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SUMMARY

Two forms of genotype X environment interaction (GEI) are of concern to plant breeders. One consists of fixed GEI
associated with predictable environmental, geographical, or management factors that can be used to delineate a target population
of environments (TPE) for cultivar development and testing. The other consists of random and unexplained rank changes among
trials within the TPE which are not associated with any known factor. These two types of GEI must be managed differently by
plant breeding programs; fixed GEI is managed by developing or identifying cultivars with adaptation to the specific fixed
factor causing the interaction, while random GEI is a noise stratum that is managed through wide-scale testing that adequately
samples environmental variation in the TPE, and through the use of best linear unbiased prediction (BLUP). There is substantial
evidence that fixed GEI is of limited importance within well-designed TPE. Management of GEI in cultivar development
programs, and the estimation of means from multi-environment trials with appropriate measures of precision (METs) has been
hampered by the widespread use of inappropriate models that designate trials or trial locations as fixed effects in the combined
analysis of cultivar testing data, resulting in unnecessary division of TPEs, identification of putative patterns of adaptation that
are not repeated in subsequent testing, and over-estimation of the precision of entry means in multi-environment trials. Mixed
model approaches to testing the relative importance of fixed and random GEI in METs are presented.

Keywords : Genotype X environment interaction, BLUP, Mixed models, Cultivar development genetic correlation, Adaptation.

INTRODUCTION crop research centers, and large national breeding
programs often exhibit very wide geographical
adaptation, as well as broad adaptation to different
management practices and the range of climate
variation that affects individual sites over years. For
example, the popular rice varieties Swarna and 1R64
have each been grown for many years on many millions
R ; . of hectares in several Asian countries, and the
part'1c1pat10‘n, s requlre.d for the development.of CIMMYT maize inbred line CML312 has contributed
cultivars optimized to pgrﬂcular locales and production to hybrids throughout the Latin American and African
systems (e.g. Ceccarelli 1989). However, modem crop subtropics (Braun et al. 2010). In the case of wheat,

Itivar 1 mpanies, international . . .
cultivars developed by seed companies, internationa several varieties have consistently occupied large areas

Genotype X environment interaction (GEI) is
considered to be a critical problem in the development
of crop varieties, and much effort has been devoted to
the development of methods for the description and
measurement of GEI in variety trials. It is often argued
that selection for local adaptation, often with farmer
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of production on several continents. Green Revolution
wheat cultivars like Siete Cerros (also named Mexipak
and Kalyansona) were grown on millions of hectares
from North Africa to South Asia, and selections from
the CIMMYT cross Veery were released in more than
40 countries. Broad adaptation and high levels of stress
tolerance are consistently achieved by large modern
plant breeding programs that test germplasm widely.
This seems to be evidence that GEI, in the form of
narrow cultivar adaptation to a specific set of
environmental conditions, is less pervasive and
important than is commonly assumed. In this review,
it is argued that “fixed” GEI, in the sense of narrow
adaptation of elite cultivars to a particular set of
environmental conditions, is of limited importance if
target environments are well-defined, and that
commonly-used GEI analyses consistently
overemphasize and overestimate the importance of local
adaptation because of the use of inappropriate fixed-
effect models that confound individual trials in a multi-
environment trial (MET) set with locations, while at the
same time underestimating the importance of random
trial-to-trial noise in the estimation of genotype means.
Appropriate and predictive mixed and random models
for assessing genotypic effects and dealing with
genotype X environment interaction in a practical
cultivar development context are presented, based on
theoretical approaches, developed by Falconer (1952)
and applied to plant breeding by Atlin and Frey (1990),
that treat the expression of traits such as yield in
different environment as correlated traits. The main
purpose of this article is to provide breeders with
guidance on managing fixed and random GEI in their
own breeding and testing programs, with a view to
maximizing genetic gains.

THE TARGET POPULATION OF
ENVIRONMENTS (TPE) AND FIXED VERSUS
RANDOM GEI

The breeding target, or target population of
environments (TPE) (Comstock 1997) is a key concept
in the organization of breeding programs, and is very
useful in thinking about and managing GEI. The TPE
is the set of fields and future seasons in which the
varieties produced by a breeding program will be
grown. The TPE is not a single environment, but a
variable set of future production environments that must
be sampled by the breeding program that serves it. TPE
are delineated by some combination of fixed and

repeatable environmental factors that influence crop
adaptation, and that are common to all the fields and
future seasons in the TPE, or that occur within the TPE
at a predictable frequency.

