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SUMMARY

In this paper we propose a semiparametric Fay and Herriot area level model based on P-splines, which can handle
situations where the functional form of the relationship between the variable of interest and the covariates is unknown. This
is often the case when the data are supposed to be affected by spatial proximity effects. In these cases P-spline bivariate
smoothing can easily introduce spatial effects in the area level model. By this spatial effect we can obtain estimates for out
of sample areas and also for those areas where auxiliary information is unavailable. We focus here on the small area mean
estimator and on an analytic and a bootstrap based mean squared error estimators. The proposed estimators of the small area
means and mean squared errors are contrasted to the traditional ones by means of two simulations studies. We finally present
results of the application of our semiparametric model to estimate the mean of the Acid Binding Capacity (ANC) and Calcium
(CA) concentration in streams for each 8-digit Hydrologic Unit Code (HUC) within the Mid-Atlantic region of the US. ANC
and CA concentration represent two of the key indicators to keep under control for environmental protection and preservation
of natural resources. These results present evidence that the proposed estimators can be used to obtain accurate estimates in

those areas where direct estimates are unreliable or even unavailable.

Keywords : Small area methods, Semiparametric models, Bootstrap methods, Environmental data.

1. INTRODUCTION

Traditional Fay-Herriot area level models (Fay and
Herriot 1979) are based on linear mixed models,
characterized by random area effects which allow for
between area heterogeneity apart from that explained
by the auxiliary variables (Rao 2003). These models
are based on the hypothesis of a linear relationship
between the variable of interest and the covariates, an
hypothesis that can represent a serious restriction in
many real data applications. Furthermore, traditional
linear mixed models do not handle spatial proximity
effects between the areas, an important feature in
environmental studies where detailed geo-referenced
information for the units of analysis is usually
available. Indeed, in recent years extensions to random
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effects models have been proposed to allow for
spatially correlated random area effects taking into
account the information provided by neighboring areas
(Petrucci and Salvati 2006; Pratesi and Salvati 2009),
but these models still rely on the linearity assumption.

Here we propose a semiparametric version of the
basic Fay-Herriot model that is based on P-splines, so
that we can also handle situations where the functional
form of the relationship between the variable of interest
and the covariates cannot be specified a priori. This is
often the case when the data are supposed to be
affected by spatial proximity effects. In these cases
P-spline bivariate smoothing can easily introduce
spatial effects in the area level model. Opsomer ef al.
(2008) proposed a similar small area model based on
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P-splines but under the assumption that all the data are
available at the unit level, and this can be a restriction
in some situations.

The model proposed here is applied to two case
studies with focus on the ecological conditions of the
waters in the Mid-Atlantic States of the US. Between
years 1993 and 1998 the Environmental Monitoring
and Assessment Program of the US Environmental
Protection Agency conducted two surveys of streams
to determine the ecological condition of these waters.
Our target on these data is to estimate the mean of the
Acid Binding Capacity (ANC) and Calcium (CA)
concentration for each 8-digit Hydrologic Unit Code
(HUC) within the region of interest. ANC and CA
concentration represent two of the key indicators to
keep under control for environmental protection and
preservation of natural resources.

In the problem of estimating the ANC and CA
concentration at Hidrologic Unit Code level the
auxiliary variables can be known only at area level,
making it necessary to specify area level models
(Stoddard et al. 2006; Jones et al. 1997). In this
situation the use of area level models also allows to
obtain the estimates of interest for out of sample areas.
Note in addition that area level specifications take into
account the sampling design as they model direct
estimates at area level.

Information like ANC and CA concentration are
usually computed for macro geographical units like the
Ecoregions (Stoddard ez al. 2006; Whittier e al. 2008):
the relevance would be higher if these values could be
known for the areas identified by the HUCs. The HUCs
identify parcels of lands drained by a given stream:
thus, HUCs represent a meaningful subdivision to
delineate areas of analysis in surveys on hydrological
features. However, 8-digit HUCs are unplanned
domains in EPA surveys, so that not all the HUCs are
surveyed and even for surveyed HUCs the number of
measurements do not suffice to compute reliable direct
estimates. To compute the indicators of interest (e.g.
the mean value of ANC) for each 8-digit HUC there is
the need to resort to small area estimation techniques.

