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SUMMARY

Data generated from the designed experiments is analyzed under the assumptions that the error distribution of observations
is normal and homogeneous and data do not contain any outlier. If any of these assumptions is violated, the conclusion drawn
from this analysis may be false. In the present paper various M-estimation procedures are applied to designed experiments.
Efficiencies of these procedures are measured in terms of average variance. An example is given to illustrate the fact that
application of robust method changed the conclusions drawn with analysis of original data. For computation of M-estimation,

SAS codes are written in IML and given as Appendix.
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1. INTRODUCTION

Data generated from the designed experiment is
analyzed under certain assumptions. If any of these
assumptions is violated, the conclusion drawn from this
analysis may be erroneous. For example, like many
other fields data obtained from designed experiments
is analyzed assuming that the error distribution of
observations is normal and homogeneous. These
assumptions are frequently violated in practice. In
general many examples of such kind could be quoted
in linear regression models. But in particular, it is also
a common phenomenon in case of designed
experiments. Recently conducted study by Indian
Agricultural Statistics Research Institute, New Delhi
(Parsad et al. 2004) revealed that many of the past
experiments conducted in different parts of India have
non-normal and heterogeneous distribution of error
variances.

Apart from the problem of normality, the data set
may contain some outlying observations. Outliers are
likely to occur in the data generated from experimental
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designs due to disease and/or insect attack on some
particular plot of the experiment, mistakes creeping in
during recording of data, etc. The fact that a small
subset of the data can have a disproportionate influence
on the estimated parameters or predictions is of concern
to users of regression analysis; it is quite possible that
the model-estimates are based primarily on this data
subset rather than on the majority of the data. If some
of the observations are different in some way from the
bulk of the data, the overall conclusion drawn from this
data set may be wrong. In general, literature on outliers
is very vast. A number of statistics are now developed
to detect outliers in a data set following linear model.
Bhar and Gupta (2001) developed some statistics for
detecting outliers in designed experiments. They
modified Cook statistic for its application to design of
experiments, which is a follow up work of Cook (1977).
Once an observation is detected as an outlier, the next
question may arise what to do with this outlying
observation? Should we discard this observation?
Deletion of observation from the existing set is not
always recommended. On the other hand, robust
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method of estimation is advocated to dampen the effect
of an outlying observation. In case of linear regression
models, robust regression method is now very popular
to tackle the problem of non-normal error variance and
the presence of outliers. This approach is designed to
employ a fitting criterion that is not as vulnerable as
least squares to unusual data. The most common general
method of robust regression is M-estimation, introduced
by Huber (1964). In this method, the objective function
to be minimized to get the parameter estimates is
weighted according to the residual of each observation.
Literature on robust regression particularly on
M-estimation is now vast. A good number of objective
functions to be minimized are proposed. Most of these
functions are non-linear in nature and therefore, normal
equations for solving the parameter estimates are also
non-linear in parameters. Iteratively Reweighted Least
Squares (IRLS) (Holland and Welsch 1977) methods
are employed to solve these equations.

However, not much work on these powerful
methods in design of experiments is available in the
literature. Carroll (1980) applied this technique to
unreplicated factorial experiments and Chi (1994) to
Cross-Over Trials. But no work seems to be available
in case of block designs. In the present investigation
an attempt is made to apply these methods to some
existing data set after doing necessary modifications,
wherever required. If outlier is present in the data set
and we use the usual least squares method of analysis
the problem that occur generally is that all the
observations including the outlying observations get
similar weight and the weight is unity. But if any
observation is found to be outlier then it must get some
lesser weight than the clean observations. This concept
is utilized in the analysis of the design of experiments.
For giving appropriate weight to different observations
we have used the available functions of M-estimation
that are more frequently used in the regression analysis.
In block designs, we are generally interested in the
estimation of some functions of some sub-set of
parameters. This fact was kept in mind while applying
this method. In Section 2 M-estimation procedure as
applied in linear regression model is discussed followed
by its application to designed experiments. In
Section 3 M-estimation in designed experiments has
been illustrated with an example. Relevant matters
regarding M-estimation in designed experiments have
been discussed in Section 4.

2. M-ESTIMATION

Consider the linear model
y=XpB+e (D

where y is a n X 1 vector of observations, X is an n X p
design matrix of rank p and B is an n x 1 vector of
parameters. In general, we may define a class of robust
estimators that minimize a function p of the errors, i.e.,

- xB).
(@)

Minimize 2 p(g) = Minimize z (v
B i=1 B i=1

wherex! denotes the i row of X.

