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SUMMARY

Unbiased direct estimators for small area quantities are usually considered too variable to be of any practical use. This
paper describes a class of model-based direct estimators for small area quantities that appears to overcome this objection, in
the sense that these estimators are comparable in efficiency to the indirect model-based small area estimators such as empirical
best linear unbiased predictor (EBLUP) or Pseudo-EBLUP that are now widely used. There are many practical advantages
associated with such model-based direct estimation (MBDE), arising from the fact that they are computed as weighted linear
combinations of the actual sample data from the small areas of interest. Note that in this case the weights ‘borrow strength’ via
a model that explicitly allows for small area effects. Empirical results show that the MBDE estimator represents a real alternative
to the EBLUP and Pseudo-EBLUP, with the simple MSE estimator associated with the MBDE estimator providing good coverage
performance. The results further indicate that the MBDE estimator may be more robust than the EBLUP and Pseudo-EBLUP

when the small area model is incorrectly specified.
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1. INTRODUCTION

The dominant paradigm in survey estimation for
populations is weighted linear estimation, typically
based on linear regression models, while the rapidly
expanding field of small area estimation is currently
dominated by a model-based predictive approach where
the survey weights have little or no relevance. See Rao
(2003). Many of the practical advantages of weighted
linear estimation are lost when one adopts predictive
approach. Perhaps the most important of these are the
simplicity of both the estimation process and estimation
of mean squared error (MSE). Further, the linear mixed
model underpining small area estimation usually
assumes that samples are drawn independently across
small areas according to a specified sampling design
such that the sample design within small areas is
ignorable or alternatively selection bias is absent. The
estimation based on such models (e.g., empirical best
linear unbiased predictors) do not make use of unit level
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survey weights and the corresponding estimators are not
design consistent unless the sampling design is self
weighting within small areas. The design-based direct
estimators are design consistent but fail to borrow
strength from the related areas.

In recent years, some methods proposed in the
literature make use of survey weights in model-based
small area estimation. Kott (1989) proposed a design
consistent estimator, also model unbiased under the
simple random effect model with the same assumption
of random errors as in linear mixed model defining the
EBLUP. He showed that this estimator is robust with
respect to model failure under certain conditions and
derived an estimator of MSE without including the
random effect component. Empirical results show the
MSE estimates are quite unstable and even take
negative values. Consequently, this approach cannot be
used to the compare proposed design-consistent small
area estimator and the conventional design-based direct
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estimator. Prasad and Rao (1999) and You and Rao
(2002) proposed a model assisted estimator for small
area estimation called the pseudo empirical best linear
unbiased predictor (pseudo-EBLUP), which depends on
the survey weights and remains design consistent as the
sample sizes in the small areas increased.

Chandra and Chambers (2009) introduced the
calibrated weighting based approach for small area
estimation (SAE) and desribed the model-based direct
estimation (MBDE) for small areas. This approach uses
the calibrated sample weights derived under a
population level version of the linear mixed model to
define weighted linear small area estimators as well as
a simple expression for the MSE. In contrast to design-
based direct estimators, MBDE “borrow strength” from
other areas via the linear mixed model used in defining
the sample weights. There are many practical
advantages associated with the MBDE, arising from the
fact that the estimators are computed as weighted linear
combinations of the actual sample data from the small
areas of interest. Perhaps the most important of these
are the simplicity of both the estimation process and
the estimation of the MSE. Further, the MBDE
estimator is easy to interpret and to build into a survey
processing system.

This paper studies the performance of EBLUP and
two weighting based methods of SAE (i.e., pseudo-
EBLUP and MBDE) using real data from the Australian
Agricultural and Grazing Industries Survey (AAGIS).
It is noteworthy that different SAE methods are
evaluated in a realistic situation where underlying
model is ‘working” model and ‘true’ model is unknown.
The robustness of these estimators are also examined
under wrong model specifications. An exploratory data
analysis (EDA) is also carried to illustrate how one
should proceed for appropriate model specification
while doing SAE. The following Section reviews the
linear mixed model used in many SAE applications,
introduces survey weights on based on this model and
descibes the model-based direct estimation (MBDE) for
small areas using these weights.The EBLUP and
Pseudo-EBLUP are then defined based on same linear
mixed model. Section 3 provides illustrative empirical
results that compare the EBLUP and Pseudo-EBLUP
with MBDE estimators defined under the same model.
Finally, Section 4 presents some important issues that
arise when a weighting approach is used in SAE and
identify related topics that require further attention.

