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SUMMARY

In this paper, we obtain the closed form expressions for covariance of different types of fuzzy numbers including triangular,
trapezoidal, parabolic and Gaussian. An estimate of the fuzzy parameter is obtained by minimizing the possibilistic mean square
error and the method is applied to fuzzy volatility estimation problem. We also study the recursive estimation for some fuzzy
volatility models with asymmetric innovations using possibility theory.
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1. INTRODUCTION

Possibility theory is a mathematical theory for
dealing with certain types of uncertainty and is an
alternative to probability theory. Zadeh (1978)
introduced possibility theory as an extension to his
fuzzy set theory. The use of fuzzy set theory as a
methodology for modeling and analyzing certain time
series is of particular interest to a number of researchers
due to fuzzy set theory’s ability to quantitatively and
qualitatively model those problems which involve
vagueness and imprecision. Fuzzy time series models
provide a new avenue to deal with subjectivity observed
in most financial time series models. Most of the fuzzy
financial models developed so far have generally, been
confined to modeling parameters by fuzzy numbers
such as Triangular Fuzzy Number (A F.N.) or
Trapezoidal Fuzzy Number (T.F.N.). The main reason
for using triangular and trapezoidal is to incorporate
asymmetry. Recently there has been growing interest
in using fuzzy numbers and associated fuzzy inference
in finance and economics (see for example Buckley
2004, Thavaneswaran ef al. 2007, 2009, Thiagarajah
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et al. 2007). Thavaneswaran et al. (2009) have recently
used the fuzzy estimate and demonstrated the
superiority of the fuzzy forecasts over the minimum
mean square error forecasts. In this paper, we first
provide some illustrative examples for obtaining closed
form expressions for covariance of some fuzzy
numbers. Then we show that the mean square estimate
of the fuzzy parameter can be expressed as a function
of possibilistic moments. In analogy with the theorem
on normal correlation, we obtain the optimal fuzzy
estimate by minimizing the mean square error between
the fuzzy parameter and its estimate.

In the last two decades, volatility models have
received considerable attention with the emphasis being
placed on state space models (see for example Gong
et al. 2008, Taylor 2005 and Kirby 2006). In the
literature, mostly the filtering had been studied for state
space models (see for example Abraham and
Thavaneswaran 1991 and Granger 1998). In the state
space models the conditional mean of the observed
process is modeled as a stochastic process. In order to
model the changing volatility, stochastic volatility
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models (in which the volatility had been modeled as a
stochastic process) had been introduced by Taylor
(2005). For fuzzy volatility models with volatility being
modeled as a fuzzy sequence, once a new observation
is coming in, a new volatility parameter is added, and
hence it is almost impossible to estimate every
parameter. However, we can construct a recursive
estimate which updates the estimated parameter
whenever a new observation is included. Recently,
Matia et al. (2006) and Mottaghi-Kashtiban et al.
(2008) have studied the filters using possibilistic
techniques for fuzzy state space models with
asymmetric fuzzy innovations such as trapezoidal and
triangular. Here, we study the recursive estimation for
some fuzzy volatility models with asymmetric
innovations using possibilistic theory.

The remainder of the article is organized as
follows. We summarize the preliminaries in the rest of
Section 1. In Section 2, we obtain the closed form
expression for the possibilistic covariance between
some fuzzy numbers. In Section 3, a minimum mean
square error fuzzy estimate is defined. In Section 4,
recursive estimates are obtained for fuzzy regression
with time varying fuzzy parameters and for a fuzzy
autoregressive model. We also study the recursive
estimation for some fuzzy volatility models.

1.1 Preliminaries and Notations

Following Carlsson and Fuller (2001) and Dubois
and Prade (1980), in this section some notations and
definitions are given that will be used in the sequel.

Definition 1.1 A fuzzy set 4 in X < R, where R the
set of real numbers, is a set of ordered pairs 4 = {(x,
M(x) : x € X)}, where u(x) is the membership function
or a grade of membership, or a degree of compatibility
or a degree of truth of x € X which maps x € X on the
real interval [0,1].

Definition 1.2 A fuzzy set 4 in 2R” is said to be a convex
fuzzy set if its o-level sets A() are (crisp) convex sets
for all &z € [0, 1]. Alternatively, a fuzzy set 4 in R" is a
convex fuzzy set if and only if for all x;, x, € R" and
0<a<l,

y(Axy + (1 = Dxy) = Min (1 (x)), ty (x,)).

