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SUMMARY

For modelling and forecasting of cyclical time-series data, linear time-series models, like Autoregressive integrated moving
average (ARIMA) model of order more than one, and Nonlinear time-series models, like Exponential autoregressive (EXPAR)
and Self-exciting threshold autoregressive (SETAR) models are generally employed. In practical situations, exact data generating
process of time-series observations is not known. Therefore, fitted values from linear and nonlinear models may be used as
explanatory variables to empirically describe the same. In this paper, the ARIMA, EXPAR and SETAR models, which are
capable of capturing the cyclical behaviour are studied. In order to improve modelling and forecasting capabilities of the models,
these are combined by using the Constant coefficient regression method (A.E.S.(C)) as well as the Time-varying coefficient
regression method (A.E.S.(T.V.)) through Kalman filter (KF) technique. As an illustration, the models are then applied to describe
annual Mackerel catch time-series data of Karnataka. Performance of fitted models is examined by computing various measures
of goodness of fit, viz. Normalized Akaike information criterion (NAIC), Bayesian information criterion (BIC) and Mean
square error (MSE). Finally, forecasting performance of fitted models is evaluated by Mean square prediction error (MSPE)
criterion. It is found that the combined model fitted by using the A.E.S.(T.V.) has performed best for the data under consideration.

Keywords : Exponential autoregressive model, Self-exciting threshold autoregressive model, Kalman filter, Normalized Akaike
information criterion, Bayesian information criterion, Mean square error, Combined models.

1. INTRODUCTION (see e.g. Granger and Ramanathan 1984). The models
can be combined either by employing Constant
coefficient regression method (A.E.S.(C)) or the Time-
varying coefficient regression method (A.E.S.(T.V.)). In
the latter, state space equations, viz. Transition equation
and Measurement equation are obtained. Subsequently,
an efficient computational procedure, called the Kalman
filter (KF), may be employed for prediction and
smoothing purposes. The KF is used for computing
optimal prediction of state vector. By using A.E.S.(C),
contribution of each component can be evaluated for
the entire time horizon whereas A.E.S.(T.V.) can be
used to evaluate contribution of each component at
every time-point.

Evidently, it is not possible to identify exactly the
underlying true process. However, a combination of
‘linear’ and ‘nonlinear’ models may approximate the
data generating process quite well. As pointed out by
Terui and van Dijk (2002), a linear model generally
performs well for short-term forecasting whereas
nonlinear model can do so for long-term forecasting.
Another reason for combining the models is that it is
possible for a process to switch its structure over the
observation period between a linear and a nonlinear
structure. Several schemes for combining forecasts of
different models have been studied by various authors
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In this paper, Linear time-series model, viz. the
Autoregressive integrated moving average (ARIMA)
model of order more than one and Nonlinear time-series
models, like Exponential autoregressive (EXPAR) and
Self-exciting threshold autoregressive (SETAR) models
(Fan and Yao 2003) are considered for combining them
as all of these are capable of describing cyclical pattern
of time-series data. As an illustration, annual Mackerel
catch time-series data of Karnataka during 1961 to 2008
is considered for modelling and forecasting purposes.
Individual fitted values and their forecasts from
marginal models are also obtained. These are used as
explanatory variables to obtain estimates of weights in
A.E.S.(C) and to obtain predicted values of changing
coefficients in A.E.S.(T.V.). For more than one-step-
ahead forecasts, naive forecasts from individual fitted
linear and nonlinear models are used to obtain forecasts
for fitted combined models. Finally, forecasts of
observations for some hold-out data is carried out. It is
shown that the combined model fitted through
A.E.S.(T.V.) has performed the best.

2. DESCRIPTION OF MODELS

A brief description of ARIMA, EXPAR, and
SETAR models along with their estimation procedures
is given below.

