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SUMMARY

Ranked Set Sampling (RSS) is a useful technique for improving the estimates of mean and variance when the sampling
units in a study can be more easily ranked than actually measured. Under equal allocation, RSS is found to be more precise
than simple random sampling (SRS). Further gain in precision of the estimate may be obtained with appropriate use of unequal
allocation. For skewed distributions, the optimum gain in precision is obtained through unequal allocation based on Neyman’s
approach, in which the sample size corresponding to each rank order is proportional to its standard deviation. However, the
unavailability of the standard deviations of the rank orders makes the Neyman’s approach impractical. The two models, viz.,
‘t-model” and ‘(s, t)-model’ suggested by Kaur et al. (1997) are also impractical due to their dependence on population parameters
of rank orders and complexities in finding the optimum values of ‘t’ and (s, t)’. In this article, we propose a simple and systematic
approach for unequal allocation for RSS with skew distributions. The proposed approach performs better than SRS and RSS
with equal allocation. It also appears to perform better than the RSS with unequal allocation using ‘t-model’ and quite close to
the “(s, t)-model’ in most of the situations we have considered. The performance of the proposed procedure relative to existing
models has been numerically evaluated for some skewed distributions.
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1. INTRODUCTION

Ranked Set Sampling (RSS), introduced by
Mclntyre (1952), is a cost effective sampling scheme
that can be utilized to potentially increase precision. It
is highly useful when actual measurement of the
variable of interest is costly or time-consuming but the
ranking of the set of items according to the variable can
be done without actual measurements. Such situations
normally arise in environmental monitoring and
assessment that require observational data. Since the

1978), forage yields by Halls and Dell (1966), mass
herbage in a paddock by Cobby et al. (1985), shrub
phytomass by Martin et al. (1980) and Muttlak and
McDonald (1992), tree volume in a forest by Stokes and
Sager (1988), root weight of Arabidopsis thaliana by
Barnett and Moore (1997) and bone mineral density in
a human population by Nahhas ef al. (2002). A few
other situations where RSS may be applied have been
discussed by Patil et al. (1994). A complete review of
the applications and theoretical work on RSS can be
found in Patil et al. (1994), Kaur ef al. (1995) and Chen

inception of RSS by MclIntyre (1952) and development
of its mathematical foundation by Takahasi and
Wakimoto (1968), various researchers have investigated
the utility of RSS and the conditions under which it may
be useful and cost-effective. RSS has been satisfactorily
used to estimate pasture yield by Mclntyre (1952,
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et al. (2004).

For the present discussion, we restrict ourselves to
the problem of unequal allocation in RSS for skewed
distributions. For the case of equal allocation or
balanced RSS designs, it has been shown by Takahasi
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and Wakimoto (1968) that the relative precision (RP)
of RSS with respect to simple random sampling (SRS)
lies between 1 and (k+1)/2, where £ is the set size [The
relative precision (RP) may be defined as the ratio of
the error variances of the two designs that are different
but are based upon the same sampling unit and sample
size]. However, with the use of unequal allocation,
Takahasi and Wakimoto (1968) showed that the RP of
RSS relative to SRS lies between 0 and . This shows
that an appropriate use of unequal allocation can
increase the performance of RSS beyond that
achievable with equal allocation. However, if it is not
applied properly, the performance of RSS with unequal
allocation can be even worse than that of SRS. For RSS
with unequal allocation, Mclntyre (1952) suggested the
use of optimum allocation based on Neyman’s approach
in which the sample units are allocated into ranks in
proportion to the standard deviations of each rank.
However, Neyman’s optimal approach is impractical
due to the fact that the standard deviations of the ranks
are rarely available beforehand. In many environmental
situations, the data obtained is skewed towards the right
tail of the distribution. For instance, verification data
obtained after the remediation of a site is generally
skewed with heavy right tail. McIntyre (1952) observed
that skewness has an adverse effect on the performance
of RSS and suggested more measurements in the
“longest tail of the distribution”. For skewed
distributions, Takahasi (1970), Yanagawa and Shirahata
(1976), and Yanagawa and Chen (1980) suggested the
use of random allocations in RSS. It has been usually
observed that for a positively skew distribution, the
variance of the order statistic increases with the rank
order. Utilizing this, Kaur ef al. (1994) and Kaur et al.
(1997) suggested two ‘near’ optimal approaches for
positively skewed distributions and called them as the
‘t-model’ and ‘(s, t)-model’. They found that the
performance of both models was better than the equal
allocation model. They also studied the role played by
skewness, kurtosis and coefficient of variation for
obtaining the allocation factor(s) and in devising the
rules-of-thumb. For the right choice of allocation
factors, the ‘(s, t)-model’ performs better than the ‘t-
model’, although the performance of Neyman’s method
is the best. Although Kaur et al. (1994, 1997) observed
that the ‘t” and (s, t)’ models were near optimum, their
use in real situations may also be restricted due to their
dependence on the population parameters of rank orders
and complexities involved in determining the allocation