2. SMALL AREA ESTIMATION BASED ON A
LINEAR MIXED MODEL

Let U denote a population of size N and let Y,
denote the N-vector of population values of a
characteristic ¥ of interest, and suppose that our primary

aim is estimation of the total 7}, = z yYj of the values

in Y, (or their mean m, =N~ ! 2 y Vi )- In order to assist

us in this objective, we shall assume that we have
‘access’ to X, an N X p matrix of values of p auxiliary
variables that are related, in some sense, to the values
in Y. In particular, we assume that the individual
sample values in X;; are known. The non-sample values
in X;; may not be individually known, but are assumed
known at some aggregate level. At a minimum, we
know the population totals 7., of the columns of X,
Suppose that the regression of ¥ on X in the population
is linear of form

EYy| X)) =X B and Var(Yy | X)) =V, (1)

where V; is a positive definite matrix of order NV, known
up to a multiplicative constant. Without loss of
generality, let us arrange the vector Y, so that its first
n elements correspond to the sample units. Then
conformably partition Y, X;; and V; according to
sample and non-sample units as

Y, X, vV, V,
Y, = | [.Xy=|_"|and V= at
Y, X, V.V,

Here Y| is the n x 1 vector defined by the sample
values in Y, X, is the corresponding » X p matrix of
sample values of the auxiliary variable and V; is the
n X n component of V; associated with Y. A subscript
of r is used to denote corresponding quantities defined
by the N — n non-sample units, e.g. V,, is the (N — n)
x n matrix defined by Con(Y,, Y,) = 0°V,,. Given this
set-up, and assuming (1) holds, the vector of weights
that defines the Best Linear Unbiased Predictor (BLUP)
of the population total of Yis given by
whLUP — (WBLUP;ie s) =1,+H(X;1y -X1,)

+ (In - H'Xg )VY_SIVS‘)’ lN—n (2)
1. are

where I, is the identity matrix of order n, 1, 1,, 1,
vectors of one’s with dimensions N, n and N — n

-1
respectively, and H = (X;VS_SIXS) X/V_'. See Royall
(1976).



Hukum Chandra / Journal of the Indian Society of Agricultural Statistics 65(3) 2011 347-358

| 349

The most commonly used class of models in small
area inference is the class of linear mixed models,
described as follows. Let Y, be the N, x 1 vector of
values of variable of interest in small area j and let X;
be the N, X p matrix of values of the auxiliary variables
associated with. We consider the following specification
for the distribution of Y, given X :

Y, =X+ Zu + e, (3)

Here B is a p X 1 vector of fixed effects, Z; is a
N, X g matrix of known covariates characterising
differences between the J small areas, u; is a random
area effect associated with the j small area and e isa
N; x 1 vector of individual level random errors. The
random vectors u; and e; are assumed to be
independently distributed, with zero means and with

variances Var(u,) = Z and Var(e)) = O'e2 INj respectively,
so that the covariance matrix of Y, is then Var(Y;) =V,

- o’ Iy +Z JZZ;, which depends on a k x 1 vector of

parameters @ = (2,662 ), usually called the variance

components of the model. Finally, it is usually assumed
that sampling is uninformative given the values of the
auxiliary variables, so the sample data also follow the
population model (3). By aggregating the area-specific
models (3) over the J small areas, we are led to the
population level model

Y=XB+Zu+e 4)
where Y = (Y,.....Y;), X = X{,...X}),
Z = diag(Z;1< j<J), u = (U,....u) and e =

(e[,......,e7) . The variance-covariance matrix of ¥ is V

=diag(V; 1 <j < J). It is assumed that X has full
column rank p. This is the general linear mixed model,
which includes most of the small area models used in
practice (Rao 2003, page 107). Again, we consider the
decomposition of Y, X, Z and V into sample and non-
sample components as mentioned after (1). We use
similar notation at the small area level by introducing
an extra subscript j to denote small area. For example,
we denote by s; the set of n; sample units in area
J. r; the corresponding N, — n; non-sampled units in the

area and put V, = O'ezln/ +Z X7 and Vi =

Z; X7, . Given the values of the variance components,

it is straightforward to see that (4) is just a special case
of the model (1) that underpins the BLUP weights (2).
In particular, under (4)

V= diag{V,:j=1....J}

- diag{o?, + 2,37} j=1,....]}

and
V,, = diag{V;,:j=1...J}
= diag{Z; X2}, j=1.....T}.