An estimator of B from this set up is called an
M-estimator. If the method of least squares is used
(implying the error distribution is normal), then p (e;)
= () el-z. Generally instead of p(e,), the function
p (e;j/0) is minimized, where O is a scale parameter.

IRLS method is used to obtain the parameter
estimates. Suppose that an initial estimate ﬁo is
available and that s is an estimate of scale. Then the
equations for solving for parameter estimates are given
as

3 xljy,(yi‘_"iﬁ)
i=1 §

$ WO =xB) s I 4G - xB)/ s}

i=1 (v —xB)/s

3)
or zxijwio (v —xiB)/s =0, 4

where = p’, first derivative function of p and

V/[(yi —xiBy )/S] . A
Wio = o~ if y; # Xy (%)
=1 it y, = xiBo
In matrix notation equation (4) becomes

X'WoXB = X'Wy, ©6)

where W, is an n X n diagonal matrix of “weights” with
diagonal elements w,y, w,, ..., W, given by equation
(5). Now one step estimator is

B = (X'W,X) "X W,y. (7)
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At the next step the weights are recomputed from

equation (5) but using ﬁl instead of ﬁo- This process

is continued till the convergence criterion is met.

A number of objective functions that are applied
in linear regression model are available in the literature.
For example Huber’s function, Andrew’s function,
Hampel’s function and Ramsay’s function are widely
used functions. All these functions have been applied
in case of designed experiments. A comparison of the
efficiency of these functions has also been done. Some
commonly used functions are presented in the Table 1.

In case of M-estimation a number of estimators of
o are proposed. The commonly used estimate of the
error mean square is taken as (Huber 1973)

S wl i —xip)/ sy

A2 =l
o = n—0(X) ) (3

where d (X) is the rank of X matrix.

2.1 M-estimation in Designed Experiments

The model for general block design is given by
y=At+u1+D0O+e¢ 9)
where y is a n X 1 vector of observations, A" is n X v
incidence matrix of treatments, T is a v X 1 vector of
treatment effects, D’ is a n X b incidence matrix of

blocks, 0 is a b x 1 vector of block effects, 1 is a unit
vector of order n X 1 and €1is a n X 1 vector of errors.

We now write down X = [X, X,], where X, = A’

T
and X, = [1 D] Similarly, B = |u| = [gl ], where
6 2

B, =[] and B, = m

Now under M-estimation, the normal equations for
estimating the parameters in designed experiments are
given as

X'WXB = X'Wy

Table 1. Commonly used objective functions

Criterion p(2) wz) w(z) Range
Least squares (1/2)2 z 1.0 |z] <oo
Huber’s t function (12)2 z 1.0 |z| <t
lz|1—(1/2)7 ¢ sign(z) t/)z] |z|>1¢
N 5 ll—exp (—aIZI)}
Ramsay’s function a zexp (—a|z|) exp(—d| z ) |z] <oo
(1+al)
Andrews’ wave function a[l-cos(z/a)] Sin (z/a) Sin (z/a)/(z/a) |z|<arm
2a 0 0 |z|>ar
(%) z 1.0 |z|<a
Hampel’s function alz|—(h)d a sign (z) al|z | a<|z|<bh
(a(c)z |- (L)) - b) — (a sign (z)(c- ale-| z |)/ b<|z|<c
7416 |z )(c~ b) (|2 (c~b)
alb+c—a) 0 0 |z|>c

Source: Montgomery, Peck and Vining (2001).

Note: p (z) denotes the function of residuals, ¥(z) denotes derivative of p (z) and w(z) denotes the weight.



326 |

Ranjit Kumar Paul ef al. / Journal of the Indian Society of Agricultural Statistics 65(3) 2011 323-330

X{WX, X{WX, |[B]  [X{Wy o)
XWX, XWX, |8y ] | Xowy !
X; WX, B, + X{ WX,B, = X[ Wy (1)
Xé WX1B1 + Xé WX2B2 = Xé Wy. (12)

From (11), we can get B, = (X5 WX,) [ X Wy —
X, WX, B,], where A” is a g-inverse of A, i.e., AA"A
=A.
Substituting this B, in (12), we get
Xi WX B + X]WX,(X; WX))™

[X; Wy — X3 WXB,] = X| Wy,
or
[ X WX, — Xi WXy(X; WX,) X, WX 1B, = Xi Wy

— X, WX,(X WX,) X3 Wy

The above equations can be written as

B, =Q, (13)
where C = [ X] WX, — X WX,(X}; WX,) X}, WX, ]
(14)
and Q = X{ Wy — X{ WX,(X; WX,) X; Wy.
(15)

In case of design of experiments, we are generally
interested in estimation of treatment contrasts. Let P be
a (v-1) x v matrix of all (v-1) set of elementary
treatment contrasts. Then the M-estimates of this set of
contrasts is given as

A

P, = Pt = PCQ, (16)

The variance of Pt is given as Var(P7T) =
6> PCP’, where 67 is obtained from equation (8).