The paper is organized as follows. In Section 2
we extend the Fay-Herriot model to a semiparametric
specification by introducing a P-spline component. In
Section 3 we derive the analytical approximation for
the mean squared error of the semiparametric estimator,

while in Section 4 we propose two alternative
estimators of the mean squared error based on a
semiparametric bootstrap procedure. The performance
of the proposed estimators is evaluated and contrasted
to that of the traditional ones by means of two
simulation studies presented in Section 5. In Section 6
we apply the semiparametric model to estimate the
mean ANC and CA concentration in 126 8-digit HUCs
in the Mid-Atlantic States of the US. Finally, in Section
7 we summarize the theoretical and applied advantages
of the proposed methodology.

2. SEMIPARAMETRIC FAY-HERRIOT MODEL

The Fay-Herriot model produces reliable small
area estimates by combining the design model and the
regression model and then borrowing strength from
other domains. It assumes that the direct survey
estimators are linear function of the covariates. When
this assumption falls down, the Fay-Herriot model can
lead to biased estimators of the small area parameters.
A semiparametric specification of the Fay-Herriot
model, which allows non linearities in the relationship
between the response variable and the auxiliary
variables, can be obtained by P-splines.

A semiparametric additive model (referred by
semiparametric model hereafter) with one covariate x
can be written as #m(x), where the function m(-) is
unknown, but assumed to be sufficiently well
approximated by the function

mx; B, y) =Gy + fx+ ..+ prxp
K

W ACE
k=1

2.1)

where B = (8, 5, - ﬂp)T is the (p + 1) vector of the
coefficients of the polynomial function, y = (7, 75, ...,

7¢)! is the coefficient vector of the truncated
polynomial spline basis (P-spline) and p is the degree
of the spline ()Y = ¢ if t > 0 and 0 otherwise. The
latter portion of the model allows for handling
departures from a p-polynomial # in the structure of the
relationship. In this portion x; for k=1, ..., K is a set
of fixed knots and if K is sufficiently large, the class
of functions in (2.1) is very large and can approximate
most smooth functions. Details on bases and knots
choice can be found in Ruppert ez al. (2003, Chapters
3 and 5). Since a P-spline model can be viewed as a
random-effects model (Ruppert et al. 2003; Opsomer
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et al. 2008), it can be combined with the Fay-Herriot
model for obtaining a semiparametric small area
estimation framework based on linear mixed model
regression.

Let © be the m x 1 vector of the parameter of
inferential interest (small area total y;, small area mean
y; with i =1 ... m) and assume that the m X 1 vector of
the direct estimator @ is available and design unbiased.
Given the B and 7y vectors, define

1 x x'
X = : R
1 x, xb
and
(4 —K)Y (4 — kg )Y
7 - ) .
(%, = Kl)f (%, — Kg )f

If other variables are available that need to be
included in the model as parametric terms, they can be
added to the X fixed effect matrix. The semiparametric
Fay-Herriot model can be written as

0=XB+Zy+Du+e, (2.2)

where B is a vector of regression coefficients, the y
component can be treated as a K x 1 vector of
independent and identically distributed random
variables with mean 0 and K X K variance matrix
z = 0'}%1 k- Moreover, u is m X 1 vector of independent
and identically distributed random variables with mean
0 and m x m variance matrix Z, = oL, , D is a m x m
matrix of known positive constants and € is the m x 1
vector of independent sampling errors with mean 0 and

known diagonal variance matrix R = diag( 0'12, 0'22,...,
0',%[). The semiparametric Fay-Herriot model is a
general linear mixed model with variance-covariance
matrix X(y) = ZZ?ZT + DZuDT + R where
v = (0;,0,).

Model-based estimation of the small area

parameters can be obtained by using the best linear
unbiased prediction (Henderson 1975):

8" () = XBaw) + AW 6-XB(y)]  (2.3)

with A(y) = (ZZ,2" + DZ,DNZ(y) and B (y) =
X2 (X)) X279 6.

When geographically referenced responses play a
central role in the analysis and need to be converted
to maps, we can deal with utilise bivariate smoothing:
m (x,x,) = m(x;, x,; B, ¥). This is the case of
environment, agricultural, public health and poverty
mapping application fields. P-splines rely on a set of
basis functions to handle non-linear structures in the
data. So bivariate basis functions are required for
bivariate smoothing. We will assume the following
model (see details in Opsomer ef al. 2008)

m(xy, X, B, Y) = By + Bix) + foxy + 2,

where z, is the i-th row of the following » X K matrix

(2.4)

3 1/2
Z=[C(¥ _K")]EE"K [Cxy _Kk’)LkSK’

(2.5)
where C(t) = || t]* log || t]], & = (x, X,) and %,
k=1, ..., K are knots. C(t) function is applied so that
when knots correspond to all observations (that is the
full rank case) the model for bivariate smoothing leads
to thin plate spline (Green and Silverman 1994). More
details on the Z matrix can be found in Ruppert et al.
(2003, Chapter 13), Kammann and Wand (2003) and
French et al. (2001). The use of matrix Z allows for
simplification in the estimation procedure.