In practice the variance components 0= ()2,0'62)
that define V are unknown and must be estimated from
the sample data using suitable estimation methods such
as maximum likelihood (ML), restricted maximum
likelihood (REML) or method of moments. We use a
‘hat” to denote an estimate. Given estimated values

0= (2,6'62) of the variance components we can obtain

estimates V. and V,, of V_, and V,, respectively, and
therefore compute ‘empirical” BLUP weights, or
EBLUP weights as

WEBLUP;ie sj;j=1,...,J)

wEBLUP ( ;

s
=1, + /(X1 -X(1,)

+ (In - ItI,X; )‘Ais_slflsr 1N—n (5)

s " SS s °Ss

-1
_ 7 xr—1 7 =1
- (Z,X950%5) (2,55 95).
It is easy to see that these ‘EBLUP’ weights (5) are the
empirical version of the BLUP weights (2) under (4).

The model-based direct estimator (MBDE) of the

where H = (X'\A/_IXS )_1 X v!

jth small area mean of Y (i.e., m,; = N;lejyj ) is the

direct estimator of this quantity based on the EBLUP
weights (5). That is, it is defined as

—1
~MBDE _ EBLUP EBLUP
AIE = I3 WfILS W (6)

where the weights used in (6) are those associated with
the sample units in small area j in (5). We refer to (6)
as a direct estimator because it is a weighted mean of
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the sample data from the small area of interest.
However, this does not mean that it can be calculated
just using these data. Note that the EBLUP sample
weights (5) will be a function of the data from the entire
sample. That is, they ‘borrow strength’ from other areas
through the model (4).

An important consideration in small area
estimation is estimation of the mean squared error
(MSE) of the small area estimator. We can easily adapt
straightforward methods of MSE estimation for
population level estimators to estimation of the MSE
of (6). Well known results indicate that robust model-
based methods as well as appropriately conditioned
design-based methods lead to MSE estimators

V(i) = 3 W ;-

¥; denotes the fitted value for y; under the linear model

a2
¥;)~ + lower order terms, where

implied by the calibration constraints. In order to
estimate the mean squared error of (6), we note that the
implied population level model (4) includes random
area effects and so one needs to consider whether it is
appropriate to condition on these effects when
estimating this MSE. For example, the rather
complicated MSE estimator (12) of the EBLUP (11)
does involve this conditioning. On the other hand,
estimation of the MSE of (6) is straightforward if we
do not condition on random area effects, treat the
EBLUP weights (5) as fixed and use standard methods
for estimating the MSE of a weighted linear estimator
of a domain mean under the population model (1). See
Royall and Cumberland (1978). The choice between
these two approaches is largely philosophical and
depends on how much one ‘believes’ the linear mixed
model (4). We write down a first order approximation
to prediction variance for the area j weighted mean (6)
as

Var(mMBDE my;) = Var{(zsj%)_l(zsjwi)’i)
- Nfl(zsjyi+zrjyi)}

~ N;Z (zsj aizVar(yi)+zerar(yi)) 7

-1
where a; = (zsj wk) (Njwi—zsjwk). A robust

model-based estimate of (7) is obtained by substituting

the squared residual (y; — x/B)* for Var(y,) in the first
(leading) term on the right hand side of (7). If these
squared sample residuals are also used to estimate the
second term, the resulting estimator of (7) is

vGREPE) = 3 Ay =By (8)

where 4,= N;?(a +(N;—n;)/(n; =1)). Using (8) to

estimate the prediction mean squared error of

n%g;lBD £ implicitly assumes that this weighted mean is

unbiased for m,,;. However, this is not generally the case,

~MBDE _ ’
my;) B under (4),

since E(m = (i AMBDE

where mﬁfB DE

sample values of the auxiliary variables in area j.
Calibration on X ensures that this term vanishes at
population level, but not necessarily at small area level.
A simple estimate of this bias is

(g "PE —my )P 9)

Our suggested estimator of the mean squared error
of (6) is therefore

denotes the weighted average of the

b ( mgBDE )

2
me(liPPE) = y(ilfEPE) + (b(mﬁf.BDE )) (10)

Note that one could alternatively ‘bias correct’

miy‘;[BDE directly using b(mMBDE

recommended since this correction increases the
variability of our estimator much more than it reduces
its bias. Using it in (10) is a more conservative, and
safer, approach.