factors ‘t” and ‘s’. Moreover, if the allocation factor(s)
are fractional, a number of adjustments are required to
make them integers. The rules-of-thumb suggested by
them for this purpose also provide only a rough idea
of the allocation factor(s).

In this article we suggest a simple and systematic
approach for unequal allocation in RSS for skewed
distributions. The proposed procedure performs better
than the equal allocation model. It also appears to
perform better than the ‘t-model’ and quite close to the
‘(s, t)- model’ for most of the situations. In Section 2,
we discuss the basic framework of RSS with equal and
unequal allocation. Section 3 describes the proposed
approach for unequal allocation with skewed
distributions. In Section 4 we discuss some examples
using positively skewed distributions to demonstrate the
utility of the proposed procedure. The results of the
study have been concluded in Section 5.

2. RANKED SET SAMPLING WITH EQUAL
AND UNEQUAL ALLOCATION

In balanced ranked set sampling or RSS with equal
allocation, a simple random sample of size k is taken
from the population and is ranked on the basis of
personal judgment or a concomitant variable. The
smallest observation from this set is chosen for
measurement. A second sample of size & is taken from
the population and the observation judged to be the
second smallest is selected for measurement. The
process is continued until the item with the largest rank,
i.e., the k" item, in the " sample of size k is selected
for measurement. This completes a RSS cycle. This
cycle is then repeated m times to get n = km
observations for measurement out of N = k*m
observations selected from the population.

2.1 RSS with Equal Allocation

Let Ypp i=1,2, . k7= 1,2, ..., m denote the
measured unit for the i rank order in the /™ cycle. For
fixed 7, the ¥4, 7 = 1, 2,...,m are i.i.d. with mean £,
and variance O'(Zi:k) .Let # and ¢ be the mean and
variance of the population. Then, an unbiased estimate
of population mean is the ranked set sample mean given
as

Yir)j (D

m
=1

_ 1 &
Yiyeqr = k—leZ
i=1j
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where the subscript ‘eql” denotes equal allocation. The

variance of Zk)eql is
_ I R
Var¥yeq = —5— O - @
k“m ;2

For SRS with n = km measurements, the variance
of the mean is

0,2

Var (Ygps ) = o

Therefore the relative precision (RP) of RSS with
respect to SRS is

Var(YSRS) _ o’

RP SRS:eql —

Var(f ) 1 )
(k)eql 2
“ ;Z{O'(i:k)

o2
o2
where is the average of the within-rank variances.

2.2 RSS with Unequal Allocation

For unequal allocation, suppose m,(> 0) units are
measured corresponding to the " rank, i = 1, 2,..., k.
This results in » = m; + m, + ... + m; measurements
for the sample. Denoting the measured units by ¥,
i=1,2,.., kj=1,2,., m, an unbiased estimator of
the population mean is given by

_ 1&T
Y, ) 4
(k) 1 >
uneq ki:1rni

where the subscript ‘uneql’ denotes unequal allocation

”li
and ;= 3 ¥y, -
j=1
The variance of Zk)uneql is
2
= 1 & Gy
Var(Y(k)uneql) = k_zz : (%)
i=1