These factors can include geographical region, soil
type, daylength, average temperature, and average
rainfall, among many others. These factors, which may
or may not contribute to changes in relative cultivar
performance in different trials, are fixed attributes of a
location in which trials are conducted. Some, like
temperature or rainfall, vary from year to year, but their
long-term averages can be used to characterize
environments. Such factors are fixed in the statistical
sense, i.e., we wish to make inferences about them and
their interaction with genotype; they are not included
in the design or analysis of METS as an error sampling
stratum. Fixed environmental or geographic factors can
be used to group trial sites into relatively uniform TPE.
However, even if two trial sites differ in some fixed
environmental factor, it is not necessarily the case that
a set of genotypes will have different ranks at the two
sites, or that they need to be treated as separate breeding
targets. Fixed environmental factors, at most, provide
hypotheses that must be tested when breeders delineate
their TPE. For example, if, within the mandated region
of responsibility of a particular breeding program, there
exist two distinct soil types, it is not necessarily true
that each soil type requires a different, specifically-
adapted cultivar, although it is possible that they do.
This is a hypothesis that must be tested by evaluating
a fairly large set of genotypes at several locations within
each soil type, and testing whether the interaction
between genotypes and soil types is greater than the
random variation among trials within soil types.

In general, a TPE is delineated such that consistent
and repeatable genotype rank changes associated with
locations or management systems do not occur within
it in association with some fixed environmental factor.
If they do, these locations do not belong in the same
TPE. Another way to put this is that there should not
be consistent and repeatable fixed GEI (GEI associated
with a fixed environmental factor such as location or
soil type) within a TPE. This does not mean that there
will not be differences in ranks among entries in
breeding trials conducted at different locations within
the TPE, but rather that these differences are primarily
random and ephemeral, and are not consistently
associated with particular locations, changing from trial
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to trial and year to year. These unpredictable and non-
recurring rank changes among entries over trials within
the TPE constitute random GEI. Random GEI is more
properly considered a form of sampling variance, akin
to plot-to-plot variation in a field trial, but occuring at
a different level. Of course, improved biological
understanding may result in an explanation of some
factor causing variation in ranking among trials. When
this occurs, the factor may be introduced as a fixed
effect into the modeling of cultivar response across
environments, and may be used in a refined delineation
of the TPE.

There is great confusion among both plant
breeders and biometricians with respect to fixed versus
random GEI, resulting in the use of inappropriate fixed
effects models in situations where mixed or random
models are more appropriate. If fixed GEI is large
within a TPE, then it may be appropriate to subdivide
it into two or more smaller TPE. However, if no fixed
factor can explain the GEI observed in a MET series,
then the observed random GEI needs to be treated as a
sampling error. Random GEI is managed similarly to
the management of plot error in field trials: with
appropriate sampling and adequate replication. Random
environmental fluctuations from trial to trial need to be
treated as experimental noise that can reduce the
accuracy of selection. Trial-to-trial variation within a
TPE is always present. Even in an extremely uniform
region, two trials of the same cultivar set planted a few
kilometers apart, or in the same spot in different years,
will normally exhibit some differences in the rankings
of cultivars due to annual fluctuations in rainfall totals
and distribution, disease pressure, planting date, etc.
Random GEI is an error stratum that can contribute as
much or more “noise” to estimates of cultivar means
as the plot error or residual stratum. Mistaking random
for fixed GEI can lead to serious errors in breeding
program design, notably the inappropriate splitting of
regions into smaller TPE when there is really no
repeatable difference in cultivar ranking between them.

It should be understood that, although the TPE
normally has defined geographical limits, it is not
necessary that one geographic region be treated as a
single TPE. For example, within a given region, there
may be great differences in the cultivars needed by
farmers with access to irrigation, as opposed to farmers
whose fields are purely rainfed. In such a situation, it
is reasonable to delineate two TPE in the same region,

and perhaps operate two breeding and testing programs
(resources permitting), one for rainfed farmers and one
for irrigated farmers.