Assuming model (3) holds, the EBLUP for the ;"
small area mean m,; (Prasad and Rao 1990) is

). However, this is not

mijLUP _ fjf +(1—fj)[)_(;'rﬁ

A1 ~
+Z Z Z_]S‘V_]YS‘ Jjs XJS‘B)] (1 1)

where f,=n;/ N, and X jr and Z ir

for the N; — n; non-sampled units in small area j. Note
that the MBDE (6) is not the same as EBLUP (11), even
though both sum to the same population level EBLUP.
This is because there is no unique representation of (11)
as a weighted mean of the sample data values from
small area j.

are vectors of means
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MSE estimation for (11) is usually carried out
using the theory described in Prasad and Rao (1990).
Although this MSE estimator is somewhat complicated,
it works well under (3). However, when (3) fails it can
be misleading. Following Prasad and Rao (1990) an
approximately unbiased estimator of the MSE of (11)
is

V(EBLUP ) = (1_fj)2|:glj(é)+gzj(é)+2g3j(é)]
+N7 - 162 (12)
where
00 = 2, (2-22, V2, 3)2,,
1
Ao, -1
gzj(ﬁ) = (XJI‘ ] JS)(Z XJSVJ”X )
(X, -1,

83,0 = 1r{(V07) Vi, (Y0, @)}

with b} =27, 32 V;|. Vb;=0b) /00 and where

v(@) is the estimate of the asymptotic covariance

matrix of  defined by the inverse of the relevant
observed information matrix. See Prasad and Rao
(1990) and Rao (2003, pp. 107-110).

Let 7; denote the sample inclusion probability of
populatlon unit 7 in small area j. A design-based direct

estimator for area j mean m,; is

—1
wy = -1 1 .
my; = (Ziesjﬂji ) Zlésj”iji Yii = Zlésj Wi Vii
with Dies Wi = 1. (13)
J

The estimator (13) uses sampling weights and also
design consistent but fails to borrow strength. One
alternative approach in the literature is the pseudo-
EBLUP (You and Rao 2002, Rao 2003, section 7.2.7),
which is a model assisted method of small area
estimation. Recollect from (11) that the EBLUP is
defined by replacing the unknown area j mean m,; by
an estimate of its expected value given the observed
sample values of ¥ in area j and the area j values of X.
The pseudo-EBLUP is then defined by replacing m,; by
an estimate of its expected value given the value of its

design-consistent estimate 7

yi and the area j values of

X. That is, under (3) the pseudo-EBLUP of m,, (You
and Rao 2002, Rao 2003, section 7.2.7) is

rh);;suedoEBLUP — fj s +(1_f')
{X;,ﬁw+z £0Z Vi O —iTBe) (14

A

~2
Wj; . Here B,

¥, and 62; are pseudo-maximum likelihood estimates

based on the weights w; and Z;; and n%)’; are design-

consistent estimates of Z ; and m,; that are defined in

exactly the same way as 7z above.

An approximately model-unbiased estimator of the
MSE of pseudo-EBLUP is

v(’/h);;suedoEBLUP) - (1_fj)2 {gljw(6~)+g2jﬂ,(é~)
+2g3:(0; }+N_ (1= f)60 (15)

where

gljvT/ (eﬂ/) = Z}r (ZVTJ - ZJSWVJ_SSWZJSWZW)Z

jr>

’

92 05) = (X, =07 o) (X, — b7 ).

and

23 (0;) = 1r {(Vb}w Visoi (Vb5 )V(éfv)}

with b =Z, 3.7 Vi

jw JrewH jsw Y jssw o
Vb, = 9VD'; /00 = [ab); /007 ,ab; /0T ]

and where v(éw) is the estimate of the asymptotic
covariance matrix of 0 .