Definition 1.3 A Triangular Fuzzy Number
(A F.N.) can be represented completely by a triplet

A =(ay, ay, az), where a, < a, < a; € R with membership
function £(x) as

© X<a,x2am
xX—a
J(x) = %—;1 a=r=0 (1.1)
X4 aSx<a
(2~ B
and the corresponding o~cut is given by
A@) = [ay(@), ay()] = [ay + & (ay— ay).
at+a(a-a)l, Vael0,1]. (1.2)

Definition 1.4 A Trapezoidal Fuzzy Number (T.F.N.)
is represented completely by a quadruplet 4 = (a,, a,,
as, ay), where a; < a, < a; <a, € X with membership
function w(x) given by

0 xXSa,xza
X—q
q<x<a
Ux) =y a —aq (1.3)
X% B<x<ay
(B~
and the corresponding o-cut is given by
A() = [a/(@), e ()] = [a) + oa, - ay),
a; + oda;—ay)), V ae [0, 1]. (1.4)

Definition 1.5 A fuzzy number 4 € J is said to be
parabolic if it assumes membership function of the form

X—a

Jz if 0 <x<2a (1.5)

Hx)=1- (

where a is a positive real number.

The corresponding o~cut is given by
A(o) = [(ay (@), a) )]

=[(1-Va=o)a (1+a=a)a] 1.6)

Definition 1.6 A fuzzy number 4 € J is said to be
Gaussian (see Saeidifar and Pasha 2009 for details) if
it has the membership function as

) = exp(—%{x;e j )

(1.7)
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where x is the independent variable on the universe, 6 1 ¢l
is the mean, and o> 0 is the standard deviation. Cov(4, B) = Ejof (@)(a (@) — M(4))
The o~cut is given by (b1(@) = M(B)) + (ay(@) — M[A))
A(Q) = [a(0), ax )] (by(@) — M(B))] dor (2.4)

= [0-0J2hw,0+0f2Ina) |,

0<a< 1.

(1.8)

In the next section, following Thavaneswaran et
al. (2009), we discuss certain properties of the centered
weighted possibilistic higher order moments of some
fuzzy numbers.

2. WEIGHTED POSSIBILISTIC MOMENTS

In this section following Carlsson and Fuller
(2001), we introduce the following moments. Let J be
the class of all fuzzy numbers. The first order ~WPM
(or weighted possibilistic mean) of 4 € J is given by

(g () + ay (X)) dor

. @.1)

1
M) = | f@

1
where f{) is a weight function such that .[0 floydo

= 1. Similarly, the centered WPV (or weighted
possibilistic variance) of 4 € J is

Var(4) = %J‘; Ao [(al(ot)-]\/ff(A))z

+ (a () — M{A)Y ldox

and for any positive integer r, the /~WPM (weighted
possibilistic moment) of order » about the weight
possibilistic mean value of 4 is defined as

2.2)

B = 3 [ Ao (@@~ M)y

+ (ay(@) - M{(A))'] det

In analogy with Thavaneswaran ez al. (2009), the
f~Weighted possibilistic skewness of fuzzy number 4 is

E3(A)

3
(VEx()
J-Weighted possibilistic kurtosis of 4 is defined as K(4)
_ _EA)
(Ey(A))?
between two fuzzy numbers 4 and B is given by

2.3)

defined as S(4) = and similarly, the

. The f~Weighed possibilistic covariance

A weighted fuzzy possibilistic correlation is an
index of the linear strength of the relationship between
two fuzzy numbers and is defined as follows.

_ Cov;(AB)
o JVar, (4) [Var, (B)

Thavaneswaran et al. (2009) has shown that the
weighted possibilistic correlation p, satisfy the
inequality that -1 < p < 1.

Definition 2.1 A time series of fuzzy numbers {4,} is
said to be weakly stationary if

(i) possibilistic mean of {4,} is a constant,
(ii) possibilistic variance of {4,} is a constant, and

(iii) possibilistic covariance Cov,(4,, 4,), depends only
on lag time | £ — s |.

Lemma 2.1 Let A, 7, P and G be triangular, trapezoidal,
parabolic, and Gaussian fuzzy numbers having
membership function given by (1.1), (1.3), (1.5), and
(1.7) with corresponding o~cuts [a,(), ay(@)], [b,(),
by(@)], [c|(@), cy(@)] and [d,(@), d,( )] respectively.