3. ANALYTICAL APPROXIMATION OF THE
MSE
The Mean Squared Error (MSE) of 68 (v),
depending on the variance components y = (0'7%, 0'3 Y.
can be expressed as (Rao 2003):

MSE[ 8" (w)] = g,(y) + () (3.1)
where the first term
21 (¥) =A(y) R=R-RZ'(y)R (32)

is due to the estimation of random effects and it is of
order O(1), while the second term

&(¥) = RZ'(W)XX'Z(y )X) ' X'Z7(y)R (3.3)
is due to the estimation of B and it is of order

O(m™) for large m.

The estimator 8% (y) depends on the unknown

variance components 0'7% and 63. Replacing the
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parameters with estimators 6‘72, and 6‘3 , an empirical
best linear unbiased predictor (EBLUP) of W) is
0%() = X + AW O-XB ()] (3.4)
where ﬁ(\TJ) = (XT):“._I(\TJ)X)_IXT):T_I(@)@ . Assuming
normality of the random effects, 0';% and O',f can be
estimated both by Maximum Likelihood (ML) and

Restricted Maximum Likelihood (REML) procedures
(Prasad and Rao 1990).

The ML and REML estimators possess the
following properties (Datta ef al. 2005): (i) they are
m'"?-consistent; (ii) they are even functions of 0, so

that fp(—é) = ﬁl(é); (iii) they are translation invariant
functions, so that {y(@+Gc)=y(®). for any
m x (g + 1) matrix, ¢ € R¥"" and for all 0.

For any  satisfying (ii) and (iii), the MSE of
of (J) can be decomposed as

MSETB" (§)] = g,(y) + g(w) + E{[6F (§) - 88 ()P}
= g1(¥) + g(y) + g5(v). (3.5)

Under the traditional Fay-Herriot model with
diagonal covariance matrix Z(y), Prasad and Rao
(1990) obtained an approximation up to o(m ') terms
of g;(y) through Taylor linearization. In case of the
semi-parametric Fay-Herriot model the structure of the
covariance matrix is not diagonal due to the
introduction of the spline random component, then the
results of Prasad and Rao (1990) can not be applied
directly. The results of Opsomer et al. (2008) can be
used for deriving a second order approximation to the
g;(y) term. It can be given by

2(¥) =L" (y) [.7 (y) ® Z(y)] L(y) + o(3,/m)
(3.6)

where

JA(y) ;
oy,

i

L(y) = [Lg: (W), Loz (I, L(w) = =1.2.

Here ® represents Kronecker product, .7 ~(y) is

the inverse of the information matrix with Jﬁj_l (y) =
0.5tr[P(y)BP(Y)B], i, j = 1, 2, P(y) = Z7'(y) —

' (WXX T (X)X 2 (y). B, = ZZ" and
B, =DD’ and &, = o(~/m).

In practical applications, the EBLUP 6" (§)

should be accompanied by an estimate of the MSE.
Again, under Fay-Herriot models with diagonal
covariance matrix, Prasad and Rao (1990) obtained an
approximately unbiased estimator of the MSE (3.5).
Following the results of Prasad and Rao (1990) and
Das et al. (2004), Opsomer et al. (2008) extended the
Prasad-Rao MSE estimator to models with more
general covariance structure. An approximately
unbiased estimator of the MSE is

mse™[0° () 1= g(§)+(§) +2g(§) (3.7)

which is the same estimator derived by Prasad and Rao
(1990). In formula (3.7), the term g;(\y ) appears twice
due to a bias correction of g,({ ).

