ N (0, Q = Diagonal (¢)), a D x 1 vector of small
area level effects, then the population model is given
by

logit (p) = XB + Zu @2.1)

Let 6 be a D x 1 vector of the estimates for all D
small areas (including those out-of-sample) predicted
from the small area model and let E be an R x 1 vector
of known direct survey estimates at some benchmark
level. In our case, benchmark levels may be either
Australia, State/Territory, State/Territory by Capital
City/Non-Capital City (e.g. Sydney and New South
Wales without Sydney) and labour force dissemination
region. It is assumed that each small area, the statistical
local area (SLA), belongs to one and only one
benchmark level region. Then the constraint equation
that forces SAEs  to add to the corresponding
dissemination region estimates can be expressed as:

ab = E 2.2)
where o is known R X D matrix, consisting of 1s and

0s, that effectively sums the model predicted estimates
for small areas up to their respective benchmark region.

In the Australian context, there are around 70
dissemination regions. In an hypothetical case of 9
small areas within 3 dissemination regions, o. might
look like:

1110000 00
a=(0 0 01 1 1 O 00
0 00 O0O0O01 11

Note that as we list out-of-sample areas after the
in-sample areas, out-of-sample areas appear in the right
hand sub-matrix of o.. So in the example above, the first
two dissemination regions have no out-of-sample areas
while the third dissemination region has one in-sample
small area and two out-of-sample areas.

Now using the nomenclature of Saei and
Chambers (2003), we can express the small area

estimator O as

0 =a@y,*¥) (2.3)

where

a: is a known D x C matrix (with C = de:l C, and
C, the number of binomial classes in small area d) of
ones and zeros with ones in the d’th row corresponding
to the binomial classes belonging to the d’th small area,

Y+ is a C-vector of observed sample response variable
counts (with zeros for un-sampled binomial classes
within in-sample areas and those within out-of-sample
areas), y, = [(Ny, —ng) pgyl.d=1,....,C,i=1,...,
C, is a C-vector of model predictions for the sample
complement in the ith age/sex cell within the dth small
area, and

b, = eXP(Xdiﬁ+ﬁd)
< 1+exp(xdiﬁ+ﬁd)

foralld=1,...,D,i=1,..., C; and where x is the
(1 X P) row vector of covariate values and ﬁ is a
(P % 1) column vector of model parameter estimates.
Note that the above formula is calculated for all small
areas d, including out-of-sample areas, for which the
random effects u,, are assigned the value zero.

2.4)

In matrix notation, y, = (N — n) #p where #
designates element-wise vector multiplication and

b= exp (Xﬁ + Zﬁ)

- 2.5)
1+exp(XB + Zi)
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where X is the matrix of population covariates
consisting of rows x,,, d=1,...,D,i=1,..., C;and
Z is the design matrix defining which binomial classes
belong to which small areas.

The constraint (2.2) can be re-expressed in the
form:

Ay, =K (2.6)
where
A=o0a
K=E —Ay,, (2.7)

Note that the matrix A is a matrix of ones and zeros
designating membership of small area by age by sex
cells to dissemination regions (benchmark regions). A
has dimensions (R X D) (D X C)=(R x C) and K is an
(R x 1) column vector.

3. MPQL SUBJECT TO AN ADDITIVITY
CONSTRAINT

The objective is to reformulate the GLMM model
(2.1), subject to the constraint equation (2.6). Note that
from the previous section, the constraint K from
equation (2.7) depends on E , the vector of direct
survey estimates at the benchmark level. K is therefore
subject to sampling error, and this increases as you go
from the Australian level down to dissemination region
level. In fact, dissemination region estimates can have
sampling variances of over 25%. When benchmarking
small area estimates, practitioners commonly use
methods such as iterative proportional fitting. However,
the disadvantages of this approach are that firstly, it is
usually done after the small area estimation process and
is therefore not necessarily model consistant. Secondly,
it does not provide a way of estimating the relative root
MSEs for the SAEs.

To estimate the constrained GLMM, we need to
use the Langrange multiplier method, which involves
introducing an R X 1 vector A of constraint parameters
(Lagrange multipliers). Following Saei and Chambers
(2003) for the unconstrained problem, let f; (y, | u,) be
the probability density function of y, conditional on u;
and let £, (u,) be the probability density function of u,.