2.1 Autoregressive Integrated Moving Average
(ARIMA) Model

A univariate time-series (X,) satisfies an ARIMA
model, denoted by ARIMA (p, d, q), if

o (DAX, = ALY, 2.1)
where 9 (L) =1- L — @I’ — ... — ¢,I” and 6(L) =
1 - 6L - 6,L* - ... — 0,L7 are respectively the

autoregressive and moving average terms, &, is a white-
noise process with mean zero and variance o, and AY
indicates that the series is first-differenced d times. The
ARIMA methodology is carried out in three stages, viz.
Identification, estimation and diagnostic checking.
Parameters of the tentatively selected model at the
identification stage are estimated at the estimation stage
and adequacy of selected model is tested at the
diagnostic checking stage. If the model is found to be
inadequate, the three stages are repeated until
satisfactory ARIMA model is selected for describing the
time-series under consideration. An excellent
description of this methodology is given in Box et al.

(2007). The ARIMA models, however, appear
insufficient and beyond the /inear domain, there are
many nonlinear forms to be explored because the
former are not able to take into account important
features of many observed data sets.

2.2 Exponential Autoregressive (EXPAR) Model

The EXPAR parametric model, introduced for
modelling and forecasting of cyclical data, is a useful
Nonlinear time-series model that has properties similar
to those of nonlinear random vibrations. It is capable
of generating time-series data with different types of
marginal distributions by restricting the parametric
space in various specific regions. It also accounts for
amplitude-dependent frequency, jump phenomena, and
limit cycle. A heartening feature of this model is that it
captures the non-Gaussian characteristics of the time-
series and is also seen to have a marginal distribution
belonging to the exponential family (Ghazal and
Elhassanein 2009). An EXPAR (p) model may
explicitly be written as

X, ={p +m eXP(—7X,2_1 )Xt

+ {9, 7, exp(-yX }X,, * & (22)

where ¢, and 7, represent the autoregressive and
exponential autoregressive parameters at lag i, > 0 is
some scaling constant and {&} is white noise process
with mean zero and variance 7. The value of ¥ is
selected such that exp (—y X t2) varies reasonably widely
over the range (0,1). Also, note that (2.2) has a regime-
switching behaviour with respect to delayed
observation, in the sense that, if | X, , | is large, eq. (2.2)
is similar to an autoregressive model with parameters
approximately equal to (¢, ..., ¢,), while if [ X, |
is small, the autoregressive parameters switch to
(@ + Ty oo 9, 7).

A brief description of the procedure for estimating
parameters of (2.2) is as follows (Baragona et al. 2002).
The algorithm requires that an interval (a, b),
a, b =0, be pre-specified for the ¥ values in (2.2). This
interval is split in M sub-intervals, so that a grid of

candidate y values is built. Let 0= b-a and y = a.

Then, for M times, following steps are performed:

(i) Replace yby (y+ 9)
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(i) Estimate @; and 7; by ordinary least squares
regression of X, on (X,_, X, ; exp C¥X2D),
j=1...,p.

(iii)) Compute the NAIC, defined as

NAIC — Nlog('cr2)+2(2p—'|—1) 23)
Effective sample size
and repeat step (ii) forp=1, ..., P, where P is a

pre-specified integer greater than 1. Final
estimates of parameters are obtained by
minimizing the NAIC.

2.3 Self-Exciting Threshold Autoregressive
(SETAR) Model

This model was proposed to describe a particular
data generating process by a piecewise linear
autoregressive model. The SETAR model is governed
by a known variable which determines as to whether
each of the sub-models is active or not and belongs to
Threshold autoregressive (TAR) family, which is
defined as

k . Di . . .
X, = Z[(pgf)+2¢}J)X,_l.+g§“]1<“(q,) (2.4)
j=1 i=1

where £/ is white noise process with mean zero and
variance 0> and IV(.) is an indicator function, i.e.

Mg, = {

R, = (r;_, r]] is a partition of the real line R defined
by a linearly ordered subset of the real numbers
{rg> 715 - 1y}, such that ry <r; < ... <ry, ry=—co, and
r, = oo. The k autoregressive sub-models will be active
or not depending on the values of ¢,.