4. NONPARAMETRIC BOOTSTRAP FOR
ESTIMATING THE MSE

This section describes an alternative procedure for

estimating the MSE of the EBLUP of () based on
bootstrapping according to the bootstrap procedure
proposed by Gonzalez-Manteiga et al. (2007), Opsomer
et al. (2008) and Molina et al. (2009). In this procedure,
the bootstrap random effects (% , ..., 7k ) (4 » .nr 16,)"
and the random errors (.9;k s e 8;; )T are obtained by
resampling respectively from the empirical distribution
of the predicted random elements ¥ = (7, ..., 7).

i =(d.,... ii,,)", and the residuals = 6-Xp-17-Di
= (#, ..., By)!, previously standardized. This method
avoids the need of distributional assumptions;
therefore, it is expected to be more robust to
non-normality of any of the random components of the

model. The procedure works as follows:
1. Fit model (2.2) to the initial direct estimates 0,
obtaining estimates (6‘72,,6'3 ) and ﬁ

2. With estimates obtained in step 1, calculate

predictors of ¥ = (%,...%)" and
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@ = (d, ... &,)". Then take ¥° = £ /% and

s = )f‘,;lmﬁ where }A:;,l/z and ﬁ;ln are the

root square of the generalized inverse of )A:;,l/ 2

= 722 72'3($)Z'L,Z and $£V2 = D D’
Y Y u u

P(\i/)DT):“.uD respectively, obtained by the
spectral decomposition. It is convenient to
re-scale the elements 47 and @ so that they have
sample means exactly equal to zero and sample
variances 5'2, 6‘3. This is achieved by the
transformations

6}/{?]5 - K_IEK 179}
s -y
k=1,.,K

6,4 —m 2y, af |

\/m‘lz’;: i - }

i=1, .. m

. ¥x) and
u' = (ul* ) s u,*n )T , whose elements are obtained
by extracting a simple random sample with

replacement of size K and m from the sets 755 =
_ (1SS ~SS\T
= (", .

(#5, ..., %2)" and &% T2
respectively. Then calculate the bootstrap quantity
of interest 8" = Xp +Zy" +Du" =(§, .., 6,)".

Construct the vectors ¥ = (% , ..

. Compute the vector of residuals ¢

-7y - D = (f, .., ;)"

= 0-Xp
Standardize the

= (RP($)R) /¢ . Re-standar-
dized these values

~S —lym ~S
{r m Ej:l rj }
s {fs s 7 }2
d=11"d ]

Construct the vector r = (rl*, e r,: )T, whose
elements are obtained by extracting a simple

residuals by #°

ASS
i

random sample with replacement of size m from
PSS = (755 ASS \T *_
= (F , 7,°) . Then take £ =

* *
(& ... &) where & =01; .

the set r

4. Construct bootstrap data from the model,

A

0"=0"+¢ =XB+Zy +Du +¢

=4, .. 0
5. Regarding ﬁ, 6‘7% and 6‘3 as the true values of B,
0'72, and 03 , fit the model (2.2) to the bootstrap

data é* The obtained estimates B, 0'72,* and 03*
will be called bootstrap estimators.

6. Calculate the bootstrap small area estimator using

B’ 0'7%* and ¢2* in place of the ‘true’ fi,é‘% and
62,
0" () = XBWH+A ()6 - XB ()]

7. Repeat steps 2-6 B times. In the b-th bootstrap
replication, let 91-*(1’) be the quantity of interest in

area i, éiE*(ﬁl*(b )) be the bootstrap estimator for
area 1.

A naive bootstrap estimator for the MSE for area

iis
q S JGE®) o 0)y _ g0
set™PPIOE () = B Y {0F @) -0 " |
b=1
“.1)
Another MSE estimate can be obtained by adding

the bootstrap estimate gNPB

(¢) to the analytical
estimates g,;(W) and g,;(\¥), and then including a

bootstrap bias correction of g;;(\W)+ g; ()
(Pfeffermann and Tiller 2006), as

mse? NPEIOF ()] = 20 g; () + g2; (9]
1 5 *(b *(b NPB
-B Z[gli(‘i’( )+ g0 (W ))] + gy ().
b=1
(4.2)
where

~ Lk A K ~ 3% ~ 2
gé\l(PB (\T/) _ B_lzle {OlE (b) O (b)) _OBLUP (b) (\Il)}

with @PLUP*®) = XB" + Zy" + Du”.
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S. SIMULATION STUDIES

5.1 Estimation of the Small Area Means
In this section we develop a simulation study to

compare the performance of the 6F () estimator of

the small area mean under the proposed semiparametric
specification (denoted by NPEBLUP hereafter) to that
under the traditional Fay-Herriot specification (denoted
by EBLUP).