THE MANAGEMENT OF FIXED GEI IN
BREEDING PROGRAMS

The principal approach to the management by
breeders of fixed and repeatable GEI associated with
environmental or management factors is to “exploit” it
by developing cultivars that are specifically adapted to
the particular environmental condition causing the
interaction. In other words, one can subdivide the TPE
into more homogeneous breeding targets. This is
equivalent to “shifting” GE effects to genotypic effects,
and may increase genetic variance and broad-sense
heritability (H). To take a simple example, short-
duration cultivars have an advantage in environments
where growth is terminated at the end of the crop cycle
by drought, heat, or cold, but long-duration cultivars are
higher-yielding in environments where the length of the
growing season does not prematurely terminate the crop
cycle. In such cases, if the growing season length is
reasonably consistent at individual locations, it makes
sense to target long-duration cultivars at sites with a
longer growing season, and short-duration cultivars at
sites with a short season, i.e., to subdivide the TPE.
However, great care should be taken in deciding
whether or not to divide a TPE to ensure that
subdivision is truly warranted, because it usually results
in a reduction of testing resources within the new,
smaller TPE. The trade-offs involved are discussed in
detail by Atlin ez al. (2000a,b) and Curnow (1988), and
elaborated below.

Some environmental factors may not appear to fall
neatly into the fixed versus random schema, but still
should be considered fixed factors for the delineation
of TPE. For example, drought events occur
unpredictably; it is not possible to forecast droughts
with enough certainty to determine whether a drought-
tolerant variety will give an advantage at a particular
location in a given season. However, within any given
TPE the breeder usually has an idea about how
frequently severe droughts occur. For example, if severe
droughts occur in one season out of four, the breeder
can make an informed decision about whether it is
worthwhile to screen materials under development for
drought tolerance, and how much weight to give to the
results of such screening in selection decisions. In this
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sense, drought-proneness is more like a fixed than a
random effect. Sporadically-occurring stress factors
such as drought may be best dealt with by selecting for
them in simulated managed-stress screening systems,
wherein an analogue to the naturally-occurring stress
is applied artificially, for example (in the case of
drought) by withholding irrigation during a rain-free
period. Managed stress screening for drought tolerance
has been incorporated in the cultivar development
pipelines of many breeding programs, and has proven
effective for improving drought tolerance of rice
(Verulkar ef al. 2010) and maize (Bénziger et al. 2006).
The weight that should be given to data from such
screens in selection decisions, relative to weighting of
trials that randomly sample the TPE, is a question that
has been inadequately researched and requires urgent
attention. Managed stress screening data are often
characterized by low repeatability, and care needs to be
taken not to weight them excessively. Too much weight
placed on screens with low broad-sense heritability or
repeatability (H) relative to high-H data from wide-scale
testing under normal conditions can reduce gains in
both stressed and non-stressed environments.

THE MANAGEMENT OF RANDOM GEI IN
BREEDING PROGRAMS

Random GEI resulting from site-to-site variations
in cultivar rankings that change from year to year
cannot be managed by subdivision of the TPE, or by
any form of site-specific prediction, because it does not
result from consistent site effects. Random GEl is a true
error stratum, like plot error, and must be handled by
breeders in the same way they handle other sources of
noise that obscure the value of genotypes under test.
The principal tool for reducing the effect of random
GEI is replication over sites and years, such that the
unexplained environmental variation within the TPE is
adequately sampled, and precise and repeatable
estimates of genotype means are obtained, with realistic
standard errors. Increasing or decreasing the number of
sites and years of testing will affect H, standard errors,
and selection response. Variance component estimates
may be used to model these effects to determine the
optimal allocation of testing resources (for an example,
see Atlin and McRae (1994)).