The SETAR model is a special case of TAR model
when ¢, = X,_,. It is defined as

I, ifge Rj

0, otherwise

k . Di R . )
X=Y|g"+Y "%, +e? | Fx,_p) (2.5
j=1 i=1

where d is length of the threshold and is called “delay
parameter”. Ghosh et al. (2006) applied SETAR model
for forecasting of annual lac export data of India
through Tong’s “Search algorithm™ procedure.
Subsequently, optimal out-of-sample forecast formulae
were also developed for SETAR two-regime model by

recursive use of conditional expectation. However, one
limitation of this algorithm is that the number of models
to be searched becomes very large. So, Wu and Chang
(2002) proposed an efficient stochastic search
optimization procedure based on Binary-coded genetic
algorithm (GA) for estimation of parameters of SETAR
models. The GA combines Darwin’s principle of
“natural selection” and “survival of the fittest” and uses
selection, crossover and mutation operators for finding
optimal solution. Primary objective of selection
operator is to make duplicates of good solutions which
are used for applying crossover operator to produce
better offspring. The pre-specified value for probability
of crossover (p,) decides as to how many individuals
are used in the crossover operation. Mutation operator
is applied for random changes to individual parent to
form children and keep diversity in the population. The
mutation probability (p,) controls number of
individuals to be mutated. Success of GA is also based
on crossover probability, mutation probability and
ability of crossover operator to maintain spread between
offspring proportional to that of parent along with more
chance of creating near (far) offspring when the parents
are near (far) (see Deb 2005).

Iquebal et al. (2010) applied the SETAR model to
describe annual lac export time-series data of India by
employing the Real-coded genetic algorithm (RCGA).
Superiority of this methodology over “Search
algorithm” procedure was demonstrated for the time-
series data under consideration. The best model was
identified on the basis of minimum NAIC criterion,
defined as

2 S 2
> mlog (n:}L 2 (p+D)

NAIC(0) =
©) Effective sample size

(2.6)
where

0= (diriipig’....o)i=12) @)

n, is the number of observations that belong to regime
i and S, is residual sum of squares for i subset SETAR
model.

3. KALMAN FILTER AND STATE SPACE
MODEL

State space model includes two classes of
variables, the state variable and the observation
variable, which are modelled as:
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o, = Fo, + Gg, 3.1)

X, = Ho, +v, (3.2)

where eq. (3.1) is called the State transition equation.

It allows the state variable to change through time. Eq.

(3.2) is called the Measurement equation and it relates

state variable to an observation. It is assumed that {g}

of eq. (3.1) and {v,} of eq. (3.2) are independent, zero
mean, Gaussian white noise processes with

E[v,v/] =R, and E[g¢g/] = Q, (3.3)

After the model has been put in state space form,
an efficient computational procedure, obtained through
conditional mean and variance of state and
measurement, can optimally predict the state. Also,
measurement update equation filters the state at time-
epoch ¢ using Minimum mean square error criterion.
This procedure, called Kalman filtering (KF), is applied
recursively through time where the next state can be
predicted followed by filtering on advancing the
information j, to next time-epoch, i.e. 4, = { X, :¢
=ty ty+ 1, .., 1, + ¢+ 1}. Thus, knowledge of state
variable at time 7 = ¢, together with the information at
t 2 t, completely determines the behaviour of the
process at time ¢. The recursive equations for
implementing KF are discussed below:

Denote

o-1 = E{o,| %} and @y,
=E{o, | g}, t=tgto+1,... (3.4)

Assume &, |, _; = E{a} and X, |, _; =P,. Using
egs. (3.1) and (3.2), the recursive filter equations are
as follows:

A N , -1

A = O 1+ Xy H,(HE), - H, +R)

(X,—Ht'&t|t_1) (3.5)

The measure of performance to predict o, using %, is
zt|t = 2t|t— 1~ zt|t— 1H, (Ht/ zt|t— 1H, +Rz)_1 Ht, 2t|t— 1

(3.6)

Using recursive filter equations (3.1) and (3.2), we

can obtain &, |, as

% = By, (3.7a)
and
Z 1= Fr2t|tFt,+ GQ, G, (3.7b)

Eq. (3.7a) can also be written as
~ ~ ’ -1
Qe ~ antlt—l +Ft):t|z—1Ht (Hz):t|t—1 H +R)

(Xt _Ht,&‘t|t—l)
(3.8)

which implies that time update rules for each forecast
of state are weighted average of previous forecast

&,_; and forecast error (X, —H;&,,_). After
obtaining @y,_;, one may predict X; by the optimal

predictor X, _;, where

Xije-1= Ht,&t|t—l (3.9)
and the conditional error variance due to predictor
Xijr-11s

HZ, H, +R, (3.10)

A good description of Kalman filtering is given in
Durbin and Koopman (2001).