We consider five models for creating the true
underlying relationship between the covariate x and the
expected value of the response variable 6, E(6 | x)
= m(x):
Linear. m(x) = 10 + 2(x);

mx)=1+2(x-15Ix<1.5)
+ 2I(x > 1.5).

2 + exp(3x)/400.

Jump.

Exponential. m(x) =

Bump. m(x) =10 +2(x — 1.5)
+ 5exp(—200(x — 1.5)°).
Cycle. m(x) =10 + 10 sin(27x);

Under the random intercepts model ﬁ = m(x) +
u; + &, where i =1, ..., 200, we generate 7 = 500 data
sets for each model with x drawn from a Uniform
distribution [0, 1], the area effects u; drawn from
N(0, 0.04) and the error effects & independently
generated from N(0, O'i2 ). Here, the sampling errors O'i2
vary in the pattern: 0.08, 0.10, 0.12, 0.14, 0.16. There
are five groups of small areas and 40 small areas in
each group; the sampling variances 0',-2 are the same
for areas within the same group. The chosen pattern

corresponds to an intra-area correlation that varies
between 0.2 to 0.33.

The linear case represents a situation in which the
EBLUP is based on a good representation of the true
model, while the NPEBLUP may be too complex and
overparametrized. The jump model is a discontinuous
function for which EBLUP and NPEBLUP are based
on a misspecified model; the Exponential, Bump and
Cycle models define increasingly more complicated
structures of the relationship between y and x.

For each data set the EBLUP and the NPEBLUP
estimators have been used to estimate the small area
means y; .

Then, for each estimator and for each small area
i we averaged over Monte Carlo replications =1, ...,
T to estimate the Bias

1& -
c= ;g Vit = Vir) (5.1)
and with it the percentage relative bias
B
RB% = % 100; (5.2)
?Ztﬂyﬁ
the Root Mean Squared Error
& -
RMSE;);c= ?2 Oie = Vi)™ (5:3)
t=1

and the corresponding percentage Relative Root Mean
Squared Error

MIOO

72, 1 Vit

To evaluate the RB% and the RRMSE% across
the 200 small areas we consider these summary
statistics: the minimum value, the first quartile, the
mean and the median value, the third quartile and the
maximum value.

RRMSE, % = (5.4)

Tables 1 and 2 report respectively the summary
statistics for the RB% and the RRMSE% values
obtained for the estimation of the small area means
under the Linear, Jump, Exponential, Bump and Cycle
signals.

The results are promising. First note that the
performance of the two estimators is essentially
equivalent under the Linear signal, both in terms of bias
and variability. Then, from Table 1 we see that the
mean and median biases of the NPEBLUP estimator
are always lower with respect to the EBLUP estimator,
with the only exception of the mean value under the
Jump signal. Moreover, in many cases there is a high
gain also in terms of minimum and maximum values
of the RB%, that is, the bias of the NPEBLUP estimator
in estimating the 200 small area means varies in a range
of smaller size than the EBLUP. In terms of variability
(Table 2) the results show a similar behavior:
NPEBLUP is always a good competitor of the EBLUP.
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Table 1. Percentage Relative Bias (RB%) of the estimators of the small area means.

RB% Point Estimation

Estimator Min | Ist quartile Mean Median 3rd quartile Max
Linear Signal

EBLUP -0.74 -0.12 —-0.01 0.00 0.13 0.57

NPEBLUP —0.44 -0.13 0.00 —-0.01 0.11 0.47
Jump Signal

EBLUP -204.21 —12.84 0.64 —4.70 10.25 399.83

NPEBLUP —108.79 —-0.63 4.36 0.52 03.45 79.01

Exponential Signal

EBLUP —15.92 —4.54 1.29 1.78 8.24 13.42

NPEBLUP -2.74 -0.82 —-0.06 -0.14 0.67 2.80
Bump Signal

EBLUP —12.08 0.59 0.19 0.82 1.01 1.79

NPEBLUP —10.46 -0.11 0.12 0.13 0.60 3.49
Cycle Signal

EBLUP -9.23 —2.24 33.14 —-0.49 6.13 769.18

NPEBLUP —46.69 -0.16 -0.62 —-0.01 0.22 11.68

Table 2. Percentage Relative Root Mean Squared Error (RRMSE%) of the estimators of the small area means.