Another key tool for managing random GEI (and
random plot error) in breeding programs is the use of
best linear unbiased prediction (BLUP) to account for

selection bias. The purpose of multi-location variety
evaluation is almost always to select the best cultivars
for further testing or for recommendation to farmers,
based on mean yields estimated in a set of METs that
sample the TPE. The process of ranking and selection
of the highest-yielding entries, either for further testing
or for recommendation to farmers, introduces selection
bias, a problem that has been widely recognized in
animal breeding, and for which appropriate analytical
approaches have been developed (Henderson 1976), but
which is little recognized or understood in plant
breeding. Selection bias arises because the highest-
yielding entries in a cultivar trial are usually high-
yielding both because of large genotypic deviations or
effects, which can recur in subsequent testing and in
farmers’ fields, and because they also fortuitously
include larger-than-average random environmental
deviations, which were specific to the trials in which
they were measured and unlikely to be repeated in
future testing. BLUP is an estimation method that treats
genotypic effects as random (Smith ez al. 2005), and
shrinks them towards the mean by a factor which is
closely related to H; in essence it uses population
variance component estimates to generate a
repeatability value specific to each entry (i.e. adjusted
for the number of sites, years, and replicates in which
the entry was tested) and shrinks the effect estimate
back towards the population mean in proportion to this
repeatability. Means with a higher information content
(i.e. means tested over more sites and years) are subject
to less shrinkage than means with a lower information
content (i.e. means from testing over fewer sites and
years). BLUP is an important tool for dealing with the
imbalance inherent in most cultivar testing systems,
wherein new entries are added and poor-performing
entries dropped each year, and only a fraction of entries
are tested over two years or more. BLUP also permits
information from other regions or cropping systems, if
available, to be used in improving predictions of
performance in the TPE. Piepho and Md&hring (2005)
pointed out that genotype performance is often
correlated in different TPE, and showed that, when
appropriately weighted, information from different but
similar regions can usually improve predictions of
performance in the TPE. There are many reports of high
correlations among genotypic effects estimated in
widely-separated TPE (Atlin et al. 2000b, Braun et al.
1992, Cooper et al. 1993a, Peterson and Pfeiffer
1989). A practical illustration of use of information
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generated outside the TPE is provided by Cooper et al. 2
- e
(1993b). H= 5 5 (3)
o2 4 00 , OF
PARTITIONING FIXED VERSUS RANDOM “ e re

GEI: THE GE MODEL

The importance of GEI caused by a fixed
environmental or geographic effect, relative to the
importance of within-TPE noise caused by random and
unexplainable variation among genotypic effects across
locations is easily assessed by incorporating a fixed
factor into the model for the combined analysis of a
MET series. Consider the simplest GEI model (referred
to herein as the “GE model” for the analysis of a series
of trials:

Yij =M+ Ei + R(E)j(t) + Gk + GEik+ €ijki )

where

Yiu = the measurement on plot / in environment 7,
block j, containing genotype £;

M =the overall mean of all plots in all
environments;

E, = the effect of environment (trial) 7;

R(E);;) = the effect of replicate j within environment
i

Gy = the effect of genotype £;

GE, = the interaction of genotype i with
environment £;

€kl = the plot residual.

This model assumes that trials are laid out in
randomized complete blocks and that error variance is
constant across trials. This assumption simplifies the
subsequent arguments, but it can be modified, for
example, to account for the use of resolvable
incomplete block designs and heterogeneity of error
variance.

In this model, the variance of the estimate of a
genotype or entry mean is

2 2
Gg O, o
— _GE e
Y = 25 +o- 2)

where 0'% is the variance of a cultivar mean, e is the

number of trials, and 7 is the number of replicates per
trial.

The repeatability or broad-sense heritability (H) of
estimates of genotype or entry means is

with effects associated with variances defined as in Eq.
1, and e and 7 as in Eq. 2. If the environments can be
classified into two subgroups, such as soil types or
regions, then the environmental effect E, can be
subdivided into an effect of subgroups, §,, and trials
within subgroups, E,(S,,) (Atlin et al. 2000a). The GE
effect is similarly partitioned into an effect GS,,;, the
interaction of genotypes with environmental subgroup,
and an effect GE(S)y;, Or the interaction of genotypes
with trials within environmental subgroups

Yig=M~+S,, + E(S,) + RIEWS))im) T Ok
+ GSpk T GE(S)imy T €jjtam 4

Environmental subgroups are considered to be
fixed effects, because specific inferences are to be made
about the subgroups, but trials within subgroups are
simply samples of the environmental variation within
the subgroups, and therefore must be considered to be
random effects. Genotypes may be considered fixed or
random, but should generally be considered random if
they are being selected for recommendation or further
testing (Smith ez al. 2005).