Then the extended loglikelihood, as defined by Pawitan
(2001), is given by:

I=1+15L+A" (Ay,— K) (3.1)
where

lI =In (fl (ys | “s))

L= —% (Const. +In1Ql+ul Qlu, ) (3.2)

T
Let £ = (B",ul, A7) bea (P +D,+R) %I

vector of parameters to be optimised, where u, is a
D, x 1 vector of random effects for only those areas
that are in-sample and D, is the number of in-sample
small areas, with D; < D. Also let

n =:)§EB + Z%S“S

= (Xss Zss 0C

ssXR

)G (3.3)

be a C X 1 vector, where C, = Zg‘leds and C, is
the number of age sex cells, i, in small area d that do

have sample, i.e. for which n; >0, and OCH < R 1S a zero

matrix of dimensions Cy X R. Also note that 1 is of
dimension C as the parameters  and u, need to be
estimated for the model fitted to the observed sample
data, i.e. not including age-sex cells with no sample that
fall within in-sample areas. The constraint space,
however, is spanned by all age-sex cells in all small
areas, regardless of whether they have sample or not
because predictions for all cells need to be accounted
for in ensuring coherence with the broad level
publication estimates we wish to constrain our small
area estimates to.

Using Newton’s method, the (k£ + 1)’th iteration
is given in terms of the previous iteration, &, by:

—1
0%l ol

¢ (k+1) — ¢ (k) _ = (3.4

BCBCT §=§(k) ac. é’:é’“‘)
where

X7 0 X' JATA

;)_1 = |zl %— Q'u, [+ ZTJ AT | (3.5)
S 1o ]M | o A§, -K
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and
) X! , 0 0 0
al—ZT( Oh ](XZ0)+OQ'10
otd T | #ss || — T sstss
S5y |\ omam 0 0 0
X'Fx X'Fz, X'JAT
AJX AstZs 0R><R

Proofs for equations (3.5) and (3.6) are shown in
Results (B.9) and (B.10), respectively, found in the
Appendix.

2

agac!
this formula, however it requires inverting a (P + D +
R)* matrix where P =36, D =420 and R <= 70. While
this is not too bad for estimation of SAEs, it would be
preferable to make this calculation more effcient for
parameteric bootstrap simulation of the MSE estimates.

The inverse of can be calculated using

0%
Let H=- = - Then
onan
0%l
agag’
X{‘s HXss _XTFX Xzs-x HZss _Z{‘Fx Zs _XTJ AT
= |Z'HX -Z'F X, Z'HZ +Q'-Z'F,z, -7'J AT
-AJX _AstZs 0R><R

We can readily see that the matrix expression for

2 T
B ) where

oot

takes the form A
B 0

T T T T
_ Xss HXss -X'FX Xss HZss - Xs Ev Zs
—1
Z?YHXSS - Z{FS'XY ZZ‘;‘HZSS +Q - Z{FYZY

and B=(-AJIX-AJZ).
Then

2 ) _(a B
o6oc” B 0

B [A—IBT
A 1-8" (BA'B) ' BA™) .
= (BA'BT) |
BA'B ' BA! -BA'B !

Now we only have to contend with finding A"

Let A= A 'AZTI .
A Ay

Using a well known partitioned matrix identity
given in Henderson and Searle (1981),

! (A7) A)
T -1 T 1
Al = (Ail‘AZ%AZZAM) ‘(”‘1‘11‘A211A22A2%) 1
(—AnAp) Ay + (A A (A Ar))
T -1 T 1
(A1 - A A Ay) (A - A A Ay

4. RESULTS

In the previous section we extended the
methodology involving the PQL algorithm with
maximum likelihood/REML, to estimate model
parameters and small area predictions subject to the
constraints that the sum of the small area estimates
within a given region, equal some known benchmark
value for that region.

In this section we present and discuss the results
from applying this methodology to small area labour
force estimates using internal benchmarking at four
levels:

o Australia,
e state,
o state by capital city / non-capital city, and

e labour force dissemination region.

The ‘state’ level refers to the eight states and
territories of Australia. For statistical output purposes
these are often split by capitial city / non-capital city,
also known as part-of-state (POS). Dissemination
regions are currently the finest output level from the
monthly Labour Force Survey. These are broad regions
with population sizes of around 250,000 to 300,000
persons that have been constructed to give satisfactory,
but not necessarily reliable, sampling errors. These
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dissemination regions do not necessarily reflect
homogeneous labour market regions.