RRMSE% Point Estimation

Estimator Min Ist quartile Mean Median 3rd quartile Max
Linear Signal

EBLUP 4.37 5.03 5.66 5.54 6.28 7.25

NPEBLUP 4.45 5.00 5.67 5.60 6.24 7.36
Jump Signal

EBLUP 23.29 26.81 108.66 42.74 106.62 2114.17

NPEBLUP 22.61 24.34 113.22 42.40 109.19 2487.47

Exponential Signal

EBLUP 08.41 27.16 34.90 41.02 43.89 47.84

NPEBLUP 04.58 21.05 27.99 33.32 35.70 38.55
Bump Signal

EBLUP 5.51 6.61 7.87 7.71 8.91 13.10

NPEBLUP 5.63 6.51 7.80 7.89 8.74 11.62
Cycle Signal

EBLUP 4.85 5.74 86.00 8.13 23.03 1884.93

NPEBLUP 3.45 4.10 55.80 6.22 18.35 1317.73
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5.2 Estimation of the Mean Squared Error

In this Section we present a simulation experiment
carried out to contrast the three alternative estimators
of the Mean Squared Error of the NPEBLUP estimator

0F () described in Sections 3 and 4. Namely, the

estimators we consider are the analytical estimator
mse®? (3.7), the naive nonparametric bootstrap
estimator mse™"® (4.1) and the combined analytical
and bootstrap estimator mse™E (4.2).

The simulation study is carried out using real data
coming from the Italian Agricultural Census of year
2000 for the Tuscany region, as in Molina et al. (2009),
under two different settings. The small areas of interest
are the 287 municipalities of the region, with N, i = 1,
..., m, given by the census and the n, randomly
generated from a Binomial distribution with parameters
N, and p = 0.05. These sampling data are used to
compute, for each municipality i, the direct estimator
of the mean agrarian surface area used for production
of grape in hectares (6) and its sampling variance
(01‘2 ). Information on the agrarian surface area used for
production in hectares (x,;;) and on the average number
of working days in the reference year (x,;) for each
municipality 7 is also available from the census data.

Thus, in the simulation study the goal is the
estimation of the mean agrarian surface area used for
production of grape in hectares (y;) for all the
municipalities of the region, using as explanatory
variables x; and x,;, which have a linear relation with
y; , and an intercept term. The centroids of the small
areas are also available as spatial reference points
(latitude and longitude) and are used in the Z matrix
when fitting the semiparametric model under both
settings. Since the true sampling variances 0',-2 were
equal to 0 for nine areas, in the simulation experiment
we consider m = 278. Note that the true sampling
variances Giz have a highly right-skewed distribution
with a range of 102745; this skewness is caused by few
municipalities with atypically large sampling variances.

More in detail, in the first simulation setting the
Monte Carlo samples are generated at each step as
follows: first, the random errors e; are generated from
a normal distribution with mean 0 and variance o7 ;
second, the random effects u, are generated from a

normal distribution with mean 0 and variance &> taken
equal to the estimated value obtained fitting a linear
model with random area effects to the census data, that
is 62 = 56.23 for all the iterations, under the

u
hypothesis of non—informative design; then, using the
values of the covariates x; =(1, x;,, x,;) obtained from
the census together with the true vector of coefficients
B = (-3.72, —0.0095, 0.51), the vector of responses is
generated under a Fay-Herriot model. In a second
alternative setting the steps of Monte Carlo experiment
are the same as in the first setting but the vector y of
responses is generated under the model (2.2), with ¥
random errors generated under a normal distribution

. . 2
with mean 0 and variance 0, = 15.

Under both settings we consider 7= 500 Monte
Carlo samples and we compute the three MSE
estimators of interest, setting the replicates of the two
bootstrap procedures to B = 250; the final estimates are
computed taking the mean over the replicates. The
empirical values of the MSEs, that is the reference
values, were computed previously under both settings
with 5000 Monte Carlo replicates to ensure better
accuracy. Figs. 1 and 2 display for each of the
m = 278 small areas the ratios of the three estimated
RMSE (analytical root mse“, naive nonparametric
bootstrap root mse™"® and combined analytical and
bootstrap root mse®*¥’®) over the empirical values
(represented by the straight lines), under the first and
the second setting respectively. Note that to allow a
better comparison of the results, the scale used in the
two figures has been zoomed out to the interval
0.9-1.25.