To illustrate the utility of this model, we will
consider the CIMMY T-managed Southern African early
and intermediate maize hybrid trials conducted in 2009.
These trials consisted of 63 hybrids evaluated at 24 sites
in three-replicate trials. The trials were located in 6
countries. To determine if each country should be
treated as a separate TPE, countries were included as
a factor in the model, by partitioning site effects and
their interactions with genotypes into fixed effects of
countries and random effects of locations within
countries. Results are presented in Table 1. The
genotype X site variance was larger than the genotypic
variance, but over 8§0% of this GEI was due to genotype
X site interaction within countries, and only 20% among
countries. Atlin et al. (2000a) showed that the genetic
correlation between means estimated in an undivided
TPE and a subdivision (75 ) can be expressed as

2
oG
N e e ()

This is based on a specific assumption on the
random effects, i.e. all have constant variance. This is



242 G.N. Atlin ef al. / Journal of the Indian Society of Agricultural Statistics 65(2) 2011 237-247

Table 1. Genotype, genotype X country, genotype X location
within country, and error variances for the 2009
Southern African CIMMYT early and intermediate

hybrid trials.
Source Variance component
Hybrid 0.100
Hybrid x location 0.125
Hybrid x country 0.030
Hybrid x location 0.125
within country
Error 0.518

a very simplistic model, which could be modified to
account for heterogeneity. For example, the variance of
GS could be allowed to vary between TPE.

By this method, the average genetic correlation
between yields in any one Southern African country and
the mean of all countries is 0.88. Given this high genetic
correlation, and the fact that many more test sites are
available in the region as a whole than in any one
country, it is likely that genetic gains would be greater
if the Southern African region were treated as the TPE
than if each country made separate testing decisions.
The effect of subdividing a target region on response
to selection can be expressed as

CRIDR= 1}, |2 6)
Hg

where CR is the predicted correlated response in the
subregion to selection in the undivided TPE, DR is
direct response to selection in the subregion, and Hy,
and Hj are the repeatabilities in the whole TPE and the
subregions, respectively (Atlin et al. 2000b). Hy, is
estimated as in Eq. (3), while Hj is estimated as

2 2
H= > 5 )
OGE(s) 4 9k

re

Og + 0% +

Substituting into Eq. (6) and assuming that four
trials would be conducted in each country whereas 24
would be conducted in the region as a whole, it is found
that gains in each country would be, on average, 4%
higher if selections were made based on performance
across the whole region, rather than based on data from
each country alone.

PARTITIONING FIXED VERSUS RANDOM
GEI : THE GLY MODEL

Eq. (1) is widely used for analyzing METs, but it
should be noted that it is a flawed and misleading
model, because it confounds genotype X year, genotype
X location, and genotype X year X location effects in
an undifferentiated “genotype X environment” effect,
resulting in a great loss of information and frequent
over-estimation of the importance of location effects.
In general, this model should not be used for the
analysis of METs unless it is for the analysis of a series
of trials conducted in a single year for the purpose of
estimating a more realistic standard error than the one
derived from a single-site analysis.

A more realistic and complete model for the
analysis of cultivar trials than Eq. (1) recognizes years
and sites as random factors used in sampling the TPE.
The resulting model is

Yigm =M+ Y, + L+ YL, + R(YLY, i, + G,
+ GL/[ + GY/J- + GLY/U + eijklm (8)

This model (referred to herein as the “GLY”
model) differs from the GE model in that the E term
has been partitioned into location (L) and year (Y)
effects and their interaction (LY). Similarly, the GE
term has been partitioned into GL, GY, and GLY
components. H for this model is

2

He——— )

0.(2; +O'GL +O'GY +O'GLY +O-7E

[ y ly rly
where [, y, and r are the number of locations, years, and
replicates, respectively. In this model, location effects
may be taken as fixed, if they refer to a specific
subregion within the TPE rather than to specific trials,
with the same locations used in the trials over years.
However, if locations are included simply to randomly
sample fields within the TPE, they are best considered
random. Year effects, and their interactions with

locations and genotypes, are clearly random.