Now, it goes without saying that these internal
benchmarks are themselves subject to sampling error,
which will be inversely proportional to the size of the
region. Thus, for example, the sampling error will be
condiderably larger for dissemination regions than it
will be for the national level. In this paper, we do not
take explicit account of the sampling error when
estimating the benchmarked model nor in MSE
estimation. However it can be argued that implicitly, the
additional statistical noise in the benchmarks will
increase model error and should therefore increase the
estimated MSEs. However this may not account for all
of the impact of the uncertainty in the benchmarks,
upon the SAEs and their estimated MSEs. This, we
hope, will be the subject of future work.

The benchmarked logistic random effects models
were fitted to labour force data to produce small area
predictions for the three labour force statuses. The
models for each status were benchmarked to each of
the four benchmark levels listed above. The main
objectives were firstly to, discover how SAEs produced
from the benchmarked models compare with the
equivalent unconstrained SAEs, and secondly to see
what the effect of different benchmarking levels has on
the SAEs and their estimated RRMSEs.

4.1 Benchmarked Small Area Estimates

To test whether the methodology is feasible and
coherent, we set the benchmark constraints to be the
sum of the unconstrained model SAEs at the given
benchmark level. For brevity, we will refer to these
benchmarks as the “pseudo unconstrained benchmarks”.
Heuristically, this is like setting a constraint on the
model that does not unduly shift model estimation away
from its natural, unconstrained course. It is in effect
akin to a non-constraint, constraint. If the method is
plausible, when comparing the SAEs under the pseudo
unconstrained benchmarks to the original unconstrained
SAEs, we would expect to observe the data points
sitting along a unit line.

Fig. 1 shows this plot for employment with pseudo
unconstrained benchmarks at the Australian level. It can
be easily seen that the regression line and the unit line
are very close.

. 07 08

0.6

EMP Benchmarked SAEs
0.5

0.4

04 05 06 07 0.8
EMP SAEs-Unconstrained

Fig. 1. Employment SAEs benchmarked to the sum of
unconstrained SAEs at Australian level

The plot for unemployment, Fig. 2, shows a small
amount of volatility but is still close to the unit line.

UNEMP Benchmarked SAEs
0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

T
0.05 0.10 0.15
UNEMP SAs-Unconstrained

Fig. 2. Unemployment SAEs benchmarked to the sum of
unconstrained SAEs at Australian level
Employment and unemployment SAEs constrained
to pseudo unconstrained benchmarks at the finest level,
dissemination regions, Figs. 3 and 4, show a slight
amount of noise but essentially follow the unit line.

o

#

0.8

0.7

EMP Benchmarked SAEs
05 0.6

0.4

0.4 05 06 07 08
EMP SAEs-Unconstrained

Fig. 3. Employment SAEs benchmarked to the sum of
unconstrained SAEs at REGNDISM level
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Fig. 4. Unemployment SAEs benchmarked to the sum of
unconstrained SAEs at REGNDISM level

We now turn to a comparison between
benchmarked SAEs and unconstrained SAEs. Fig. 5
shows when benchmarked at the Australian level, the
benchmarked SAEs are slightly lower than their
unconstrained SAE counterparts. The regression line
(light line) through the scatter plot is highly parallel to
the unit line (dark), indicating that the relative bias is
constant irrespective of the size of the estimate. A
separate simulation study has shown that the
unconstrained SAEs are likely to be biased due to not
taking full account of the survey design when
estimating the small area model, and that this bias was
larger than that due to model misspecification. It
appears that the benchmarking has, at least to some
extent, corrected for this bias.

0.7

EMP Benchmarked SAEs
0.5 0.6

0.4

0.4 05 0.6 0.7 08
EMP SAEs-Unconstrained

Fig. 5. Employment: Benchmarked SAEs compared to

unconstrained SAEs at the Australian level

When it comes to benchmarking to the state level
(Fig. 6), the regression line (slope = 0.99988) and the
unit line are again highly parallel with a vey small bias

(intercept of regression line = —0.0052). While most
points fall close to the regression and unit lines, there
are a few points that sit in a line below these lines. All
these estimates are for small areas in the Australian
Capital Territory (ACT) and Northern Territory (NT).
Earlier investigations into our small area model for
labour force showed that the most influential points
occured in binomial classes in these territories. The

0.7

EMP Benchmarked SAEs
0.6

0.4

0.4 0.5 0.6 0.7 0.8
EMP SAEs-Unconstrained

Fig. 6. Employment: Benchmarked SAEs compared to
unconstrained SAEs at the State level

benchmarking estimation process is reducing the
estimates for these areas to a considerably larger extent
than all other areas.

