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SUMMARY

Expressions for probability of misclassification (PMC) for multiple groups sample linear discriminant function (MSLDF)
are obtained and some approximations are suggested in case of three groups. The PMC for MSLDF has also been obtained by
leave-one-out method using simulated samples from three multivariate normal populations to examine the performance of
proposed approximations. The numerical results based on simulated data revealed that the PMC for MSLDF are closer to
those provided by the approximations suggested. The modified Johnson approximation is suggested for practical applications
to obtain PMC in case of three groups sample linear discriminant function.

Keywords: Multiple groups population linear discriminant function, Multiple groups sample linear discriminant function,

Probability of misclassification.

1. INTRODUCTION

Fisher’s linear Discriminant function is a popular
technique in the field of Discriminant analysis. This
yields optimal results in the sense of smallest
probability of misclassification (PMC) when parameters
are known. Various methods have been discussed in the
literature for discriminating between two populations.
The multiple groups population Discriminant function,
discussed in most multivariate text books (e.g.
Anderson 1984), has been extended to situation of
mixed continuous and categorical data by Krzanowski
(1986). The multiple groups Discriminant function has
many applications in the field of agriculture such as to
identify insects to different species, animals to different
disease status or production level categories, flowers to
different categories, buffaloes into different breeds, etc.
The use of population Discriminant function may not
be justified in the same way when parameters are not
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known. To investigate the performance of sample linear
Discriminant function, one needs the sampling
distribution of classification statistic (). The exact
distribution of W in case of two groups was derived by
Sitgreaves (1961) but the expression was too
complicated to be used, numerically. A method of
computation for cumulative distribution function of W
by simulation was discussed by Teichroew and
Sitgreaves (1961) but actual simulation was not done
due to the then low speed of computers. Singh (2001)
has derived approximate sampling distribution and
whence the PMC for two groups sample linear
Discriminant function.

We here consider the case of multiple groups and
obtain approximate expressions for PMC associated
with multiple groups sample linear Discriminant
function (MSLDF). The PMC for MSLDF has also
been obtained by leave-one-out method (Lachenbruch
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and Mickey 1968) using simulated samples from three
multivariate normal populations to examine the
performance of the proposed approximations for PMC.
The leave-one-out method gives more reliable
assessment of performance than the re-substitution
method which uses same units both for parameter
estimation and assessment of performance and hence
an overoptimistic assessment of performance is to be
expected. In the leave-one-out method the same general
procedure is adopted as for the re-substitution method
but the unit to be classified is omitted from the database
used to estimate the parameters in the model.

2. MULTIPLE GROUPS POPULATION LINEAR
DISCRIMINANT FUNCTION

Consider the problem of classifying an observation

into one of several populations. Suppose 7, 7,, ..., T,
be the m multivariate normal populations with N(z,
2) as the density function of population, 7z, i = 1, 2,
., m. Let X be a multivariate random observation to
be classified into one of these populations. If population

parameters are known then define the random variables;
U0 = [X = (1/2) (g + )1V (- ) (2.1)
U =~ Uy (X, 0,j= 1,2, cum, i #)

Let Uj(x) be the value of random variable U,(X)
at some point x assumed by the random variable X. The
classification procedure divides the space of
observations into m mutually exclusive and exhaustive
regions R, R,, ..., R,, such that if the observation x falls
into region R; it will be allocated to population 7. The
regions of classification (see, Anderson 1984) are
defined as

Uix)=20, 2.2)
If X belongs to populatlon 7;, then Uj; is distributed

as N((1/2)Ajzl, Az) where Aﬂ, the Mahalanobls distance

i=1,2 am,i%)

between two multivarlate populations 7; and 7, is
defined as
= (1) 2 - 1) 2.3)
The covariance of U, Uy 1s given by
]k Ji (/u /uk) /Z_ (lu lul) (24)

The probability of misclassification of x from
population 7; to any other population 7; is given by

PMC (7.) = 1 - PCC () 2.5)

The expression for PCC(7), the probability of
correct classification (see Anderson 1984), is defined
as

PCC (1) = [ fidujduy..du; ;\du; j,...du,

R;

2.6)

where Jiis the joint density function of U, Upi=1,2,

., m, i #j. In case of multivariate normal populations,
J;is density of (m — 1)-variate normal distribution. The
numerical value of PCC(7) can be worked out by using
the tables of multivariate normal distribution. A simple
approximation for bi-variate and tri-variate normal

integrals is given by Cox and Wermuth (1991).