It is important for breeders and biometricians to
clearly understand the relationship between the GE and
the GLY model, and the implication of this relationship
for estimates of genotype and genotype X environment
means and variances. In the GE model, if the trials are
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Table 2. Variance component estimates from variety testing programs in several species and target

populations of environments (TPE)

Crop TPE O'é O'éL aéY aéLY 0% Source
Maize hybrids Southern Africa:
rainfed 0.17 0 0.03 0.51 0.29 | CIMMYT, unpublished data
Rainfed rice Thailand 0.07 0.04 0.06 0.32 0.54 | Cooper et al. (1999)
Barley Eastern Canada 0.17 0.08 0.05 0.17 0.53 [ Atlin and McRae (1994)
Spring wheat Eastern Canada 0.48 0.01 0 0.27 | 0.25 |Atlin and McRae (1994)
Winter wheat Eastern Canada 0.36 0.03 0.02 0.29 0.30 [ Atlin and McRae (1994)
Spring wheat Western Canada 0.29 0.11 0.02 0.27 0.31 | Baker (1969)
Barley UK 0.10 0.06 0.12 0.27 0.45 | Talbot (1984)
Spring wheat UK 0.13 0.12 0.14 0.28 0.33 | Talbot (1984)
Winter wheat UK 0.27 0.02 0.06 0.31 0.35 | Talbot (1984)
Winter wheat Italy 0.18 0.07 0.04 0.29 0.41 | Annicchiarico and Perezin (1994)
Spring wheat Australia 0.05 0.13 0.11 0.12 0.58 | M. Cooper, personal communication
Mean 0.20 0.06 0.06 0.28 | 0.39

conducted over more than one year, estimates of
genotypic effects are not confounded by GEI effects,
and genotypic variance estimates are unbiased by GEI
variances. However, because GL, GY, and GLY effects
and variances are not estimated separately by the GE
model, it is impossible to determine if GEI is caused
by random noise (GY and GLY effects) or fixed
adaptation to specific locations or subregions (GL
effects). In general, for TPE that are delineated by
reasonable criteria, the random GLY component is
usually the largest GEI component, and little repeatable
adaptation to specific locations is observed. Evidence
for this statement is found in the variance components
derived from 12 MET series conducted over a range of
crop species in both tropical and temperate
environments and presented in Table 2, standardized to
a phenotypic variance of 1.0. On average, the GLY
variance resulting from unexplained changes in
genotype rank from site to site and year to year was
nearly five times as large as the genotype X location
variance.

The very large size of the GLY effects, which are
truly random, relative to the GL effects that may in
some cases be considered to be fixed attributes of
particular genotypes in particular environments, is a
potential source of misinterpretation in the analysis of
METs using the GE model. This is particularly true
when analyses are conducted based on fixed-effect

models such as AMMI (Gauch 2006) or GGE (Yan
et al. 2007). Yang et al. (2009) showed that treating
random GEI effects as fixed causes lack of repeatability
and over-interpretation of “which-won-where” patterns
observed in GGE and AMMI biplots, and Yang (2007)
showed that it resulted in the declaration of excess
crossover interactions in COI models. If the MET series
is from a single year of testing, the danger of
misinterpretation is especially great. In single-year
analyses, estimates of genotypic effects are confounded
with genotype X year effects, and estimates of genotypic
variances are biased upward by genotype X year
variance. GE variances estimated from single-year
analyses contain both the GL and GLY variance.
Because of the large size of the GLY variance relative
to the GL variance in most TPE, analyses of single-year
MET series are prone to misinterpretations wherein
large GE effects are assumed to be caused by local
adaptation to specific locations, whereas they really
result from random year-to-year and site-to-site
variability causing non-repeatability of rankings from
different trials. These errors and misinterpretations can
be largely avoided by estimating variance components
from the GLY model and determining if there is
evidence of large genotype by site effects before
proceeding to analyses designed to group environments
based on interaction patterns. Also, using BLUP based
on a mixed model version of AMMI or GGE, known
as factor-analytic models (Piepho 1997, 1998), will
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result in reduced selection bias in the discovery of
interaction patterns.