Benchmarking at the state by capital city/non-
capital city (aka part of state (POS)) introduces more
benchmark sampling error into the benchmarked
estimates. The satay stick appearance of Fig. 7 is due
to this increased volatility.

0.7 038

EMP Benchmarked SAEs

0.4 0.5 0.6 0.7 0.8
EMP SAEs-Unconstrained

Fig. 7. Employment: Benchmarked SAEs compared to
unconstrained SAEs at the State by POS level
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And even more so when the benchmarking is done
at the dissemination region level as shown in Fig. 8.

06 07 08 09

EMP Benchmarked SAES
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0.4

0.4 0.5 0.6 0.7 0.8
EMP SAEs-Unconstrained

Fig. 8. Employment: Benchmarked SAEs compared to
unconstrained SAEs at Dissemination

4.2 Relative Root Mean Squared Errors

In terms of the accuracy of the benchmarked
SAEs, there are three estimates of relative root MSE
(RRMSE) that can be compared. These are the:

o RRMSES of the original unconstrained SAEs
o naive RRMSEs for the benchmarked SAEs
e bootstrap RRMSEs for the benchmarked SAEs

The naive RRMSEs for the benchmarked SAEs
are obtained simply by plugging the estimated values

for the parameters §,d and ¢ obtained from the

benchmarked model, into the usual analytic formula for
MSE estmation as per the unconstrained model
estimation. We would expect the naive RRMSEs to be
biased downwards as they do not include the additional
(negative) correlation between SAEs, arising from the
enforced additivity to benchmarks. Looking at it another
way, the constraints will pull the regression away from
its natural unconstrained fit, resulting in larger
residuals.

The bootstrap RRMSEs on the other hand should
be an unbiased estimate of the true RRMSEs. They
were calculated using a similar approach to that of
Scealy (2010) and Molina (2007), which starts with the
estimated logistic binomial random intercept model
fitted to the labour force data. This model is assumed
to be the working model from which bootstrap estimates
will be generated. Assign the estimated parameters from

this model as follows: f = B, f= (1’3 The bootstrap
algorithm proceeds as follows:

1. randomly generate random effects ul-(b) i=1,...,
D from the normal distribution N(0; ¢@). (note that
this includes random effects for the out-of-sample
areas)

(b)

2. conditional on u;"’", calculate the binomial

exp(X; S + u-(b))
1+exp(X; 8+ u(b)

proportions pi(jb ) =

3. conditional on pi(jb)’ generate the sample data
yl(s)(b) from the
Bin(n,

binomial distribution

i Dij )) for all areas i

4. also generate the non-sample data y(s )®) from the
binomial distribution Bin(N;— n, (b)) again for

all areasi=1,..., D.

lJ’ pl]

5. calculate the population totals for area i as 1;“’)

- leoz 1YiJ('b) where ;;.j(,b> - ylgj;)(b) + yi(f)(b)
6. re-estimate the model parameters by fitting the
logistic random effects model to the current
sample data {yl.(j‘“)(b)} =4 yl.(js)(b) :n; > 0}. Refer
36 )

to these estimated parameters as [ and

¢ Note that 2 will contain zero values for
out-of-sample areas.

7. calculate the binomial proportion estimates
(b
) PGB i)
Pij
v 1+ exp(X; ﬂ(b) +u(b))

8. estimate the small area estimates

O = 3 (8 + =)

j=1
9. calculate the bootstrap estimate of MSE for the
small area estimate y; as

B
MSE® (3;) =%Z G -y (4.1

Calculating the bootstrap RRMSEs is
computationally highly intensive, taking up to eight
days. For this reason they were only calculated for
unemployment. While the intention was to run 4,000
bootstrap iterations, unfortunate server crashes and
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reboots, meant the realised number of iterations ranged
from 2,000 to 4,000 iterations.