Let the weight function is la) =2, VO < o< 1.
Then

(a) Cov (A, G) = or (9 _326*% ] (a3 —ay)

(b) Cov(T, P)=— % a(3a, + 4ay — 4das — 3ay)

(c) Cov(T, G)= _g ola, - @

tay-ay)
(d) for two Gaussian fuzzy numbers G, and G,,
COV(GI, Gz) = 0-10-2

Proof :

(a) The covariance between a triangular A and a
Gaussian G fuzzy number is given by
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Cov/(A, G) + (6 +02lna) - M, G))
1,1
= = | fol(g(a)—M (D) (d () - M (G))
2.[0 1 ! 1 f (92+o'2«/(—2ln0{)—Mf (Gg)):l da
T (ay (@)~ M (8)) (dy (@) — M (G)] dex
' = 0,0,.
= lj; fl(a+a(a—a)—Mz(A)) 3. MINIMUM POSSIBILISTIC MEAN SQUARE
2 ERROR FUZZY ESTIMATE
6-0\(2lma)-M,(G
( (-2Ina) (&) In state space filtering, theorem on normal
Hay+o(ay—az) =My (D)) correlation plays an important role (see for example
Gong et al. 2008). In this section, by minimizing the
0+o(2na)-M,(G
( F2lne) r(G)] possibilistic mean square error on observed fuzzy
- 9-26 (ay—a)) number Y and an unobserved fuzzy number O, we
36 3Tk obtained an estimate of ® based on observed Y. Let ¥
(b) The covariance between a trapezoidal 7" and a and @ ‘be. two ceptered fuzzy numbers having
parabolic P fuzzy number is given by p0551b111.st1c correlation p, (ThavaneS\ivaran et al. 2009
Cov(T, P) for details). Then we have the following theorem.
_ 1l Theorem 3.1 The minimum mean square linear
zjof(a)[(al tolay —a) =My (T) estimate © of O is given by
(a—a\J(l-0) =M, (P)) @ 6 Cov,(©,7Y) d
a =—— an
+(ag+a(az—ay) — Mf (T)) Varf Y)
(atayd=e)=Mp(PDlde () pMSE2 (6, AY) = (1- p?)Var, (©)
4
105 aGay + 4a; — da; = 3ay). Proof: Let © = 1Y where A is obtained by minimizing
(c) The covariance between a trapezoidal T and a the pOSSll‘)ll‘lstl(‘: mean square error between © and © .
Gaussian G fuzzy number is given by The possibilistic mean square error between © and AY
Cov(T. G) is given by
L PMSE, (6, AY) = Var(© — AY)
- Ejof (@l(ey +alay =a) =M (T) = Var/(©) + 2Var(¥) - 2ACov(©, ¥) (3.1)
(0 -0y(2Ina)-M;(G)) By differentiating PMSE ( ©, 1Y) with respect to
+ (a4 +0ay — ag) — M (T)) A and equating the first derivative function to zero,
dPMSE (0, AY
@ +0(-2Inor)~ M (G))ldex O var (¥) - 2Cov(®. 1) = 0
= A /
r \2r (3.2
=——-wo(a—a) + —= ola;—a, t a3 —ay), :
1 ola, — a,) 63 (ay—ay+ a3 —ay)
(d) The covariance bet.we.en two Gaussian fuzzy We have 4 = Cov,(©.Y) This is the minimum
numbers G, and G, is given b Var, (Y)
1 2 Y f
Cov(Gy, G,) = % J‘; f(a) value of A as the second derivative of PMSEf((:) , AY)
N Cov,(0,Y)
P _ ith tto A is positive. Let @ = —L—~
[(91 o(2Ina) - M, (Gl)) with respect to A is positive. Let © Var, () Y,

(6 -0y (2Ina) - M (Gy))

then
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PMSE}(0,0) = (1- p7) Var(0)

Cov7(©,Y)
= Var(0) - ———
Varf Y)
= (- p}) Var(0) (3.3)

Corollary 3.1 Linear prediction of ©

Let ©, 4 be two uncorrelated fuzzy numbers having
possibilistic mean g, 1, and possibilistic variance
Gé, Gi respectively. If Y'=0 + A4 is observed, then the
minimum mean square fuzzy linear predictor of © based
on observed Y is given by

6 = — % (3.4)
(0'9 +0'A)(Y—,U®—,UA)

Moreover if ® and A4 are Gaussian fuzzy numbers,

then the corresponding o-cut of the fuzzy predictor ©
is given by

6

[4@.6@)]

2
2% _ [@ha), 3.5)

‘/(aé +af,)

2
% _ __ (22

‘/(aé) +af,)

Corollary 3.2 For any two symmetric fuzzy numbers
0, 4 having the corresponding o-cuts © = [1g —
OoSe( D), Ho + TpSe(@)] and A=[11, — OpSA(Q), pp+
o,SA(@)] then the minimum mean square linear
predictor of © based on observed Y is

- o [\ f(@)sd@da
o3 [} fle)Si(@da+d} || f(e)Si@da
(Y — to — 1) (3.6)