Why has the GE model remained in wide use,
while the GLY model is rarely used? In the past,
breeders and biometricians often used the GE model in
place of the GLY model because it was less demanding
of computer memory, but this reason is no longer valid;
most breeding programs have access to adequate
computing power to analyze METs with appropriate
models, and residual maximum likelihood (REML)
algorithms capable of analyzing unbalanced datasets
with mixed models are available in statistical packages
such as SAS, GENSTAT, and R. Another reason may
be the widespread availability of AMMI and GGE
biplot software that does not allow the partitioning of
location and year effects, and that many breeders use
as a “black-box™ approach to the analysis of METs
(Yang et al. 2009). Neither of these reasons justifies
using an inappropriate model which leads breeders to
make wrong decisions.

As in the GE model, the site effects in the GLY
model, and their interactions with genotypes, may be
partitioned according to some fixed environmental
factor. The resulting model is

Yipam =M+ Y, +8;+ L(S)y + YS; + YSL
+G, + GY,, + GS,,; + GSL
+ GYSL

ik T RCYSL )y
+ GYS

mjk mij
k + eijklmn (10)

where S is the effect of the subdivision of locations,
L(S) the effect of locations within subregions, with
interactions with genotypes similarly partitioned. The
explanatory power of the fixed factor in accounting for
GEI can then be quantified and tested. As an example,
we consider the power of the current geographical
recommendation zones of the All-India Coordinated
Maize Improvement Program (AICMIP) maize hybrid
trials to explain GEI in sets of new hybrids tested India;
these trials are used to provide information for the
release of new hybrids. The maize-growing regions of
the country are divided into five large geographical
zones, with a total of 25-30 test locations distributed
among them annually. New sets of hybrids, segregated
by maturity group (extra-early, early, medium, and late)
are composed annually in these trials and evaluated
over all five zones in their first year of testing; hybrids
that perform well in the first year are then retested in
one or more of the five zones for up to two more years.
A common set of check hybrids is tested in each zone.

mij

In a combined analysis conducted for each set occurring
in the period 1994-2006, the location effects and their
interactions with hybrids were partitioned into zones
and sites within zones. Variance component estimates
pooled over the combined analyses are presented in
Table 3 for the late and medium hybrid maturity groups.
These results indicate that, although in aggregate GEI
variances were large relative to the genetic variance the
cultivar X zone interaction explained almost none of the
GEI within each maturity group, and that the cultivar
X location X year interaction within zones was the
largest variance component. The limited proportion of
the GEI explained by the large geographical
recommendation zones indicates that environmental
variability within each zone is nearly as great as the
variation among zones, and that it may be possible to
select hybrids within each maturity group that are
broadly adapted across zones. The limited hybrid X

Table 3. The magnitude of cultivar and cultivar X zone
variances relative to other components of genotype
X environment interaction estimated from the
All-India Coordinated Maize Improvement
Program medium and late maturity hybrid trials
conducted in India 1994-2006.

LATE MATURITY

Effect Variance Standard

component error
Cultivar 229862 36873
Cultivar X Zone 0 .
Cultivar x Location 263903 44706
within Zone
Cultivar X Year within Zone 0 .
Cultivar X Year x Location 735292 44554
within Zone

MEDIUM MATURITY

Effect Variance Standard

component error
Cultivar 313310 28960
Cultivar X Zone 365 9482
Cultivar x Location 78019 18254
within Zone
Cultivar X Year within Zone 42527 14687
Cultivar x Year x Location 656587 22777
within Zone
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zone interaction also indicates that information from
neighbouring zones may be used to increase the
precision of hybrid means estimated within zones as
outlined by Piepho and Maohring (2005).

CONSEQUENCES OF INAPPROPRIATELY
DESIGNATING SITE, YEAR, OR TRIAL
EFFECTS AS FIXED ON ESTIMATES OF
PRECISION

An important consequence of wrongly designating
location, year, or trial effects as fixed rather than
random in combined analyses conducted for the
purposes of selection within the TPE is that the standard
error of the difference (SED) between two cultivar
means, and related statistics such as the least significant
difference (LSD), are greatly underestimated, leading
to a false idea of the precision of estimation of entry
means. To illustrate this, the standard error of the
difference for the GSY model with sites and years
considered fixed (Eq. 11) and random (Eq. 12) are
presented below.