4. THE COMBINED MODELS

Best ARIMA model is identified on the basis of
minimum NAIC, which is defined as

Nlog(6H)+2(p+q+1)
NAIC = Effective sample size @.1)

Further, for fitting of EXPAR and SETAR models,
expressions for NAIC are given respectively in (2.3)
and (2.6). Two methods are considered to obtain the
combined models. The first one, viz. Constant
coefficient regression method (A.E.S.(C)) is given by
the model:

V=04 X+ XS+ X, (42)

where X/, X/ and X; are the mean marginal fitted
values generated respectively by ARIMA, EXPAR and
SETAR models. The s are regression coefficients and
{u,} is a white noise process. Here, parameters are
estimated by ordinary least squares method to get fitted
values of 7, in eq. (4.2). In the second method, viz.
Time-varying coefficient regression method
(A.E.S.(T.V.)), the f’s are taken to be time-varying
stochastic process denoted as

Y,= B+ BXE+ BEXE + BXS +v,  (43)
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Noticing that eq. (4.3) is univariate, it can also be
written as

Y, = X/B; +v: v, ~ N(0, R) (4.4)
B=B/1+e:e~N(O Q) (4.5)

where X, = [1, X, X¢, X'1 and B,= (B, B*. . B')’.
The {v,} and {e,} are independent white noise
processes. Egs. (4.4) and (4.5) can be interpreted as a
state space model given in eqs. (3.1) and (3.2). Here
eq. (4.4) is the measurement equation which defines the
distribution of Y,, # 2 1, and eq. (4.5) is the state
equation which defines the distribution of B, for every
t 2 1 (Terui and van Dijk 2002). Now KF is applied to
predict B, by f&t|,_1, which are used to compute the
fitted values of Y, in eq. (4.4). For computing one-step
ahead forecast from eq. (4.4), predicted value of B,
is fi, +1|7» Which is same as ﬁT|T' Further, forecast

error variance of Yr.; is X7, Zpy Xy, +R.
Similarly, for computing two-step ahead forecast, it is
observed from eq. (4.5), that ﬁf+2|T is [A3T|T with two-
step-ahead prediction error variance given by

Zrgr=Zprt 2Q. Here R and Q are estimated

values of R and Q obtained by using Prediction error
decomposition technique. Finally, two-step ahead

prediction error variance of Y ., is computed as

X7 42X or Xy + R
5. AN ILLUSTRATION

Annual Mackerel catch time-series data of
Karnataka (tonnes) during the period 1961 to 2008,
obtained from Central Marine Fisheries Research
Institute, Kochi, India are considered for data analysis.
First 45 data points corresponding to the period 1961
to 2005 are used for model building and the remaining
3 data points, i.e. from 2006 to 2008 are used for
validation purpose.

5.1 Directed Scatter Diagram

Preliminary Exploratory data analysis is carried
out to justify the choice of EXPAR and SETAR models
to describe the data under consideration. A directed
scatter diagram is a powerful tool for analyzing a
Nonlinear time-series. It consists of diagrams of
X X)), J = £1, £2, ., £ p, where X, is the annual
Mackerel catch of Karnataka (tonnes) at time ¢, and p
is the number of possible lags. The directed scatter
diagrams exhibited in Fig. 1 show asymmetry in the
joint distribution of observations, indicating thereby that
the joint distributions of (X, X, ) are non-Gaussian, as
a two-dimensional normal distribution cannot be
asymmetric.

1201 1201
1001 100
801 801

- ~
+ 60 + 601
X 401 X 40-
20 20

0 T T T T T 1 0 1
0O 20 40 60 80 100 120 0 120
X(t)

1207 1201
100+
80

) =
b T 601
X X 40+
201

T T 1 O T T T T T 1
80 100 120 0 20 40 60 80 100 120
X(t)

Fig. 1. Directed scatter diagram of annual Mackerel catch data (tonnes) of Karnataka
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At the first step, three marginal models, viz.
ARIMA, EXPAR and SETAR are fitted; these are then
used in second step to obtain two combined models
corresponding to two methods, viz. A.E.S.(C) and
A.E.S.(T.V.). By using the minimum NAIC criterion,
best ARIMA model is found to be ARIMA (2,0,0) given
by

X,=18.53 +038X,_, — 0.08X,, + ¢ 5.1
with var{g} = 310.96. The standard errors of parameter
estimates (&, @, @, ) are respectively computed as
(5.34, 0.16, 0.15). It may be noted that roots of
characteristic equation, viz. (1 — 0.38L + 0.08.%) =0
are complex as 0.08 > (=0.38)*/4, which lends support
to existence of a cyclical pattern in annual Mackerel
catch data.