Note that the pseudo-EBLUP (14) is essentially
motivated by the idea of estimating the area j mean by
its conditional expectation under (3) given the value of
the usual design-consistent estimator (13) for this
quantity. As such, this is indirect estimators like the
EBLUP. By construction, (6) is a direct estimator of m,
because it is a weighted mean of the area j sample
values of Y. In contrast, (11) and (14) are the indirect
estimators because they cannot be expressed in this
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form, being a weighted mean of all the sample values
of Y. Clearly, under (3), both MBDE (6) and pseudo-
EBLUP (14) will not be as efficient as the EBLUP. The
pseudo-EBLUP estimator relies on the design
consistency of n%;’y for robustness. Indeed relying on a
large sample property of a small sample statistic seems
rather optimistic. However, (6) has the advantage of
being a simple weighted mean of the area i sample data,
and therefore should be more robust to misspecification
of (3) than the more model-dependent estimator (11)
as well as model-assisted estimator (14). Direct
estimators like (6), i.e. estimators that are defined as
weighted averages of the sample data from the small
areas of interest, have a number of practical advantages,
including simplicity of construction and aggregation
consistency.

3. EMPIRICAL RESULTS

In this section we illustrate the performance of
various small area estimation methods via design-based
simulation. Our basic data come from the same sample
of 1652 Australian broadacre farms data from the
Australian Agricultural and Grazing Industries Survey
(AAGIS) that were used in the simulation study
reported in Chambers (1996). Here however we used
these sample farms to generate a target population of
81982 farms by sampling with replacement from them
with probabilities proportional to their sample weights.
We then drew 1000 independent stratified random
samples from this (fixed) population, with total sample
size in each simulation equal to the original sample size
(1652) and with strata defined by the 29 different
Australian broadacre agricultural regions. Sample sizes
within these strata were fixed to be the same as in the
original sample. Note that these varied from a low of
6 to a high of 117, allowing an evaluation of the
performance of different small area estimation methods
across a range of realistic small area sample sizes.
Table 1 shows the stratum population and sample sizes
for this population.

We considered the 29 regions as small areas and
total cash costs (A$) of the farm business over the
surveyed year (i.e., TCC) as variable of interest. Our
aim was to estimate the average total cash costs in each
of the 29 different regions. In doing so, we used the

Table 1. Regional population and sample sizes

Region N n Region N n
1 79 6 16 2683 60
2 115 10 17 2689 60
3 189 30 18 2847 34
4 330 25 19 3056 74
5 388 36 20 3139 51
6 465 19 21 3910 73
7 604 36 22 4486 117
8 729 40 23 4550 80
9 737 30 24 4587 95
10 964 30 25 5368 83
11 1586 51 26 5528 103
12 1778 62 27 6489 108
13 1984 55 28 6980 81
14 2182 47 29 10933 77
15 2607 79

fact that these regions can be grouped into three zones
(Pastoral, Mixed Farming, and Coastal, see Fig. 1), with
farm area (hectares) known for each farm in the
population. This auxiliary variable is referred to as Size
in what follows.

The linear relationship between the target variable
(TCC) and Size was rather weak in the original sample
data with R* and Root MSE value of 0.05 and 970358

1st digit: State
2nd digit: Zone
3rd digit: Region

[ Zone digit 1: Pastoral zone
" | Zone digit 2: Wheat-sheep zone
B Zone digit 3: High rainfall zone

Fig. 1. Map of Australian broadacre zones and farming regions
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respectively. Further, in the original sample data there
were two massive outlier points. When model was fitted
by excluding these two outliers, linear relationship
between TCC and Size improved with comparatively
larger value of R? (=0.24) and smaller Root MSE
(=410044). However, these outlier data points were
retained while generating the population as well as in
small area estimation to examine the performance to
this effect. This relationship between TCC and Size
further improved when separate linear models were
fitted within six post strata. These post-strata were
defined by splitting each zone into small farms (farm
area less than zone median) and large farms (farm area
greater than or equal to zone median). The statistical
details for model fitted with these post-strata given in
Table 2 clearly reflect this.