In linear model the sensitivity of the classical least
squares estimates to departures from normality, such as
possible presence of outliers, has led to various
proposals for robust methods of estimation. Parameter
estimation is usually only a first step in the analysis of
data arising from a linear model. A classical least
squares analysis often focused upon the analysis of
variance, which tests simultaneous hypothesis in large
subsets of the parameters. Since the terms in a classical
analysis of variance are quadratic forms in least squares
estimates, one would expect that the sensitivity of the
estimates to departures from normality should be
inherited by the tests. In fact, for moderate to heavy
tailed distributions or in the presence of outliers, it

appears that the classical F test does lose power. In view
of this fact, many attempts have been made to develop
appropriate procedures for testing linear hypotheses.
For detail on these testing procedures one may refer
Bickel (1976) and Schrader and Hettmansperger (1979).

However, the most natural test is based on the
M-estimates directly. In this method first p is derived
from the IRLS algorithm and then by using the final
configuration of the weights as fixed and given a priori,
a least squares weighted analysis of variance is done.
In the present study this approach, i.e., weighted
analysis of variance has been adopted.

Now the contrasts sum of squares are given by
(Pz) (PC P (P1)
And the test statistic for testing the significance
of the contrasts is

P2y (PC P) (P1)
F= 6‘2 - E/—l,error df

For testing a particular elementary contrast, say
p; & where p/ is the i row of contrast matrix, the test
statistic is
_ @D @ C p) (pi )

F - Fl error df
6 ’

The analysis of variance table is given as follows:

Analysis of Variance

Sources of variation DF SS

Treatment (adjusted) v-1 QCQ

Block (unadjusted) b-1 B'’K'B - CF

Error nv-b+l | yy-BK'B
-Q CQ

Total n-1 yy — CF

where B = DW'2y, CF = (1'W'"?y)*/n and W' is a
Grammian square root of W. A program is written in
SAS IML to carry out the analysis. This program is
given as an Appendix.

3. ILLUSTRATION

An experiment with 10 treatments was carried out
in the randomized complete block (RCB) design with
3 replications at GK.V.K., Bangalore, India with a view
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to study the integrated weed management in cowpea significant even at 5% level of significance, whereas
(Net plot size: 3.60m X 2.80m). The treatments of the block effects are significant at 5% level of significance.

experiment are as follows: . . .
P By using the Cook statistic for detection of

10 Weeding treatments: outlying observation, as given by Bhar and Gupta
T0=Weedy check (2001) we see that the observation corresponding to the
T1=Weed free treatment number 1 and block number 3 is an outlier.

The value of Cook-statistics is given in Table 4. This

T2=Sowing at 30 cm row spacing outlying observation is deleted and analysis of variance

T3=0.75 Kg a.i/ha of pendimethalin is done again. The result is presented in Table 5. It is
T4=1.00 Kg a.i/ha of pendimethalin now seen that the treatment effects are now significant
o .
T5=1.25 Kg a.i/ha of pendimethalin at 5% level of significance.
T6=Hand weeding at 3 weeks after sowing (w.a.s.) Table 4. Cook-statistics
T7=Interculturing at 3 w.a.s Yield | Treatment | Replication | Cook-Statistic
T8=T3+ Hand weeding at 3 w.a.s 0.36 1 1 0.1586
T9=T3+ Interculturing at 3 w.a.s 1.35 2 1 0.0043
. . . 1.15 3 1 0.0878
The data on grain yield per plot in quintals for
different treatments is given in Table 2 0.97 4 ! 0.0422
. . . 1.15 5 1 0.0043
Table 2. Yield of cowpea in quintal/plot
0.75 6 1 0.0054
Replication 0.88 7 1 0.0020
Treatments 1 2 3 0.80 8 1 0.0043
1 0.36 0.68 1.52 110 9 I 0.0125
2 1.35 1.50 1.35 0.95 10 ! 0.0259
3 115 131 0.48 0.68 ! 2 0.1757
4 0.97 1.10 0.59 1.30 2 2 0.0176
5 1.15 1.40 1.05 131 3 2 0.0116
6 0.75 1.25 0.80 1.10 4 2 0.0002
1.40 5 2 0.0007
7 0.88 1.30 0.67
1.25 6 2 0.0088
8 0.80 1.15 0.60
9 110 145 L4l 1.30 7 2 0.0165
’ ' ' 1.15 8 2 0.0058
10 0.95 1.72 0.98 145 9 5 0.0103
We first conducted usual analysis of the data. The 1.72 10 2 0.0837
analysis of variance table is given in Table 3. From the 1.52 1 3 0.6684
table it is observed that the treatment effects are not 135 > 3 0.0044
Table 3. Analysis of variance with the original data 0.48 3 3 0.1634
— 0.59 4 3 0.0365
Sou.rCfes of Significance 1.05 5 3 0.0014
variation DF SS MS F Level
0.80 6 3 0.0004
Treatment | 9 1.136 | 0.126 | 1.50 0.223 0.67 7 3 0.0302
Block 2 0.772 | 0.386 | 4.58 0.024 0.60 8 3 0.0202
Error 18 1.520 | 0.084 141 9 3 0.0456
Total 29 | 3428 0.98 10 3 0.0165
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Table 5. Analysis of variance after deleting the outlier