4. RECURSIVE ESTIMATION

The Kalman filtering for state space model is
typically obtained under the assumption that the random
innovations are normally distributed. However, these
models fail to capture the skewness and the
leptokurtosis in financial data. In state space modeling,
process noise and observation noise are not always
symmetric and hence the Gaussian distribution

assumption is not appropriate. Replacing Gaussian
membership function by a non-symmetrical triangular
or a trapezoidal membership function allows the
introduction of asymmetries in a natural manner. A
fuzzy representation of state space model can be given
as

Y,, =cO,+dA, ., 4.1
0,41 = a0+ bB, .|

where a, b, ¢ and d are crisp numbers and {4,}, {B,}
are two uncorrelated sequences of uncorrelated centered
fuzzy numbers having the membership functions u ,(x)
and py(x) respectively. E, (4) and E,(B) denote the 0
possibilistic moments of the sequences {4,} and {B,}
respectively. We propose an optimal (minimum
possibilistic mean square error) filtered estimate of O,
based on observed Y, ..., Y,

Theorem 4.1 In the case of all estimate of the form

A

64 = a@t +G; (4 _Céz)a (4.2)
(i) the G, which minimizes the possibilistic mean

square error

A A2
PMSE;(©,,1,0,11) = M;(0,41,0,41)" =K,
ack,

3 5 and
K, +d Ey(A,)

is given by ét =

(i1) the recursive estimates are given by

A A ackK A

©,,1 = aB, + L Y. —cO
t+1 t cth +d2E2(At+1)( t+1 t)
(4.3)

252
Ky = — CHE R +b°Ey (Byy)-
T PK+dPE(Ay) "

4.4)

(iii) for a=1 and ¢ = 1, the limiting MSE of filtering
(see Shiryavev 1995 for details), K = lim,_,_, K, is
given by the positive root of the equation

K- bpK-b*d =0. (4.5)

Proof :
(i) The difference of ©,, — ©,,, = a(®,-6,)

- G,(Y,,,—c©,) +bB,,. Then
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Kt+1 = E[@Hl - (:)z+1]2 =(a— CGt)2 Kt
+dG} Ey(A4,, ) + D’Ex(B,. )
(4.6)

By differentiating K, and equating the first
derivative function to zero,
ok,
ﬁ = 2¢(a—cG)K, +2d*E,(A,,)G, =0,
t

ack,
2 2
K, +d Ey(Ayy)

derivative of K, with respect to G, is positive,

we obtain G, = . The second

hence K, attains its minimum value of G, .

(ii) By substitution of the value of G, in (4.2) and (4.6)
we get the expression for recursive estimates.

(iii) Proof follows by taking the limit in (4.4) and is
omitted.

The algorithm in (4.3) gives the new linear
estimate at time 7 + 1 as the old estimate at time ¢ plus
an adjustment. This adjustment is based on the
prediction error (¥;,; — c(:),) . Given starting values 0,
and K|, we can compute the estimator recursively using
(4.3) and (4.4). The recursive estimate ©,,, in (4.3) is
usually referred to as an on-/ine estimate and it is very
appealing computationally, especially when data are
gathered sequentially. ©, and K|, can usually be obtained
from an initial stretch of data. It is of interest to note
that the recursive estimate obtained here is derived from
the possibilistic techniques. This algorithm may be
interpreted in the Bayesian framework by considering
the following state space form, which is obtained by
takinga=1,b=0and d=1 in (4.1).

Yioy=cO,+ 4, (4.7
0,+1=9,

Then the recursive estimates are given by

A N ¢k, A
O = 6, + : Y1 —¢O,
K, +d°Ey(Ay) ( )
K,d Ey(
K, = t 2 (A) (4.8)

K, +d B (Ay)

1 2 1

2 +
Kt+1 d Ez(A,+1) Kt

Example 5. Fuzzy regression with time varying fuzzy
parameters {O,} and crisp valued explanatory variable

X
Vi1 =0,X + 4,4y (4.9)
0,+1=0,
where ©,= 0O and {4,,,} is an uncorrelated sequence
of centered fuzzy numbers having membership function
M, (x) and the second moment E,(4). Then from
Theorem (4.1), the recursive estimate of © and its
possibilistic MSE are given by
A A X, 4K
O =06, + 4 12
E,(A)+ XK,
— E2 (At+1)Kz )
Ey(A)+ XK,
Example 6 For a fuzzy autoregressive model of the
form