Fig. 9 shows the relationship between the bootstrap
RRMSEs for unemployment SAEs constrained at the
Australian level and the analytic RRMSEs for the
unconstrained SAEs. The plot shows that there is pretty
much a one to one correspondence between these two
sets of RRMSE estimates.

04 05 06

0.3

Bootstrap Constrained RRMEs

0.2

0.2 0.3 0.4 0.5 0.6
Unconstrained RRMSEs

Fig. 9. Unemployment: Bootstrap constrained versus
unconstrained RRMSEs at the Australian level

The bootstrap RRMSEs also compared very
favourably with the naive RRMSEs for SAEs
benchmarked at the Australian level (see Fig. 10). In
other words, when benchmarking at a level with low
sampling error, the naive RRMSEs are a reliable
approximation to the bootstrap RRMSEs.

05 06

Bootstrap Constrained RRMSEs
0.4

0.2 0.3 0.4 0.5 0.6
Naive Constrained RRMSEs

Fig. 10. Unemployment: Bootstrap versus naive constrained
RRMSEs at the Australian

At the other extreme, Fig. 11 shows that when the
benchmarking occurs at the finest dissemination region
level the bootstrap RRMSEs are considerably higher

than the RRMSEs for the unconstrained SAEs. The
more volatile dissemination region estimates perturb the
model estimation resulting in RRMSEs that are about
30% higher. The high volatilty points in Fig. 11 are
probably due to a lack of convergence in the MPQL
estimation. A limit of 180 iterations was set, however
for around 7% of bootstrap samples, model estimation
was terminated at this limit. Hence the estimates used
had not fully converged. Another possible cause related
to this is that benchmark constraints at the
dissemination region level can induce ripples into the
constrained loglikelihood surface, thereby leading to
possibly numerous local optima. A grid search using a
number of initial values should overcome this problem,
but at the expense of computational speed.

Bootstrap Constrained RRMSEs
3

0.2 0.3 0.4 0.5 0.6
Unconstrained RRMSEs

Fig. 11. Unemployment: Bootstrap constrained versus
unconstrained RRMSEs at the dissemination region level

Fig. 12 confirms that the RRMSEs calculated
using the naive approach are not sufficiently reliable.

Bootstrap Constrained RRMSEs

Naive Constrained RRMSEs

Fig. 12. Unemployment: Bootstrap versus naive constrained
RRMSEs at the dissemination region level
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A. ADDITIONAL NOTATION Lemma B.1 :
J.=(No—=n)0.(1=p,
ai= Ny i) Pai (1 = Dgi) dp i _ xfjf’) pall pa)
K5 = (N = ng) Pai (1 —pg) (1 = 2py) dp,
J = Diagonal [J,],d=1,...D;i=1,.., C, where x[(lf’) is the element of X located in the row
J, = Diagonal [J;], d = 1,... Dy i =1,.., Cy indexed by di and column p.
. Proof. From equation (2.4)
Jo=[Jul:d=1,...D;i=1,..,C,
dpdi _ d eXp(xdiﬁ+ Md )
Ja= ao s Juc) dB, dp,|1+exp(x;f+uy)
IC = Diagonal [C,;];d=1,...D;i=1,..,Cy
IC. = Di 1[K,].:d=1 D;i=1 C = Xfif)exp(xdiﬁ+ud)
s = Diagonal [C,]:d=1,...Dgi=1,.,C, 1+ exp(x B+ uy)
Z (P) exp(x; B+
Zso = 0 ’ - eXp(xd[IB + ud) Xdl p(xahﬁ il )2
(C-C)xD, (1+exp(xy B +uy))
= 5 pa(1 = pa)
J = I Oc, xc-c) Lemma B.2 :
SO
(C-CIxCy O(C—CS)X(C—CS) d )
W(pdi(l = Pai)) = X5 Pai(l— pgi)(1=2py)
F = Diagonal [ATA]KC P
F, = Diagonal [ AsT MK, Proof. By applying the product rule for differentiation
and using Lemma B.1 we obtain
B. APPENDIX

Definition B.1. Lety = (3}, »,, ..., yn)T be an X 1 vector
with each element y, a function of a p x 1 vector
B=0B, B ﬁp)T . Then the partial derivative of y with
respect to [ is defined as:

B B
a_yz : .. :
d
P M O
B, B,
and
B 9B,
o oS
P Do O P
p, B,

d dpy; dpg;
—— (pgi(1=pg)) = —= A= pgi) = pgi —5-
dﬁp ! dﬁp dﬁp

xt(if)pdi(l —pa) (1 =2p,)