0_2
SED, = [2| %< 1
fixed lyl’ ( )
2 2
SED, . = |2 %G1 e an %G1 + % a2
[ y ly lyr

For the model that incorrectly designates these
effects as fixed, the GL, GY, and GLY variances do not
enter in the standard error of the difference. Since the
purpose of METs, however, is to predict the mean
future performance of cultivars in the TPE, these
variances affect the accuracy of predictions. Excluding

them from the SED gives an extremely overoptimistic
impression of the precision of the means from cultivar
trials, with the extent of underestimation of SED
dependent on the size of the GEI variances relative
to the plot residual variance. This is illustrated in
Table 4, using variance component estimates from Thai
rainfed lowland rice trials reported by Cooper et al.
(1999). For this MET series, designation of sites and
years as fixed effects resulted in underestimation of
SEDs by 44 to 52%, depending on the extent of testing.

IMPLICATIONS OF LIMITED FIXED GEI FOR
BREEDING STRATEGIES

Selection for broad adaptation and stress tolerance
has been achieved via different strategies in different
breeding programs, but the most important tool has
been the extensive field testing of experimental
breeding lines and hybrids in many environments
during the selection process. Increases in tolerance to
a range of stresses such as drought, low fertility, and
cold in US Corn Belt maize, for example, have
contributed greatly to yield gains (Castleberry et al.
1984; Duvick and Cassman 1997; Tollenaar and Lee
2002) but have not resulted from direct selection for
any of these stresses. Rather, they have resulted mainly
from the broad-scale multi-location hybrid testing
programs of commercial maize breeding companies that
effectively sample conditions occurring in farmers’
fields. The small size of the genotype X location
interaction variance relative to other components of GEI
reported in many studies (Table 2) is strong evidence
that this approach is sound, and that selection based on
wide-scale testing is likely to outperform selection for
local adaptation unless fixed genotype X location

Table 4. Predicted standard error of the difference (SED) (t ha_l) estimates from three-replicate Thai rainfed lowland rice
variety trials (Cooper et al. (1999)) assuming locations and years fixed or random

No. of No. of SED assuming SED assuming % underestimation of
years locations locations and locations and SED by fixed-effects
years fixed years random model

1 1 0.77 1.38 44

1 5 0.34 0.67 49

1 10 0.24 0.50 52

2 1 0.54 0.96 43

2 5 0.24 0.45 47

2 10 0.17 0.33 49
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interaction is very large (Atlin et al. 2001). This is
consistent with the breeding and commercialization
strategies of seed companies and large public-sector
breeding programs that deliver most cultivars of staple
food crops to farmers around the world; to be cost-
effective, these breeding programs must serve very large
TPE. The best approach to the management of GEI in
breeding programs is to (a) design the TPE such that
fixed GEI within it is limited or non-existent (b) sample
the TPE adequately to estimate genotypic effects with
high repeatability, and (c) if available, use information
from relevant trials outside the TPE to increase the
precision with which means are estimated in the TPE.

CONCLUSIONS

METs, which are expensive to conduct, are
important tools in the selection of new cultivars, and
should be analyzed so as to extract the maximum
information possible from the investment. Random GEI
is an important but under-recognized error stratum in
the analysis and interpretation of METs. However most
METs are analyzed using inappropriate fixed-effect
models that are highly susceptible to selection bias,
grossly underestimate standard errors of means and
differences, and overestimate heritability and the
importance of repeatable genotype X environment
interaction. Breeders and statisticians usually fail to use
the optimal BLUP algorithm, which corrects for
selection bias and permits the analysis of unbalanced
data sets over years and locations, permitting new
entries with only one or a few years of evaluation to
be compared with long-term checks without discarding
data on the long-term entries. It is important that both
local breeding programs and national cultivar testing
systems keep pace with developments in statistical
software and algorithms, and adopt modern approaches
to data analysis. Cultivar trial series should be analyzed
using the GLY model rather than the GE model even
when unbalanced; the REML algorithm available in
widely-used statistical packages makes this possible for
all plant breeding programs. In general, the importance
of highly localized adaptation is overestimated by plant
breeders, largely as a result of the use of inappropriate
fixed effects models that deliver results that are
contradicted by the practical experience of the world’s
largest and most effective public and private sector
breeding programs. Selection in METs conducted

across enough sites and years to adequately sample
environmental variation in the TPE remains the most
reliable way to develop high-yielding and broadly-
adapted crop cultivars.
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