The main result standing from the simulation
results is that the two proposed bootstrap estimators of
the MSE outperform the analytical one, under both
settings. As regards the comparison between the
estimator mse"'"B and the estimator mse?“"8 | the first
seems to better follow the empirical values (see Fig. 1).
This behavior is the same even considering the second
setting, where the model used to generate the y; values
has a spline component: in this case we can observe a
slightly higher variability of the estimates, while the
estimators are more correct, as expected. Thus, the
estimation of the g5 term of the MSE seems to play an
important role in this estimation context.
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6. APPLICATION

In this Section we estimate the mean Acid Binding
Capacity (ANC) and Calcium (CA) concentration in
126 8-digit HUCs in the Mid-Atlantic area of the US
using the proposed semiparametric Fay-Herriot model.

The ANC measures the buffering capacity of water
against negative changes in pH-values and is often used
as an indicator of the risk of acidification of water
bodies in water resource surveys. An ANC level smaller
than zero (measured in weq/L, microequivalents per
liter) means that the water is acidic; the higher the
ANC, the larger the amount of acid a lake can
neutralize before pH drops. Thus, low values of ANC
identify critical situations for the streams water. The
CA concentration is another relevant indicator: for
example it has been argued that the distribution of some
invasive and alien species like zebra mussels is
associated with calcium concentration in surface
waters. Thus, the development of a map showing CA
concentrations in stream and waters could indicate the
areas at risk of invasion (Whittier et al. 2008).

Previous studies (Opsomer et al. 2008; Pratesi
et al. 2008) have shown the usefulness of a
semiparametric specification to link the responses with
available auxiliary information in this area of study.
Direct estimates of ANC and CA concentrations were
computed using data from two surveys of streams in
the Mid-Atlantic States of the US (Stoddard et al.
2006). Covariate information at the area level was
available from Jones et al. (1997), the Atlas of
Environmental Assessment of the Mid-Atlantic region
of the United States, done using measurements derived
from satellite imagery and spatial data bases. Both data
collections were available on the website www.epa.gov.

A semiparametric model to estimate the ANC
mean in the areas of interest can be specified as:

S(X) = m(xy, x) + fyxs + Byxy + Pexs,  (6.1)

where x, and x, are the coordinates (latitude and
longitude) of the centroid of the HUC, x; is the HUC
proportion of total stream length that has roads within
30 meters, x, the proportion of watershed with potential
soil loss greater than one ton per acre per year, x5 the
proportion of watershed area with suitable forest edge
habitat (65 hectare scale), and m(-) is an unknown
smooth bivariate function.

ANC
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Fig. 3. Image of the bivariate spline effect in the region of interest
for the ANC mean values using Universal Transverse
Mercator coordinates.

To estimate the smooth bivariate function we use
P-splines, assuming that m(-) can be approximated
sufficiently well by model (2.4), where the last part of
the model allows to handle nonlinearities in the
structure of the relationship between the study variable
and the covariates. Note that the choice of model (6.1)
was driven by preliminary analyses specifying different
combinations of parametric and non-parametric
specifications for the available variables. Fig. 3
confirms the need of using a P-spline when specifying
the relation between the direct mean ANC values and
the coordinates. The same model specification was
used for the estimation of the CA mean in the areas;
in this case the variables that enter linearly in model
(6.1) are: the human use index, that is the proportion
of watershed area with agriculture or urban land cover
(x5 variable), the proportion of total stream length that
has roads within 30 meters (x, variable) and the
proportion of watershed area with suitable forest edge
habitat (7 hectare scale, x5 variable).

The choice of knots in two dimensions is more
challenging than in one. To choose the number of knots
K, Ruppert ef al. (2003) suggest using K = max[20;
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min(n/4; 150)] in two dimensions. Following these
suggestions and performing the estimation with
different number of knots, we finally chose K = 40,
since we found that the approximation ability of the
spline stabilizes after this number of knots for the
estimation of ANC and CA means. As concerns the
choice of the knots, two solutions suggested in the
literature that provide a subset of observations nicely
scattered to cover the domain are space filling designs
(Nychka and Saltzman 1998) and the clara algorithm
(Kaufman and Rousseeuw 1990, Chapter 3). The first
one is based on the maximal separation principle of K
points among the unique X; and is implemented in the
fields package of the R language (R Development Core
Team 2005). As in Opsomer et al. (2008) we used in
our application the second one, that is based on
clustering and it selects K representative objects out of
n; it is implemented in the package cluster of R.

| Sampled areas
Out of sample areas with auxiliary information
| Out of sample areas without auxiliary information

Fig. 4. Map of the small areas. The codes are used in Fig. 7 and
Fig. 8 to report the confidence intervals.