3. MULTIPLE GROUPS SAMPLE LINEAR
DISCRIMINANT FUNCTION

The multiple groups population linear
Discriminant function, described in the previous
section, is based on the assumption that the parameters
are known. In most applications the parameters are not
known but are estimated from samples of each
population. Suppose we have a sample x ) (x=1,2,

» N, j=1,2, ..., m), from a p-variate normal
population 7 with distribution N, Z). These are taken
as training samples to obtain estimates of 4, and Z. The
estimates are defined as

X = for,uj,j=1,2,...,m

and

(j))(x((xj) _f(j))’ fOI‘ 2’

~.
Il
—_
L

The classification statistics are defined as

W) = [x=(U2)E+5)IS" (% -%)  (G.1)

The classification procedure assigns the

observation x to population 7, if x belongs to the region
defined by

W) 20,i=1,2,....m,i#] (3.2



B. Singh / Journal of the Indian Society of Agricultural Statistics 65(3) 2011 317-322

| 319

3.1 Probability of Misclassification

PMC (7,), the probability of misclassifying X from
population 7 , is given by
PMC (7)) = 1 - PCC(7; ) 3.3)
and the probability of correct classification PCC for
population 7 is given by
PCC(m)=P(W;20,i=1,2,....,m,i#j|m)

The distribution of W, has been derived in the
Appendix. Since the sample covariance matrix S is a
positive definite matrix, the chi-square variates Vﬂ- in
(A.5) will always assume positive values. Hence, PCC
(7 can be expressed as

PCC () =PWU{'2U{,i=1,2,....m i#j|m)
(3.4)

3.2 Approximations

The numerical evaluation of expressions (3.4) is
not possible in general situations. We here consider the
case of three groups and workout approximations based
on two-variate F-distribution (see Johnson and Kotz
1972). These approximations are compared with
corresponding results based on simulated samples from
three multivariate normal populations. Although this
comparison may not give exact answer but it frequently
gives results that are sufficiently accurate for most
practical purposes.

Assume that U, and U,; distributed
approximately as ajixi, and bﬂxf,, where the constants
a; and b;; are obtained by equating the means of U,

. 2 2 .
and U,;; with means of a;x,, and b, respectively.

Following two approximations are obtained as
modification to Bulgren and Johnson approximations
(see Johnson and Kotz 1972, page 242) for two-variate
F-distribution.

Modified Bulgren Approximation: Al
PCC (7)) = P(Uy15, > Uypp, Upy3 > Uypz)
= Lyalpii /2, pi 221 4, 153lp10/2, pri/21 (3.5)

where

Wiy = apllay +dp)  wiz = as/(a; +d),

Pn=prP— /912

dyy = by {1 = pi}, diy = by3{1 - pi} and

=4 13/ (ApAy).

PCC (my) = P(Uy; > Uy, Ujps > Uyys) (3.6)
= Lio1[P12/2, P12 2] 123 12/2, p12/2]
wy = ayl(ay) + dyy), Waz = ap3l(ay; + dyy),
Pn=DP— Pzz
dy; = by {1 —,022}= dyy = by3{l —Pg} and

P =Dy 23/ (Ag1A93).
PCC (m) = P(U,3; > Uyy, Upzy > Upsy)

= 1,51[p13/2, p13/2] Lyolp13 /2, p13/2] (3.7)
wyy = a3 /(az) + dyy), wyy = agpl(az, + dsy),
Pi3=DP— P32
dyy = by {1 - p3}. dyy = by, {1 — p3} and

P = Ay 3/ (Az1A5).
Modified Johnson Approximation: A2
PCC (m) = P(Uy1, > Uypy 5 Upys > Uyys)
= L12lP21/2, p1/2] Ly15lp21/2, p2i/2] (3.8)

where

where

where
wo = apllayn + dj), ws = ajlla + df),
_p-2pip”"
B 1-2p2p"!
diy = by, {1-2pp)} and
diy= b3 {1-Cp’lp)}
PCC (my) = P(Ujy; > Uy, Ujpz > Upps)

=1, 21[P2/2, P2o/2] 1, 23[P22/2, pro/2]
3.9)

Do

where
s ’ 4 _ ’
why = aylay + dyy), Wiy = arsl/(ar; + das),

_p-2pip”
P~ ———>5 1
1-2pyp

dy, = by {1 - 2p5/p)} and
d33 = by {1 - 2pIp)}.
PCC (m3) = P(Uy31 > Upsp, Uyzy > Usyy)
=~ L, 31[P13/2, q13/2] Lysolpa3/2, pay/2]

(3.10)
where
Wiy = ayl(ay) + dsy), wy = agpl(ay, + diy),
P~ Loonft 2p232 p__ll
1-2p5p
djy = b3 {1 - 2p5/p)} and

3y = by {1 — (2p5/p)} -
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4. SIMULATION

Let X'be N,(4, Z) and Y be N,(0, ]). The vector ¥
can be generated by p successive calls to a univariate
normal generator. A popular technique for generating
standard normal variate is due to Box and Muller
(1958). If Z is a non-singular matrix and A is p X p matrix
such that AA” = X, then X = AY + u is the appropriate
linear transformation to Y to achieve N,(u, Z). The
choice of A is not unique. Perhaps the best choice for
A is the Choleski factorization which is the lower
triangular matrix L for which LL’ = Z.