For Neyman’s optimum allocation, we have
nO(;k)

m= = ©)
2Tk
i=1
and
2
_ 1 (& o
Var (Yoo ) = —| D, 00 =— @)
((k) Pt) nkz(,g{ (-k)] n

_ 13 . L
where & = —Za(i:k) is the average of the within-rank
i=1
standard deviations. The relative precision of Neyman’s
optimum allocation relative to SRS is given by

Var (Ygs ) _ 0'_2
Var(Y(k)opt) &’

and the relative precision of Neyman’s optimum
allocation relative to RSS with equal allocation is

— Var(f(k)eql ) _ o’
RP 1-op W =7 ©)

®)

RP SRS:opt

2.2.1 The t-model

For the ‘t-model’, the highest order statistic is
quantified 7 times more frequently than the remaining
order statistics. For this model, the allocation of units
is

m=m = my= .. =m = % @)1 (10)
and the sample size n = (k— 1 + )m’. For this model

vV 1 ’ ’

Var Yy, ) = o (@ + bl (11)
k-1

where a’ = 20'(21-:,() and b" =
i-1

precision 17(k)t of relative to SRS is

k*o?

(k=1+1)(a"+b'/1)

and the relative precision of 17( k) With respect to RSS

with equal allocation is

0'(2,(:,(). The relative

(12)

RP s =

2 2
RPeq/'t = k O-/ ’ (13)
' (k—=1+1t)a +b'/t)
On optimizing (13), the optimal value of ¢ is

obtained as
bk -1
o = (14)

2.2.2 The (s, t)-model

In (s, t)-model, the two largest observations are
assigned more weight than others. For this model

M1 m
m’'=m=my=...= =k

(1<s<p) (15)
N
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and the sample size n = (k— 2 + s + )m”’. The variance
of the estimate for this model is

— 1
Var (Y, ) = e (a+bls+clt)y (16)
& 2 2
z Ofiky» b = O —1x)> and ¢ =
i=1

The relative precision of the (s, t)-model’ with
respect to SRS and RSS with equal allocation is given

as

where a = O'(Zk:k) .

2 2
RPgps. = Ko (a7)
' (k—=2+s+1t)(a+b/s+clt)
and
k*o?
RPeql:st= (18)

(k—=2+s+1t)(a+b/s+clt)
The optimum values of (s, #) are obtained by
optimizing (18) as

(k—2)b (k —2)c

(19)

As discussed in Section 1, the ‘t” and ‘(s, #)’ models
have difficulties in implementation and in obtaining the
allocation factor(s). The following section deals with
a simple and systematic approach for unequal allocation
in RSS with skewed distributions.

3. THE PROPOSED SYSTEMATIC APPROACH
FOR UNEQUAL ALLOCATION

In Section 2, we have seen that the Neyman’s
allocation proposed by Mclntyre (1952) for unequal
allocation provides the precise estimates for skewed
distributions. However this approach is impractical.
Two near optimum models, viz. the ‘t-model’ and the
‘(s, t)-model’ were suggested by Kaur er al.
(1994,1997). However, as discussed in Section 1, it is
difficult to implement those models in practical
situations where the population parameters are
unknown. Utilizing the facts that the variances of the
order statistics for positively skewed distributions
increase with their rank orders and m; o< 0, we
propose a very simple and systematic approach for RSS
with unequal allocation for positively skewed
distributions. The proposed approach performs better
than SRS and RSS with equal allocation for positively
skewed distributions. The performance of the proposed
approach also turns out to be better than or quite close
to that of ‘t” and (s, t)’models.

We know that for positively skewed distribution,
0'(21:,{) < 0'(22:,{) <. Sa(zk:k) and for optimum allocation
m; o< 0. Combining these two results, it may be
inferred that for positively skewed distributions, the
higher order statistics should be measured more often
than the lower order statistics. For this reason, we
propose that the " order statistic should be measured
r-times in the ranked set sample. That is, the first order
statistic should be measured only once, the second order
statistic twice and similarly the K™ order statistic in the
ranked set sample of size k should be measured & times.
The proposed procedure for RSS with unequal
allocation for positively skewed distributions is as
follows:

Randomly draw £ units from the population and
rank them on the basis of inspection or a concomitant
variable. Select the smallest ranked unit for
measurement. Again draw £ units randomly from the
population and after ranking them select the second
smallest unit for measurement. Repeat this process
twice so as to select two second smallest units. Now
again randomly draw k units from the population and
select the third smallest unit for measurement. Repeat
this process three times so as to select three third
smallest units for measurement. Continue this process
until & units of the &A™ rank (largest rank) are selected
for measurement. Thus, for the proposed model,

fori=1,2, ..., k. (20)
For this model, the number of units to be measured
k(k+1)

m; = i,

willben=1+2+ ...+ k= , and the total

units randomly drawn from the population will be

2
+1 . . .
N = % Denoting the quantified units Y,

i=1,2,..,kj=1,2, .., by an unbiased estimate of
the population mean (u) is given by

= 1
Yaysys = ;2 @1
i
where S, = 2 Yix); - The variance of ¥ is given
j=1
as
_ 1 & 0'( o _ k
Var(Yyeys) = _22 L a; , (22)
=1 g
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2
O(ik
where a; = O

. The relative precision of Zk)lyys

4
compared to SRS is

o’ /n ko

VClr(Y_Ek)sys ) B (k + l)zk:ai

i=1

RPSRS:sys = (23)

Comparing with the RSS with equal allocation, the
relative precision of the proposed estimator is

k
— 2Y ol
 Var(Yeeq) EI o
RPeql:sys - = - k : (24)
Var (Y(k)sys) (k + l)zal'

i=1

It can be easily shown that RP, ;.. > 1 if 0'(21:,() <

0'(22:,() <. < O'(Zk:k).

Since RSS with equal allocation is always more
efficient than SRS, the proposed scheme is always more
efficient than SRS and RSS with equal allocation. The
relative precision of the proposed estimator with respect

to the ‘t-model’ is given by

RP, = ——
1.5y, Var (Y(k)sys) k(k + l)iai

i=1

V‘”(Y(k») 2k-141)(d +b/1)

(25)

The relative precision of the proposed estimator
compared to the (s, t)-model’ is

_ Var(Yu.)
RPst:sys m .

_ 20k —=2+s+t)(a+bls+clt)

k
k(k+1) g
i=1
It is difficult to compare theoretically the proposed
approach with the ‘t-model’ and the ‘(s, t)-model’.
However, in the next section we illustrate with the help
of some examples from positively skewed distributions
that the proposed approach performs better than the ‘t-
model’ and quite close to the (s, t)-model’ in most of
the situations.

(26)

4. EXAMPLES

In this section we numerically evaluate the
performance of existing methods and the proposed
method for standard Lognormal [LN(0,1)] and standard
Gamma [G(r), for r = 1, 2 and 3] distributions.

The performance of different unequal allocation
models relative to SRS for standard Lognormal and
Gamma distributions for set sizes 3, 4 and 5 is shown
in Table 1. It is observed from Table 1 that for all cases
the performance of the proposed method is better than

Table 1. Relative precision (RP) compared with SRS of equal allocation, t-model (optimum t), (s, t)-model (optimum (s, t)),
proposed allocation method and Neyman allocation for standard Lognormal [LN(0,1)] and standard Gamma G(r),
r =1, 2 and 3, distributions; for k£ = 3, 4 and 5.

Relative precision (RP)
Distributions k Eq. alloc. r-model (s.0)-model Proposed Neyman’s
Method allocation
3 1.339 2.036 2.120 1.859 2.120
LN(0,1) 4 1.471 2.433 2.605 2.174 2.640
5 1.589 2.783 3.049 2.449 3.139
3 1.636 1.968 2.039 2.012 2.039
G(1) 4 1.920 2.367 2.497 2.475 2.538
5 2.190 2.740 2.924 2.920 3.029
3 1.753 1.953 1.987 1.962 1.990
G(2) 4 2.096 2.378 2.443 2.403 2.460
5 2.424 2.785 2.881 2.828 2.930
3 1.801 1.946 1.966 1.913 1.966
G(3) 4 2.169 2.380 2.421 2.326 2.430
5 2.524 2.799 2.863 2.720 2.887
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that of the equal allocation method. For the LN(0,1)
distribution, the performance of the proposed method
is marginally lower than that of the ‘t” and the (s,
t)’models when the allocation factors ‘t’ and ‘(s, t)’ take
the optimal values. For the standard Gamma
distribution with parameter » = 1, the performance of
the proposed method is found to be better than that of
the ‘t-model’ and even better than that of the (s, t)-
model’ for k= 5. For the standard Gamma distribution
with parameter » = 2, the performance of the proposed
model is better than that of the ‘t-model” and quite close
to that of the (s, t)-model’. For the standard Gamma
distribution with parameter » = 3, the performance of
the proposed model is quite close to that of the ‘t” and
the “(s, t)” models.