Table 2. Statistical details for model fitted with post-strata

Source DF | Sum of Squares | F Ratio |Prob > F
Size 1 6.262e+11 5.3970 | 0.0203
Stratum 5 5.625¢+13 96.9683 | 0.0001
Size*Stratum | 5 6.866e+13  [118.3618 | 0.0001

R% = 0.48 and Root MSE = 340620

The model fitting was also done to test whether
linear mixed models are suitable for AAGIS data. The
results in Table 3 show that region specific intercepts
are significantly different for different regions. The
model further improved when we used region specific
slope for Size along with region specific intercepts.
Consequently, the matrix X of auxiliary variable values
in linear mixed model was defined so as to include an
effect for Size, effects for the post-strata and effects for
interactions between Size and the post strata. Two
different specification for X (corresponding to whether
an intercept was included or not) and two different
specifications for Z (corresponding to whether a random
slope on Size was included or not) were used to specify

Table 3. Statistical details for model fitted with Region-
specific intercepts

Source DF Sum of Mean F Prob >
Squares Square | Ratio F

Region 28 | 7.006e+12| 2.5e+11 {2.2159]0.0003

Error 1621 | 1.83e+14 | 1.13e+11

C. Total | 1649 | 1.9e+14

R?*=0.037, Root MSE=336031

Table 4. Statistical details for model fitted with Region-
specific intercepts and Region-specific slopes
with Size variable

Source DF | Sum of Squares | F Ratio |Prob > F
Region 28 7.28e+13 42.3776 | 0.0001

Size 1 5.144e+11 8.3842 | 0.0038

Region*Size | 28 8.536e+13 49.6857 | 0.0001

R?=0.486, Root MSE=247702

Table 5. Different mixed model specifications considered
in the simulations

Model Model Type X VA

| Random Intercept Intercept
Intercepts included only

11 Random Intercept Intercept +
Slopes included Size

Il | Random Slopes Intercept Size only
with fixed included
intercept

IV | Random Slopes Intercept Size only
with zero intercept | excluded

linear mixed model and hence the different small area
estimation methods based on this model. These four
specifications are set out in Table 5.

We use the Akaike Information Criterion (AIC)
evaluated as AIC = —2logLik + 2k, where k is the
number of parameters in the model and /ogLik is the
log-likelihood of the model. The smaller the value of
AIC is better. We also use likelihood ratio (LR) test as
criteria to find the best model. The values of test
criterions obtained from ANOVA function in R for
models I and II are set out in Table 6. The p-value for
the test statistics comparing models | and II is about
4%, indicates that model Il is significantly better fit than
model I. The AIC criterion is nearly same for both
models but marginally smaller for model II.

For the AAGIS farm data considered in this
analysis, models [ and II are appropriate (with II fitting

Table 6. Analysis of variance results for comparing two
linear mixed models

Model | DF AIC logLik LR p-value
I 14 | 49992 | —24982
I 16 | 49989 | —24979 | 6.43 0.04
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marginally better) while models Il and IV are badly
specified. We use REML estimates of random effects
parameters throughout, obtained via the /me function
in R (Bates and Pinheiro 1998). For each model, three
different estimators of the 29 regional means were
computed, along with corresponding estimators of their
MSE. These were the EBLUP (11) with MSE estimator
(12), referred to as EBLUP below; the MBDE estimator
(6) based on EBLUP weights (5) and with MSE
estimator (10), referred to as MBDE below; the Pseudo-
EBLUP (14) with MSE estimator (15), referred to as
Pseudo-EBLUP below.

Three measures of estimation performance were
computed using the estimates generated in the
simulation study. These were the relative bias (RB) and
the relative root mean squared error (RMSE), both
expressed as percentages, of regional mean estimates
and the coverage rate of nominal 95 per cent confidence
intervals for regional means. Table 7 presents the
distribution of values of these measures (all computed
over the 29 regions) generated by EBLUP, Pseudo-
EBLUP and MBDE under models I — IV.