Lemma B.3 :

dpgi _

dud’

0 if d#d
Proof. In the case of d = d’, from equation (2.4)

dpgi _ d exp(xy; 8+ ug)
duy duy | 1+ exp(xy;B+uy)
_exp(xyBtu,)
1+exp(xy; B +uy)
exp(x; B+u,)

_ B+
exp(xy + ug) s oxpCe Bt )

=pal = Pa)

dpgi _ 0.
I/ld’

Clearly, in the case of d # d’ then
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Lemma B4 :
d
— (1 = pa))
dusd'
_ pai(l=pg) (1=2py) if d=d’
0 if d#d”

Proof. Applying the product rule for differentiation to
Lemma B.3 in the case where d = &, we obtain:

dp,; dpyi

(1=p.))= L (1= p.)— p,. —di

dusd/ ( pd;)) dusd/ ( pdl) pdl dusd/
=Pal =pa) (1 = 2pg)
Clearly, in the case of d # d“then % =0.

Uy

Lemma B.S : Let X be an # X m matrix of constants.
Let Y be an n X n diagonal matrix of elements y,, k =
I, ...nwithy =y ..., yn)T being the vector formed
from the diagonal elements of Y. Also assume that the
¥y are functions of a p x 1 vector B = (B, S ...,,Bp)T .
Let b be an #» X 1 vector of constants and let B =
Diagonal [b] be the diagonal matrix formed from the
elements of b. Then the partial derivative of the
m-vector X’Yb with respect to P is

—(XT Yb) = %Y Bx
BB

B
Proof. It can easily be shown that:
x e x
11 M1 n |y 0\ b
x e x
X7yp = | 12 xgz ‘ n2
0 Yn \bu
Mm 2m " Xam
A/ ) B |
" (A
_ M2 22 v a2 )
by Y
Mm X2m " Xam
n
Zkzlxklbkyk
n
Zkzlkabkyk

The partial derivative of X’ Yb with respect to B
is therefore:

) )
e 1Xk1”k D W
) 9B 9B
—(X Yb) =
* ) d
n Vi n Vi
b, —* b, —*
Zk:lxkl k 3 Zk:lka k aﬂp
h% e b A
I, " 9p
= : : X
) )
By O
B, 9B,
B b
8ﬁp 8ﬁp
b 0 0 0
b, 0 0
: . X
0 0 bn—l 0
0 0 0 b,
dy
= 27 BX B.1
2B (B.1)

The left hand side of (B.1) must be of dimension
p x m and the right hand side is of dimension (p X n)
(n X n) (n X m), which are conformable.

Result B.1
N, o
B =XJ
Proof.
ayrll ayrDCD
o b
8& — : - :
5 : . :
B ayrll ayrDC‘D
9Bp dBp
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Ny —ny N -n
(N = 11)aﬁ1 (Npc, = npc, ) — aﬂl
Ny - Ly )a =
11~ M DpC, ~'pc,
aﬁp 9Pp
which by Lemma B.1
0
(N — ”11)951(11) [(NDCD ~pc, )xDC
pud=ppp)] Ppc, A= ppc, )]
(P)
[(Nll - nll)xl(f) [(NDCD h nDCD ) DC,
pud=pipl FpCp(=ppc,)]
=X"J
Result B.2 :
oy T
aur = ZS()JS()
A
Proof.

AT Bnc, B Fwe,
ayr _ a"fsl a"fsl a"fxl . al’jsl
ou ' N N .

s 0,11 B 9,p, . e,
duyp, ougp, dugpy dup
For all i = 1,...,C,; within each small area
d=1,...,D, it can easily be shown from Lemma B.3
that:
By, Iy if d=d,
ou, 0 if d=#d

Now if every small area was in-sample then

D;= D and
J, 0
0 J
9y, |
ou, 0 O
0 O

otherwise, if D, < D, then

0 0
0 0
Jp 0
0o I,

J 0 - 0 0O 0 --- 0
0 J 0 0 0 0
a9y, : :
o g Jpi 0 0 0
0 0 0 Jp O 0
ZZzOJSU
Result B.3 :
X" JAT),
a—(?»T(A -K)) = | ZIJ AT
5 Ay, -K
Proof.
—ﬁofA 9.
2oar _ = | —=— T Ay
C(x (Ay, —-K)) = au( )
aof (A§, —K))
aiATx
B
= aiAT;L
ou
A§, -