For fitting SETAR model, minimization of NAIC
given in eq. (2.6) is carried out using RCGA, where
crossover and mutation probabilities are taken as 0.90
and 0.10 respectively. The selection operator is applied
using “Tournament selection” method. After 1500
iterations, optimal solution is obtained and fitted
SETAR model is

10.69+0.22X, | +0.10X,_, —0.07X, 5+&,
X, = if X,_,<22.26

34.73+0.49 X, _,+¢&?, if X, ,>2226

(5.2)

with var{€”} = 230.74 and var{£'?} = 867.80. To

estimate standard errors of parameters, 1000 bootstrap
samples are generated and for each sample, parameters
are estimated using RCGA. The standard errors

for (éél)’él(l)’éz(l) @1),%2),@2)) are respectively
0.624
0.617
0.6 %
0.59-

0.58

Time-vaiying coefficients

computed as (0.54, 0.02, 0.05, 0.02, 0.88, 0.03). By
using minimum NAIC criterion given in eq. (2.3), fitted
EXPAR model is obtained as

X, = {0.58+0.81exp (-0.0004X7_ )} X,_|,

+{-0.58+0.73 exp (-0.0004X7 )} X, _, + ¢,
(5.3)
with var{g} = 307.80. The standard errors of parameter
estimates ( @y, 7}, @,, %, ) are respectively computed as
(0.16, 0.45, 0.17, 0.43). Using eq. (4.2), fitted combined
model through A.E.S.(C) is given by

X, =349+ 0.10X/ +0.60X; +0.16X, +u, (5.4)

with var{u,} =299.26. The standard errors of parameter

estimates (,BO, Bl, Bz’ /?3) are respectively computed as
(11.12, 0.69, 0.50, 0.20). It may be noted that the matrix
of regressors comprising X/, X/ and X is of full
rank, implying thereby that problem of multicollinearity
is not present for the data under consideration. The
time-varying coefficients in respect of ARIMA, EXPAR
and SETAR marginal models by A.E.S.(T.V.) method
are depicted in Fig. 2. It may be noted that there is not
much variation of regression coefficient in the EXPAR
component. However, it may be emphasized that this
estimate for all the years is not only highly significant
but also plays a dominant role for a number of time-
epochs particularly in the initial phase, implying thereby
that EXPAR model is a good model for describing
underlying nonlinear dynamics of data generating
process. Further, SETAR model is dominant over
ARIMA at initial stages of the time-series as well as
over some time-epochs from 1990-1994 during which
there are fluctuations of large magnitudes. ARIMA
dominates in a few time-epochs during 1971-1974 and

0.57

1963

1965 -
1971 7
1973
1975 7
1977 7
1979 7
1981 7

1987 7

1989 A
1991 A
1993 A
1995 A
1997 7
1999 A
2001

Fig. 2. Time-varying coefficients of the combined model
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later parts of the time-series from 1997 up to 2001,
where moderate fluctuations in the data are observed.
Thus, all the three marginal models are contributing
towards improving modelling aspects of the data.

The NAIC, BIC and MSE values of three marginal
models as well as two combined models are computed
and reported in Table 1. A perusal indicates that
combined models improve description of border line
nonlinearity present in time-series data. Further, the
combined model fitted through A.E.S.(T.V.) has
performed better than the one fitted through A.E.S.(C).