In Table 7 we note that the average relative biases
under MBDE are smaller than those under EBLUP for
all models except model IV. However, the average
relative bias of Pseudo-EBLUP is marginally smaller
than both MBDE and EBLUP under model II and III.
The average relative RMSEs for MBDE are marginally
higher than those for EBLUP under models I and Il and
smaller for models III and IV. Indeed, under model 1
the average relative RMSEs of Pseudo-EBLUP is
marginally lower than both MBDE and EBLUP.
Average coverage rates for MBDE are relatively higher
than those for EBLUP and Pseudo-EBLUP under all
models. It is evident that for correct specifications of
the working models (i.e. model I and II), between
EBLUP and Pseudo-EBLUP, the EBLUP is marginal
better. However, for wrong model specifications
Pseudo-EBLUP is worse (e.g., models IV) and still
dominated by the EBLUP. In contrast, MBDE is
performing well and generates robust sets of small area
estimates. Although neither approach dominates, it
seems clear that, MBDE is more robust to model
misspecification than the indirect estimators
(i.e., EBLUP and Pseudo-EBLUP).

Figs. 2 — 4 show the region-specific performances
generated by EBLUP, Pseudo-EBLUP and MBDE

(ordered by increasing population size). Fig. 2 shows
the better relative bias performances of all methods
under models I and II and their worse relative bias
performance under model IV. Fig. 3 shows that the
relative RMSEs of regional estimates generated by
MBDE are comparable with those generated under
EBLUP, with neither approach dominating. The
Pseudo-EBLUP is more volatile under model IV.
Overall, with the exception of two regions (3 and 21),
it seems that MBDE under model II performs
marginally better overall.

In the two regions (3 and 21) where MBDE fails,
inspection of the population and sample data indicated
that this is because of a few outlying estimates. In fact,
the outlying values of MBDE for region 21 are all
caused by the presence of a single massive outlier (TCC
> A$30,000,000) in the original sample. This outlier
was included in the simulation population (twice) and
then selected (in one case, twice) in 37 of the 1000
simulation samples. Recall that in explanatory data
analysis described above these outlier data points were
very well identified but were retained in small area
estimation to explore the performance of different
methods in such cases. If we discard the outlier driven
estimates in regions 3 and 21 then the MBDE approach
seems the method of choice for regional estimation in
our simulation study. This is confirmed when we return
to Table 7 and now consider the columns containing the
median values of relative mean error and relative
RMSE.

Fig. 4 summarizes region-specific variation in the
nominal 95 per cent confidence interval coverage rates
generated by EBLUP, Pseudo-EBLUP and MBDE. If
we ignore the outlier driven results for regions 3 and
21, the results displayed in Fig. 4 show that MBDE
approach gives marginally better coverage rates under
Models I and II. A close look at these results also
indicates that in the event of model misspecification
(e.g. under Models III and IV) the MBDE coverage rate
is more robust.

4. CONCLUSIONS AND FURTHER RESEARCH

The empirical results reported in the previous
section are evidence that the MBDE estimator perform
well and represents a real alternative to the indirect
estimators (i.e., model-dependent EBLUP estimator and
model-assisted Pseudo-EBLUP estimator), with the
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Table 7. Distribution of performance measures for EBLUP, MBDE and Pseudo EBLUP methods of small area estimation