Now using Results B.1 and B.2 this gives

ZTJAT)
= ZsTo JSO AT 7\'
A, —

r

However the second element of this vector can be
simplied a little further. Using the denitions of Zfo
so and J, introduced in Result B.2 (see also Appendix
A), we can show that

7'y Al = (Zf ODSx(c—CS))

50 Y so

J; O0c xc-c)

AT
0<c—cs>x(C—cs>J Ag

Oc-c)xc,
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T
= (Zst Osz(ccs))(As J

Ag
= Z;J AS
Therefore
X JAT),
d A
EO“T (A§, —K)) = | ATJATA
Ay, -K
Result B4 :

l%{XﬁA%)=X%X
ap

Proof. Using Lemma B.5 and noting that we are taking
the partial derivative with respect to /', not 3, we have

0 TyaT d TyAT
—XJAMN)=| =X JA'A
i ) (aﬂ< )j

[aaiﬁ Diagonal [AT?»] X ]]

= XTDiagonal [ATMaLT
o
Using Lemma B.2, we arrive at the following.
o _ : . :
- :
B | aspe, Ve,
B 9Bp
XK 31K
) (P)
xDCD ICDCD o xDCD ICDCD
=KX
Therefore

J TYATA — %7 D T
W(X JA'A) = X' Diagonal[A"A] KX

= X'FX

where F = Diagonal [A’A] K.
Result B.5 : Define F, = Diagonal [Af?»] K,
Then

d

Proof. To prove this result, we essentially use Lemma
B.5. First of all note that we are taking the partial
derivative with respect to /', not . Secondly, note that
we make the following variable substitutions in order

touse Result B5: X = ZL .Y > J . b— AT

S0 ? S0

Then we can show that,

O (Tt aTaY [ O (Ty AT
A) =
e (zIy,AT0) (aﬁ(szsAsx)i

= [% Diagonal I:Af?»] Z, I

ol
0"

where J t is a vector of the diagonal elements of the
diagonal matrix J,.

= 7" Diagonal [Af?y]

aJ;; aJ;;
R

¢ o

k3 By

W - : :
Ap A p

B 3By
aJ D,Cy, aJ DG,
Sk B
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1 P
x1(1)’C11 x1(1 )’Cn
1) (P)
46l ¢ K
1
Ly 21 Kp,
1 P
x(D? C D, ICD: Cp XE)S é D, ICDs Cp
1
%)
)}
. Yiq,
K0 0| .
=10 0 .
0 0 K, 1)
> D1
1
XDSCDX
= KX,
where
Kai 0
o 0 ’<;12 0
Ka=] 0
0 0 O chd
Therefore
o(ZLy AT
LTS) = 7! Diagonal [Af?»] KX,
Jp
= ZSF‘SXY
Result B.6.
o)’
7 ’Csozso
ou;
Yo kg,
Ju

S

(P)

Proof.
LU TRRCTE
ausl ausDx
a
ou’ : :
duy; Ay,

From Lemma B.4

aJdl- _ {chi lf d :d/,

uy |0 if d=d
So
K, 0 e 0
K, 0 0
K, O 0
0 Ky 0
0 Ky - 0
0 K 0
I 0

9 |

wu o o 0
0 0 - Ko
0 0 Knc,
0 0 0
ZKSOZSD

From the derivation above, it can easily be seen
that for the case when J' is restricted to the space of
sampled small areas (including all age by sex cells
within these areas)

£
aJ

T
ou;

= ’CSZS
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Result B.7.

sTSsTs

aiT(XTJATx) = X'F.Z

Proof.

iT(xTJATx) = (i(XTJATx)j
Jdu,

U, s

= (ai Diagonal[AT?\,] X]
Ju,
o
ou’
= X’Diagonal [A"A] IC, Z,
=X'F,zZ

S07—s0

_ (~T T
- (Xv XO)
K Oc x(c-c) Z,
Oc_cyxc Oc-c)xc-c) \Zo
Z
T s
= (XSFS OPx(C—CS))(Zv]
0

— T
= X'F.Z,

= X'Diagonal [ATA]

Result B.S.