Table 1. Goodness of fit of models

Model | ARIMA | EXPAR | SETAR | Combined | Combined
model model

by A.E.S. | by A.E.S.
Criterion ©) (T.V))
NAIC 6.32 6.10 6.18 5.88 5.29
BIC 258.70 | 251.20 | 252.74 | 248.44 227.87
MSE 289.26 | 279.17 | 283.88 | 271.39 200.22

5.2 Evaluation of Forecasting Performance

In this sub-section, a comparative study is carried
out to evaluate the combined models on their ability to
forecast. To this end, forecasting performance for 3 data
points corresponding to Mackerel catch for years 2006
to 2008 as hold-out data is studied. One-step ahead
forecasts are obtained and performance of fitted models
is compared on the basis of one-step ahead Mean
square prediction error (MSPE) given by

2
MSPE = % DI AIED AT L CPA D
i=0

The forecast error variances of Yy, i =0, 1,2

are derived using recursive and theoretical approach.
To this end, naive approach is used to obtain one-step
and two-step ahead forecasts of fitted ARIMA, EXPAR
and SETAR models. As discussed in Section 4, in case
of recursive approach, advancing the time-epoch in each
step, time update equation of state, ﬁT+i+1|T+,- =
ﬁT+i|T+i is obtained which is used to calculate 3

forecast values of Y7 ;.1 = X744+, Broivyr+is
i=0, 1, 2 for annual Mackerel catch data. The MSPE
of forecast values obtained by the five models are
computed and reported in Table 2. Since the combined

model fitted through A.E.S.(T.V.) has performed best,
attempt is made to obtain its theoretical forecast error
variances as well. The 3 forecast error variances are
calculated as X'r, ;o | Zroy iy 174+ Xra a1 T R, where

Tyt r+i= Zrei T+t Q. One-step ahead forecast
error variance is then summarized by calculating the
mean of 3 forecast error variances and is obtained as
98.14. It may be noted from Table 2 that the MSPE for
one-step ahead forecast for combined model fitted
through A.E.S.(T.V.) method, viz. 91.58 is quite close
to the corresponding theoretical forecast error variance,
viz. 98.14, indicating thereby that the hold-out data
successfully provides a good estimate of true one-step
ahead forecast error variance. Similarly, MSPE for two-
step ahead forecast is given by

1 ¢ 5
MSPE=52{YN+Z~+2—YN+H2}2 (5.2.2)

i=0

Following the above approach for two-step ahead
forecasts of state, Br ;|7 4;, 1 =0, I are computed,

which are used to obtain Y ;. = (Xf,i1s.

ﬁT+i+2|T+i), i =0, 1 and are reported in Table 3. A
perusal of Tables 2 and 3 shows that the combined
model fitted through A.E.S.(T.V.) performs better than
the one fitted through the A.E.S.(C) for forecasting
purposes as well. Finally, from Table 3, for the former
model, MSPE for two-step ahead forecasts, viz. 92.95
is found to be quite close to the corresponding
theoretical forecast error variance, viz. 101.33 obtained
by computing mean of the 2 forecast error variances.
This implies that the model is successful for forecasting
hold-out data.

Table 2. Performance of one-step ahead forecasts

Model | ARIMA | EXPAR | SETAR |Combined | Combined
model model

by A.E.S. | by A.E.S.
Criterion ©) (T.V.)
MSPE 145.56 | 142.32 | 211.79 96.55 91.58

Table 3. Performance of two-step ahead forecasts

Model | ARIMA | EXPAR | SETAR |Combined | Combined
model model

by A.E.S. | by A.E.S.
Criterion ©) (T.V.)
MSPE 189.23 | 134.99 | 39430 | 166.25 92.95
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6. CONCLUSIONS

In this paper, methodology for combining one
linear and two nonlinear time-series models capable of
describing cyclical data is discussed. To this end, two
methods, viz. Constant coefficient regression method
and Time-varying coefficient regression method are
considered. Formulae for optimal one-step and two-step
ahead forecasts are derived theoretically for
A.E.S.(T.V.). Superiority of this model for modelling
as well as forecasting purposes is clearly demonstrated
for the data under consideration. As future work, this
methodology may be extended to tackle the problem of
multicollinearity in the combined models. A systematic
study on the value of forecasts of simple models
compared with the forecasts of a very flexible nonlinear
time-series model may be of considerable interest. In
this context, robustness with respect to outliers and/or
varying volatility needs to be analyzed. There is also a
need to study a more decision-theoretic analysis of the
methods, like a Bayesian approach.
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