Model Method Min Q1 Mean Median Q3 Max
Relative Bias,%

| EBLUP —10.75 -4.70 4.24 1.55 6.77 54.49
MBDE —18.49 -2.33 —2.49 -0.82 -0.11 03.91

Pseudo EBLUP -9.96 -5.05 5.12 2.46 7.79 61.83

1 EBLUP -7.92 -3.02 2.98 0.61 6.12 32.20
MBDE -17.21 -2.20 -2.13 -0.47 0.60 04.07

Pseudo EBLUP -13.28 -5.91 1.96 -1.19 5.53 52.53

11} EBLUP —13.24 -6.42 4.52 1.95 11.31 63.89
MBDE —25.44 —7.54 -3.84 0.13 2.11 07.50

Pseudo EBLUP —15.77 -6.47 3.49 0.10 6.57 65.45

v EBLUP —24.86 —11.12 1.17 -2.63 7.26 64.06
MBDE —25.44 -3.25 2.20 2.06 9.39 27.39

Pseudo EBLUP —34.43 -20.50 25.45 -4.56 54.81 267.99

Relative RMSE,%

| EBLUP 7.41 11.26 19.92 15.74 21.32 103.99
MBDE 7.83 11.36 20.56 14.45 21.61 110.95

Pseudo EBLUP 7.54 11.86 19.86 16.40 20.48 95.61

I EBLUP 6.90 11.27 19.87 16.40 22.38 53.84
MBDE 7.51 10.28 20.15 13.16 17.22 110.91

Pseudo EBLUP 7.96 11.78 23.04 17.43 28.34 102.41

11} EBLUP 6.17 14.79 23.89 19.94 28.39 64.94
MBDE 7.69 11.06 21.14 14.44 21.24 110.96

Pseudo EBLUP 5.61 12.86 24.02 18.23 26.41 101.82

v EBLUP 6.15 13.01 23.38 19.73 28.22 65.09
MBDE 7.47 13.39 22.35 20.61 25.43 68.89

Pseudo EBLUP 5.70 15.55 54.18 29.36 69.66 345.44

Coverage rate

| EBLUP 0.22 0.90 0.90 0.98 1.00 1.00
MBDE 0.48 0.92 0.92 0.94 0.98 1.00

Pseudo EBLUP 0.24 0.89 0.89 0.97 1.00 1.00

I EBLUP 0.11 0.86 0.85 0.92 0.98 1.00
MBDE 0.40 0.93 0.93 0.95 0.99 1.00

Pseudo EBLUP 0.26 0.89 0.89 0.95 0.99 1.00

I EBLUP 0.08 0.56 0.69 0.72 0.89 1.00
MBDE 0.44 0.94 0.94 0.96 0.99 1.00

Pseudo EBLUP 0.24 0.79 0.83 0.87 0.95 1.00

v EBLUP 0.08 0.50 0.65 0.71 0.92 1.00
MBDE 0.88 0.95 0.97 0.98 1.00 1.00

Pseudo EBLUP 0.07 0.48 0.69 0.80 0.95 1.00
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Fig. 2. Region-specific relative mean errors for EBLUP (dashed line), Pseudo EBLUP (thin line) and MBDE (solid line) under models I
(top left), II (top right), III (bottom left) and IV (bottom right). Regions are ordered in terms of increasing population size.
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(top left), II (top right), III (bottom left) and IV (bottom right). Regions are ordered in terms of increasing population size.



Hukum Chandra / Journal of the Indian Society of Agricultural Statistics 65(3) 2011 347-358 357

1.104

Coverage Rate

T T T T T T T T T T T T T T T T T T T T T T 1T 1T T T T 11
1234567 89 1011121314151617181920212223242526272829

Regions

Coverage Rate

T T T T T T T T T T T T 1T 1T T 1T 1T 11T
101112131415161718192021222324 2526272829

N
[
w-
~-
o
o
~-
oo
-

Regions

1.104

Coverage Rate

T T T T T T T T T T T T 1T I T T T T T T 1T 1T T T T 11T
1234567 89 1011121314151617181920212223242526272829

Regions

Coverage Rate

'
i
"
1

00 1T T T T T T T T T T T T T T T T T T T T T T T
1234567 89 1011121314151617181920212223242526272829

Regions

Fig. 4. Region-specific coverage rates for EBLUP (dashed line), Pseudo EBLUP (thin line) and MBDE (solid line) under models I (top
left), II (top right), IIT (bottom left) and IV (bottom right). Regions are ordered in terms of increasing population size.

associated easy to calculate MSE estimator providing
good coverage performance. Furthermore, they indicate
that the MBDE approach may be more robust than the
EBLUP and Pseudo-EBLUP in the realistic situation
where linear mixed model (3) is a working model,
rather than the (unknown) true model. These results
should not be taken as a blanket recommendation for
MBDE over EBLUP or Pseudo-EBLUP, however.
These results are indication of what happened in
practical situation.

There are issues that impact on the utility of the
MBDE estimator that remain unresolved. For example,
negative weights, can lead to impossible (i.e. negative)
estimates. Since such values are easily identified, they
should not cause problems in real life. However, the
problem remains of how to modify the weights to
ensure they are strictly positive. Methods for dealing
with negative weights under ‘standard’ regression
models have been discussed in the literature (Huang and
Fuller 1978, Deville and Sarndal 1992) but their

application in the context of mixed models remains to
be explored. Further, the MBDE estimator being a
linear combination of just the small area data values is
more susceptible to outliers than the EBLUP or Pseudo-
EBLUP estimator.
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