0

Jug
Proof.

oy 2T8) (0|
u

s S

= [ng Diagonal [ATA] Z, j

U

a &
= Z"'Diagonal [Af?»] J;
Jug
where J j is a vector of the diagonal elements of the
diagonal matrix J,. By Result B.6 this becomes:

= 7! Diagonal [Af?»] K.Z,

=Z'F 7,
Result B.9.
X7 0 X JAT A
o _|,r |94 -1 Ty AT
% 7! g+ Q7 |+ ZEy ATA | (B3)
0 0 Ay, -K

Proof. Differentiating (3.1) with respect to { we obtain:
al all alz a T A
— =—+—=+—(A (Ay, -K
ot "o o tag W (A% K0)

an all 812 a T A
=——+—=+—\A Ay, -K .
It follows from (3.3) that
XT
M|z, (B.5)
e
0R><Cm

Of the model parameters B, u, and A that we wish
to estimate, /, only involves the parameter u,. Therefore,

0P><1
9 _ —Q My, (B.6)
g

0R x1

The third term from (B.4) is as follows. Given that
A and K are constants with respect to the parameters
B, u, and A, using the chain rule for matrix calculus,
Result B.3 of the Appendix gives:

X JATA
g—c(ﬂf (A5, -K)) = | Z[J, AT (B.7)
Aj, -K
where

J = Diagonal [(N, —ng) pgi (1 —pa]
d=1,....D;i=1,....C,

J; = Diagonal [(N, —ng) pg (1 — pa)ls
d=1,....D,i=1,...,C,

and A is the submatrix of A obtained by taking the first
C,= 25‘:1 C, columns.

By putting equations (B.5), (B.6) and (B.7) into
equation (B.4) we arrive at the required result.
Result B.10.

) XTI ) 0 0 0
aaalT - |z, 888’1T<szss0>— 0 ol o
¢ag 0 non 0 0 0

x"rx x'Fz 6 x"iA"
| ZEX, ZIRZ, ZIA

AJX As Js Zs OR XR

(B.8)
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Proof. The second partial derivative of the
loglikelihood is given by:

2 2 2 2
o0 _ % oL 9 (A" (A, -K))
oo agaT  agagl  agag!

(B.9)

Now using the definition of the second partial
derivative with respect to a vector and the chain rule
for matrix differential calculus we have

h__ 9 (9

ocacl  ag | 9g

_ 9 (9mdh
ot | 9C on

_on’ 9 (an%J

acT an’ | 9 am
_9n_d (oo
d& on’ { 9€ on
XT XT
| 7T 9 || g7 %
ss T ss 0
0 on 0 n
XT
r | 9%
= Zss (Xss Zss 0) (BIO)
omon’
0 |omon
and
) 0 0 0 0
Th_ zaiT o, [=[0 - o] B.I1
acac  do | 0 0 0

given that Q' is symmetric.

Using Result (B.3) and Definition B.1, the third
term on the right hand side of (B.9) is

X" JATA

) d
(AT (A9, -K)) = = ZLJ, Al
Ay, -K

82
ococt

9 9 9
el STy S (KT aaTa)
9B au! A

- aZT(ZstAfx) aaT(ZstAfx) MBT(ZstAf%)

s

0 (a3-K) (A3, -K) 2 ag,-K)
op au! oA
(B.12)

Let J° be the column vector consisting of the
diagonal elements of J. Then, from Result B.4
% (X7JA™) = XTFX (B.13)

From Appendix B, we also have the following
results:

%(Z{JSASK) = Z'F,X,  (ResultB.5) (B.14)
%(XT j7z72) = X'E.Z,  (Result B.7) (B.15)
%(szSA{x) =7'F,Z, (Result B.8) (B.16)
%(A&r—K) = AJX (Result B.1) (B.17)
aiT(Ayr ~K)=AJZ  (Result B2) (B.I8)
%(XTJAT?») =X"JA" (B.19)
%(ZSTJsAfk) = Z[J Al (B.20)
%(Ay, _K) =0 (B21)

Therefore, putting equations (B.13) to (B.21) into
(B.12) we obtain:
X'FX X'Fz, X'JAT
AJX ASJSZS 0R XR

(B.22)

82
o oLt

which turns out to be a symmetric matrix.

Putting (B.10), (B.11) and (B.22) into (B.9), we
obtain the required result.