(Yt+l - Xt+1®t ) (4.10)

t+1

Yie1=0),+4, 4
0,,,=0,=0
Then the recursive estimate of ©® and its
possibilistic MSE are given by
A A YK
®t+1 = ®l‘ +t—12
E,(A)+Y°K,
_ B (AKX,
1+1 2
E,(A)+Y K,
Hence, the updating formula for possibilistic MSE
is given by
11 Y2,

4.11)

(%-%6,) @12

K, Ko EBA)

If we solve the recursive relations (4.12), using
initial values ©, and K|, we obtain an expression for

(4.13)

A

O,, the off-line version (see Thavaneswaran and
Abraham (1988) for details) as

PR A

A s=2
0, =

2;:2 Y;Z-I

This version will sometimes be better for certain
theoretical investigations. In the remainder of this
section, we illustrate this optimal possibilistic MSE
approach for some fuzzy volatility models.

(4.14)
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4.1 Some Illustrations
4.1.1 Fuzzy Volatility Models

We consider the fuzzy analog of Kirby’s (2006)
volatility model of the form

t+l ®At+1
@t+l =k+ a@t + b@tBHl

where {4,} and {B,} are two correlated sequences of
uncorrelated centered fuzzy numbers having the
membership function g (x), uz(x) respectively, the
possibilistic corr(4, B,) = p and the second moment
E,(4). Now we obtain the fuzzy optimal linear recursive
estimate. Then it can be easily shown that the optimal
recursive estimate of ©,,, and corresponding
possibilistic MSE K,,,= E[0,,, — ©,,,]" satisfy the
following:

6 I+ b bp\/E,(B)
1 +a0, - WY;H
>

K,., = d’K, +[K?E,(B) - b’ p*E, (B)]

k* + ak?
(1-ad* —b*E,(B))(1-a)

4.1.2  Generalized Fuzzy Volatility Model

We propose a fuzzy volatility model of the form

o,
Y, = oe AA)‘+1
0,,1=9¢0,+(1 +0) B,

where 7, is the observed fuzzy sequence. {4,} and {B,}
are two uncorrelated sequences of uncorrelated centered
E>(A).

eftima;[e of ©,,, and corresponding K, , | =
O, 1]" can be given as

20K, 6,
_— —logo——L
t+1 ¢®t K, +8Ey(A) log¥ g >

Then the recursive
E[®t+1 -

fuzzy numbers and o =

64E,(A)p°K, + 40 E, (A)K}

K, =
o (K, +8E,(A))?

ey 1422 2EW+EA-9- B (A)

1=0-E(4)  (1-¢* - Ey(A)(1-9+ E5(A)

4.1.3 GARCH Model with Fuzzy Volatility

In analogy to the GARCH model, the following
model has the second fuzzy noise term B, beside the
first one 4,.

Y1 =0,+0,A,.,
0,41 =a0,+ B,
where {4,} and {B,} are two uncorrelated sequences of
uncorrelated centered fuzzy numbers having the

membership functions g,(x), tz(x) respectively. Then
the recursive estimate of O, , | and corresponding K, , |=

E[©,, -6, +1]2 can be constructed as

—_— 2 A
Oy = aB, + 261(1 L (Yt+l _®t)
(1-a")K, + E,(A)E,(B)

a*E,(A)E,(B)K,
(1—a*)K, + E,(A)E,(B)

K. = +E,(B).

4.1.4  Fuzzy Coefficient GARCH model

When the observed process is correlated with its
volatility process, we use the following model

t+1 G))‘At+l
0.1 =k+a®,+b0,4,

where {4,} is a uncorrelated sequences of centered
fuzzy numbers having the membership functions z,(x)
and the second moment E,(4). Then the recursive
estimate of O,,; and corresponding KX, =

E[©,,,—06,,,T are given by

b(1—-a)(1-d* —b*E,(A))
Yt+1
(1-a)k? + 2ak?
(- a)k* +2ak?
(1—a)(1—d* —b*E,(A))

®l‘+1 = k+a®l+

K,,, = d’K, +b*E, (A)

—b*E, (A).
5. CONCLUSIONS

Abraham and Thavaneswaran (1991) had studied
filtering for state space models, which was cited by
Granger (1998), a Nobel Prize winner (2003). Matia et
al. (2006) and Mottaghi Kashtiban et al. (2008) have
studied the fuzzy filters using possibilistic techniques
for state space models. In Thavaneswaran et al. (2009),
we have demonstrated the superiority of the fuzzy
forecast over the minimum mean square error forecasts.
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In this paper, we extended the results to fuzzy volatility
models. We also showed that the mean square between
fuzzy parameter and its estimate can be expressed as a
function of possibilistic moments and obtained the
optimal fuzzy estimate by minimizing the mean square
error.
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