Here, we generate N; + N, + N3+ 3 observations
from two 3-variate normal populations, N, + 1 from 7,
N, + 1 from 7, and N3+ 1 from 7, with given values
of parameters. First N, + N, + N; observations are used
to obtain SDF. The remaining three observations, one
from each population, were used to get numerical value
for SDF using the leave-one out method for each group,
separately. This process was repeated 1000 times to get
one value of PMC associated with SDF for each group,
separately, for one fixed set of parameters. The
corresponding theoretical values are also computed
from the expressions (3.5 — 3.10) in section 3 for
comparison with simulated results. The numerical
results presented in the Table are for the following
parameter values of an example for three groups
Discriminant function given in Anderson (1984, p 231);

m=3,p=4, 1y =(164.51, 86.43, 25.49, 51.24),
1, =(160.53, 81.47, 23.84, 48.62) and

15 =(158.17, 81.16, 21.44, 46.72),

0, =5.74, 0,=3.20, 3= 1.75 and 0, = 3.50

The matrix of correlations for all three populations
is given by
1.0000
0.5849
0.1774
0.1974

0.5849
1.0000
0.2094
0.2170

0.1774
0.2094
1.0000
0.2910

0.1974
0.2170
0.2910
1.0000

The covariance matrix is calculated as

32.9476
10.7434

10.7434 17820 3.9658
10.2400 1.1726 2.4304
17820  1.1726 3.0625 1.7824
3.9658  2.4304 1.7824 12.2500
(N, N, N3) = (20, 20, 20), (30, 20, 10),
(40, 10, 10), (15, 15, 15), (20, 15, 10),
(25, 10, 10) and (10, 10, 10 )
AL, =2.982, Ay =6.974 and A% =2.062
P, = 0.8658, p, =—0.3894 and p; = 0.7983

5. NUMERICAL RESULTS

The actual values of PMC associated with 3
groups population LDF as given in Anderson (1984) are
0.21, 0.42 and 0.24, respectively. The numerical results
in the Table reveal that the PMC (simulated) associated
with SMDF are more than the PMC associated with
population LDF. It is quite natural and has also been
reported by Singh (2001) in case of two groups sample
LDF. The PMC simulated (S) values for SLDF are
closer to those provided by approximation A2. Hence
this approximation may be used for practical
applications in case of three groups Sample Linear
Discriminant Analysis.

Table- Probability of misclassification

Sample Size Population 7; Population 7, Population 7

(N, N,, N5) S A, A, S A, A, S A, A,
(20, 20, 20) 0.251 0.183 0.253 0.424 0.491 0.514 0.290 0.259 0.324
(30, 20, 10) 0.223 0.177 0.240 0.437 0.483 0.500 0.301 0.254 0.308
(40, 10, 20) 0.215 0.167 0.261 0.469 0.489 0.524 0.291 0.258 0.324
(15, 15, 15) 0.229 0.175 0.234 0.461 0.479 0.501 0.283 0.243 0.309
(20, 15, 10) 0.244 0.171 0.227 0.438 0.476 0.497 0.297 0.250 0.313
(25, 10, 10) 0.246 0.168 0.230 0.481 0.484 0.499 0.307 0.252 0.316
(10, 10, 10) 0.265 0.165 0.212 0.452 0.468 0.489 0.309 0.232 0.290
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6. PRACTICAL EXAMPLE

The identification of economic meat animals at
slaughter age on the basis of some variables
(parameters) at earlier age preferably at birth is an
important problem in animal sciences. Fifty six lambs
were measured for 4 variables, namely body weight
(X)), height (X;), length (X3) and heart girth (X}) at birth
were measured. These animals were categorized into
three (low, medium and high) groups based on nine-
months (slaughter age) body weight. Three groups
sample Discriminant function was used to classify these
animals into 3 identified groups using SAS and two
approximations. The PMC were calculated by using two
approximations (4, and 4,) and by the leave-one out
method (L) using SAS software. The sample means, the
pooled covariance matrix (S) and of other details these
animals are given below;

Ny=N,=17,N;=22, m=3,p=4
X, = (2.92, 33.35, 38.06, 33.29),
X, = (3.55, 35.29, 40.65, 35.06) and
X3 = (3.93,37.41, 42.00, 36.18)