Table 8. Analysis of variance (Ramsay’s function)

Sources of Significance Sources of Significance
variation DF SS MS F Level variation DF SS MS F Level
Treatment 1.784 | 0.198 | 6.69| 0.0004 Treatment 1.562 | 0.173 | 3.604 0.0090
Block 2 0.920 | 0.460 | 15.53| 0.0001 Block 2 1.288 | 0.644 | 13.416] 0.0002
Error 17 0.503 | 0.029 Error 18 0.868 | 0.048

Total 28 3.207 Total 29 3.718

3.1 Robust Analysis through M—estimation

We now applied various M-estimation procedures

to this data and obtained the analysis of variance.
Different values of the tuning constants used in the
objective functions are determined as follows.

For Huber’s function the value of the constant 7 = 1.5

For Andrew’s function ¢ = 1.339

Average variance for the set of treatment contrasts
is obtained as 0.040.

Table 9. Analysis of variance (Hampel’s function)

For Ramsay’s function a = 0.3

For Hampel’s function a = 1.7, b =3.4, ¢ = 8.5

3.2 Weighted Analysis of Variance

The results are given in the following tables.

Table 6. Analysis of variance (Huber’s function)

Sources of Significance
variation DF SS MS F Level
Treatment 1.505 | 0.167 | 3.866 0.0070
Block 2 1.007 | 0.503 | 11.642|  0.0005
Error 18 0.778 | 0.043

Total 29 3.290

Average variance for the set of treatment contrasts
is obtained as 0.034.

Table 7. Analysis of variance (Andrew’s function)

Sources of Significance
variation DF SS MS F Level
Treatment 1.668 | 0.185 | 3.758 0.0080
Block 2 1.296 | 0.648 | 13.141|  0.0003
Error 18 0.887 | 0.049

Total 29 3.851

Average variance for the set of treatment contrasts
is obtained as 0.043.

Sources of Significance
variation DF SS MS F Level
Treatment 1.659 | 0.184 | 3.408 0.0120
Block 2 1.350 | 0.675 | 12.487| 0.0003
Error 18 0.973 | 0.054

Total 29 3.982

Average variance for the set of treatment contrasts
is obtained as 0.046.

It is clear from the above tables that due to
presence of outliers the analysis with the original data
set resulted in wrong conclusions. That means the
treatment effects are non significant in the least squares
analysis with the original data. Whereas due to
application of M-estimation in the original data we have
seen that the analysis results in a valid conclusion.

4. DISCUSSION

Different M-estimation procedures as available in
the literature were applied to the above data. In this data
set treatment effects are not significant with the original
data. But robust analysis revealed that the treatment
effects are actually significant at 5% level of
significance. That is, inferences to be drawn are
reversed through robust analysis. Actually this
experiment contains outliers. Similarly, in regard to the
significance of the elementary contrasts, as with the
original data the treatment effects are non significant
so the contrasts are also non significant. But after
deletion of outlying observation from the data set if we
go for contrast analysis, we see that almost every pair
of independent elementary contrasts are highly
significant. The result of contrast analysis is nearly
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same for all the functions adopted for the robust
analysis of the designed experiments.

The reasons for giving wrong results through
original data might be the presence of outlying
observations. Once these outlying observations are
deleted, results tallying with that obtained through
robust analysis. However, from statistical point of view
it is not advised to delete any observation, because
every observation carries some information that should
be exploited. Robust analysis actually gives small
weights to those outlying observations, thus extracting
some information from that observation.