It should be noted, then, that this estimating
framework can be used to handle univariate smoothing
and bivariate smoothing by suitably changing the
parametric and the spline part of the model, i.e. once
the X and the Z matrices are set up. Finally, other
continuous or categorical variables can be easily
inserted parametrically in the model by adding columns
to the X matrix.

As concerns our estimation problem, note that
between the HUCs of interest some are out of sample
areas with available covariate information while for
other HUCs also the covariate information is not
available (see Fig. 4). This is because the target
geographical areas of the EMAP surveys and of the
landscape atlas of the Mid-Atlantic region do not
coincide. For both types of out of sample HUCs we can
predict the mean ANC and CA using the proposed
semiparametric model.

Figs. 5 and 6 show the maps of the estimated mean
ANC and CA concentration respectively. The areas
with lower ANC mean values are spread in the

2666.88

1156.99

77749

583.80

367.70

6.82

Fig. 5. Map of Mid-Atlantic Area with semiparametric estimates
for average ANC.
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Fig. 6. Map of Mid-Atlantic Area with semiparametric estimates
for average CA.

Mid-Atlantic region: some of them are on the coast,
others in the internal regions corresponding to the
North and Central Appalachians ecoregions. The higher
CA concentration levels are estimated for the HUCs in
the Western Allegheny Plateau, Central Appalachian
and Ridge and Valley ecoregions. These results are
coherent with previous studies on CA concentration in
the Mid-Atlantic region, where however the availability
of the data at a wider detail did not suffice to classify
all the areas of interest (Whittier ef al. 2008).

Using the nonparametric bootstrap estimator (4.1)
we computed the confidence intervals for the mean
ANC and CA estimates in each area of interest.
Figs. 7 and 8 represent the mean values with
corresponding bootstrapped 95% confidence intervals,
with the HUCs ordered by increasing estimated values
of the variable of interest. Looking at these results in
connection with Fig. 4 we can see that, as expected,
the wider confidence intervals are usually obtained for
the out of sample areas or for areas at the boundary of
the region of interest, where the calculated indicators
are probably not as reliable as the indicators calculated
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Fig. 7. Estimate of the average ANC and bootstrap based 95%
confidence interval for the 126 HUCs. Numbers denoting
HUCs can be paired with the map in Fig. 4.

for watersheds that had complete data coverage (Jones
et al. 1997).

7. CONCLUSIONS

In this paper we have proposed a semiparametric
version based on P-splines of the basic area level
Fay-Herriot model. This model can be used in
situations where the information is available only at the
area level and the functional form of the relationship
between the variable of interest and the covariates
cannot be specified a priori. Furthermore, spatial effects

can easily be introduced in the proposed
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Fig. 8. Estimate of the average CA and bootstrap based 95%
confidence interval for the 126 HUCs. Numbers denoting
HUCs can be paired with the map in Fig. 4.
semiparametric area level model, thus making this
model very useful for environmental studies where
geo-referenced information is usually available.

The results of the model based simulation study
suggest that the proposed small area mean estimator
allows us to obtain an appreciable improvement of the
estimates under many different hypothesis for the
relation of the study variable with the covariates;
moreover, the semiparametric estimator is still
competitive also when the linear assumption of the
traditional Fay-Herriot model holds. In addition, the
design based simulation study has shown the good

performance of the two proposed estimators of the
MSE, both based on resampling techniques.

Using the proposed semiparametric model we
have considered the problem of estimating the mean
Acid Binding Capacity (ANC) and Calcium (CA)
concentration in 126 8-digit HUCs in the Mid-Atlantic
area of the US using EPA surveys data. Note that in
this case the auxiliary variables are available at the area
level and that geographic information (latitude and
longitude of the HUCs) has been included in the model
to take into account spatial proximity effects. The
results we obtained are concordant with those obtained
in previous studies were however the use of direct
estimators did not suffice to classify all the areas of
interest.

Until now there is no contribution on the
relationship between the expected results obtained
modeling the same data set at unit level and at area
level. Besides, it is well known that the spatial relation
active at unit level is not likely to be the same when
the analysis is done at a more aggregate level.
However, we did not approach this problem here. In
future analysis we will address these relevant issues on
the same case study comparing the results obtained
using our proposed semiparametric area level model
with those obtained using the nonparametric unit level
proposed by Opsomer et al. (2008).
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