0.347 0.875 0.896 1.180
| 0.875 4957 3479 3.685
0896 3479 5714 3.643

1.180 3.685 3.643 6.863
D} = 15279, D5=0.9818 and D} = 4.2767
P = 0.9429, p, =—0.7223 and p; = 0.9110

7. FINDINGS AND LIMITATIONS

The numerical results for PMC in section 6 though
confirm the findings through simulation that
approximation 2 provides results more close to the
leave-one-out method the results using approximations
(4,, 4,) indicate relationship of PMC with the
Mahalanobis distances. The group 1 is more distant
from groups 2 and 3 in comparison to group 3 from
groups 1 and 3 followed by group 2 from groups 1 and
3 and the PMC is in reverse order. This trend is not

depicted by the values obtained through the software
SAS. The PMC by two approaches is same for
population 2 which has low distances from the two
populations.
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APPENDIX
Distribution of W-.

We write W; in (3.1) as
W;l_ qul S_ Vojis
where g, =

(A.1)
(X +%), vy = [x =1/ +%)].
Now suppose that X € 7, then

Uy ~ N[,Uj—ml-, (NJT1 + Ni_l) %] and

vy ~ N[, = 1)/2, (1+(4N)™ + (4N) ™) Z]
Let
uy; = N [ NN,/ (N;+ N)] uy,; and
vi;i= N [ANN, (N, + N, + 4NN)] vy,
Then
uy; ~ N [(,— 1) V{NN; (N, + N))}, Z] and
v~ N[ = ) NANN; (N, + N, + 4NN} Z),
W=k [(uy; + vlj[),S_l(ulji i)
= (uy—vy)'S vl (A2)
where k; = (I/BNN)V [(N;+ N) (N, + N;+ 4ANN))] .
Note that (u;; + v;;) and (u; — v,;) are
independently normally distributed (see Moran 1975)
as (uy; +vy;) ~ N(51ji, klji 2) and (2= Vi) ~ N(éljl"
k, ;; ), where
i = [, — ) N NN, {(V,+ Ny
+ (N, + N+ 4NN,
ki =2 [1+{(NV;— N) {NV, + N;)
(N,+ N, +4NN) }'2],
& = [(,— ) N NN, {(N,+ N,y
—(V+ N+ ANN)T 3,
—{N;— N) {(N; + N))
(N,+ N, + 4NN}
Let #;= (uy,+vy;) (k) and
tyji = (U= Vi) (ij[)_l/z
Then one writes that
sz‘ = Ky [klji tlji,S_l tlji - k2ji t2ji,S_l t2ji] (A.3)

where tl i N [(51]1/\/ kl]z) Z] and t2]1 ~N [(d2]l /\/k2]1) Z]
are 1ndependent

ky =211

Now, by using the theorem (5.2.2) of Anderson
(1984, p163), we write the classification statistic W as
W=k ky; T (A4)

2
Ji Y - kji k2ji (5 ji®

where
713’1’ ~[mp/(n—p+ DIF, ,_ p+l(A12ji) and
T22jl. ~[mp/n—p+ DIF, ,_,. I(AZJL)
with F,, (A
(1/k

) as non central F variates and Arj, =
r=1, 2, that is,

)7!

~—
rji ) 8rjt Z rjt’

A = (NN, Tk )L, + Ny
+ (N, + N, + 4NN) "1 A% and

A3 = (NN, ey )L, + Ny ™
— (N;+ N+ 4NN T A%

The exact dlstrlbutlon of W; (A.4) is difficult to
obtain since T} ;i and T2 i are not independent. Their
denominators are 1nterrelated with identical distribution
except when p = 1, in that case Hotelling T? variates
are independent with same denominator.

Here, we assume the same denominator for all
values of p and obtain an approximate expression for
PMC associated with SLDF. The performance of this
approximation in two-groups Discriminant function by
Singh (2001) has been found good for practical
applications.

With the assumption of same denominator we
write W), as

W= Uy~ Uy)V, (A.5)

JP

2 2
where Ui~ gljiXi;( Ajji), Uy ~ g2jic;27( Ayji)and V), ~

;(2,,_p+1 are independent chi-square variates. The
constants g,;; = nk;; k,;, r = 1, 2 are defined as
2= (WANN)IN.~ N, + {(N,+ N))
(N;+ N;+ 4NN, )} and
82ji = (”/4NJN1)[N1_ N, + {(Nj'" N)

(N;+ N;+ 4NN}
E(Uy;) = gy{p + Alj;). and
E(Uy) = gp + A3 ) (A.6)

The expressions for X € 7z; can be obtained by
interchanging 512ﬂ and & ji-