To make a comparison amongst the various
methods for unequal allocation, the multiple plots of
RPggseq1- RPsgs.» RPsps.sio RPsgs.ope A RP g, versus
‘t” for the standard Lognormal and the Gamma
distributions were obtained for £k = 3, 4 and 5. The
relative precision remains an increasing function of set
size (k) in all the cases. For all the cases the proposed
method performs better than the equal allocation model.
With the increase in ¢ ( > 4), the RP of ‘t” and (s.t)-
models starts decreasing for G(1), G(2) and G(3)
models, whereas for the proposed model it remains
constant and hence the proposed model performs better
than ‘t” and (s,t)-models for these distributions when
1>4.

The plots for RP for (i) Equal allocation; (ii) t-
model; (iii) (s, t)-model; (iv) Proposed method;
(v) Neyman allocation for standard lognormal [LN(O,
1)] and Gamma [G(r), for r=1, 2 and 3] distributions
for k=3 are given in Fig. 1. From Fig. 1, we find that
for all the cases, the proposed method performs better
than equal allocation model. It also performs better than
t-model and quite close to (s,t) and Neyman allocation
models for G(1) and G(2) distributions.

The plots for RP for these distributions for A=4 are
given in Fig. 2. From Fig. 2, we find that for all the
cases, the proposed method performs better than equal
allocation model. It also performs better than t-model
and quite close to (s,t) and Neyman allocation models
for G(2) distributions. For G(1) distribution, the
proposed model performs even better than (s,t)-model.

The plots for RP for &=5 for the five models under
comparison are given in Fig. 3. From Fig. 3, we find

LN(0, 1)
25
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Fig. 1. Relative Precision for (1) Equal allocation; (2) t-model;
(3) (s, t)-model; (4) Proposed method; (5) Neyman
allocation for standard lognormal [LN(0, 1)] and Gamma
[G(r), for r=1, 2 and 3] distributions for =3.
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Fig. 3. Relative Precision for (1) Equal allocation; (2) t-model;
(3) (s, t)-model; (4) Proposed method; (5) Neyman
allocation for standard lognormal [LN(0, 1)] and Gamma
[G(r), for =1, 2 and 3] distributions for £=5.

Fig. 2. Relative Precision for (1) Equal allocation; (2) t-model;
(3) (s, t)-model; (4) Proposed method; (5) Neyman
allocation for standard lognormal [LN(0, 1)] and Gamma
[G(r), for r=1, 2 and 3] distributions for k=4.
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that for £=5, the results are quite similar to the results
obtained for £&=4. For all the cases, the proposed method
performs better than equal allocation model. It also
performs better than t-model and quite close to (s,t) and
Neyman allocation models for G(2) distributions. For
G(1) distribution, the proposed model performs even
better than (s,t)-model.

5. CONCLUSION

In this article, we have proposed a simple and
systematic approach for unequal allocation for RSS
with skew distributions. The proposed approach appears
to perform better than SRS and RSS with equal
allocation. This approach also performs better than RSS
with unequal allocation using t-model, and quite close
to the (s-t)-model suggested by Kaur et al. (1977) and
the Neyman allocation model in most of the situations.
The proposed approach overcomes the drawbacks of ‘t’
and (s,t)-models and is more practical. On the basis of
these results, we may conclude that the proposed
method is a good alternative to the ‘t” and (s, t)” models
for positively skewed distributions.
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