However, a question may arise in our mind that
which M-estimation procedure should we use? It is
difficult to answer this question, because these
procedures depend on weights and weights are
determined by observations. From experiences of
analyzing a good number of experiments, it is observed
that Huber’s function performs well. This is observed
from the fact that the average variance of the set of
elementary treatment contrasts is small for most of the
experiments for this function comparing to other
M-estimation functions. However this is empirically
true, there is no theoretical evidence.

In those experiments where no outlier is present,
there may be little difference between the analysis with
original data and analysis through robust regression. Off
course the levels of significance may be changed a little
bit. It is therefore, generally advised to carryout analysis
through ordinary least squares (OLS), if we are sure that
the data do not contain any outlying observation and
the errors are normal, because OLS estimates posses
some good statistical properties. But in general we do
not know the form of distribution of the errors in
advance. It is therefore, suggested to apply robust
analysis always. Even the error distribution is normal;
we may not loose much efficiency.
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APPENDIX

SAS Code for computing different M-estimation

data ran;
input trt blk y;
datalines;

proc iml;
use ran;
read all into X;
mrowX=nrow(X);
ncolX=ncol(X);
v=max(X[,1]);
x1=j(mrowX,v,0);
X2=j(mrowX,1,1);
y=X[,ncolX];
/*Create Delta*/
do i=1 to mrowX;
x1[i,X[i,1]]=1;
end;
/*create the matrix for the nuisance factor*/
do j=2 to ncolX-1;
order=max(X[,j]);
DI1=J(mrowX,order,0);
intB=max(X[,2]);
/* create the diagnal matrix of block size*/
K=J(intB,intB,0);
do i=1 to mrowX;
DI[LX[i,j]]I=1;

KIX[i,2],X[1,2]]1=K[X[i,2],X[i,2]]+1;

end;
X2=X2|D1;
end;
x=x1[|x2;
betahat0=j(ncol(x),1,0);
betahat0=ginv(x*x)*x‘*y;
yhat=x*betahat0;
resid=y-yhat;
n=nrow(resid);
rank=round(trace(ginv(x)*x));
s1=median(abs(resid-median(resid)))/0.6745;
/*calculation of the standarized residuals*/
z1=j(n,1,0);
zl=resid/sl;
a=1;
wO0=j(n,1,0);
w=j(n,n,0);
/*calculation of weight matrix*/
do while(a>0.005);
do i=1 to n;
z1[i,1]=abs(z1[i,1]);
if z1[i,1]<=2 then
wO[i,1]=1;
else wO[i,1]=2/z1[i,1];
end;
w=diag(w0);
betahat1=j(ncol(x),1,0);
betahat] =ginv(x *w*x)*(x *w*y);

yhat1=x*betahatl;
resid2=(y-yhat1);
s2=median(abs(resid2-median(resid2)))/
0.6745;
72=(y-yhat1)/s2;
a=abs((s2-s1)/s1);
z1=72;
s1=s2;
end;
ww=sqrt(w);
C=(x1*wW*x1)(X 1 *wW*x2)*(ginv(x2 *W*x2))*(x2*w*x1);
Q=x1*w*yx | “*w*x2*(ginv(x2‘ *w*x2))*x2‘ *w*y;
/*Q is the treatment total vector®/
tauhat=ginv(c)*Q;
TSS=Q**ginv(c)*Q;
B=D1‘“*ww*Y;/*B is the block total vector*/
one=j(n,1,1);
cf=(one‘*ww*y)*(one‘ *ww*y)/n;
BSS=B‘*inv(k)*B-cf;
bms=Dbss/(intB-1);
TMS= TSS/(v-1);
totss=(y* *w*y)-cf;
ess=totss-tss-bss;
ems=ess/(n-rank);
FT=TMS/ems;
FB=bms/ems;
pvalt=1 - probf(ft,v-1,n-rank);
pvalb=1 - probf(fb,intB-1,n-rank);
print “Huber function data set” 25;
print pvalt pvalb ft fb;
/*calculation of the all possible elementary
contrasts*/
P=i((v-1).v,0);
do i=1 to v-1;
pli1]=1;
j=itl;
plijl=1;
end;
print p;
conout=j((v-1),4,0);
contss=j((v-1),1,0);
do i=1 to nrow(p);
pi=pli.];
/*calculation of t statistics*/
contst=((pi*tauhat)‘ *ginv((pi*ginv(c)*pi‘))*(pi*tauhat))/
ems;
conpval=1 - probf(contst,1,n-rank);
conout[i,3]=contst;
conout[i,4]=conpval;
end;
varcon=j(v-1,v-1,0);
varcon=p*ginv(c)*p‘*ems;
abgvar=trace(varcon)/(v-1);

print®  trt vs’‘trt © “ F Value “‘Pr >F
print varcon abgvar;

run;

quit;



