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SUMMARY

In choosing a fractional factorial plan, one often decides on an orthogonal plan. Fractional factorial plans represented by
orthogonal arrays provide orthogonal plans which also have strong optimality properties. While using such fractional factorial
plans, it is possible in some situations that certain treatment combinations are infeasible or, even if these are feasible, no
observations can be made on these. In such situations, it is desirable to have an orthogonal fractional factorial plan that does
not include the infeasible treatment combinations. In this paper, we provide a method of obtaining such plans represented by

two-symbol orthogonal arrays of strength two.
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1. INTRODUCTION

Fractional factorial plans have been an active area
of research in recent years due to their wide
applicability in many diverse fields, including
agriculture, physical and chemical sciences, industrial
experimentation and quality improvement work.
Extensive discussion of fractional factorials together
with useful catalogues can be found in Dey (1985) and
Wu and Hamada (2000). For a more mathematical
treatment of fractional factorials with emphasis on
optimality aspects, one may refer to Dey and Mukerjee
(1999). Among the fractional factorials, the ones which
have each factor at two levels are the most important
ones and in this communication, we concern ourselves
only to fractions of symmetric 2-level factorials.

In some experimental situations, it may happen
that certain factor-level combinations are infeasible in
the sense that observations are not available under such
level combinations. For example, in an agronomic
experiment, amounts of the nutrients, nitrogen and
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phosphorus and amount of irrigation may be three of
the factors and high doses of nitrogen and phosphorus
and a low dose of irrigation may lead to burning of the
crop. In such a case, clearly no observation can be made
on treatment combinations involving the high levels of
the factors nitrogen and phosphorus and low dose of
irrigation. Furthermore, in some other experimental
situations, it is possible that the experiment can be
carried out but measurements cannot be made. A real
life example reported by Cheng and Li (1993) illustrates
this scenario and relates to a study on thermal history
control in bar-code printers. Among the several ways
to print a bar-code, the thermal transfer is regarded as
the best because of its printing quality and suitability
for multiple-product-small-quantity production. In one
experiment with thermal transfer, no measurements
could be made for a treatment combination in which
all the factors were at the lowest levels. Additionally,
in some experimental situations, certain combinations
may be ruled out because of their being prohibitively
expensive, even though it might be operationally
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feasible to conduct an experiment with such treatment
combinations.

Orthogonal fractional factorial plans provide
uncorrelated estimates of all the relevant parameters
under a chosen model and these are economical,
efficient and easy to analyze and interpret. If an
orthogonal plan contains one or more such infeasible
treatment combinations as described above, there will
be missing data and it may not be possible to augment
the plan without losing the attractive property of
orthogonality. It is therefore desirable to start with an
orthogonal fraction (before the experiment is
conducted) which does not include any infeasible
treatment combination. Cheng and Li (1993) first
considered this problem in the context of regular
fractions (for a definition of regular fractions, see e.g.,
Dey and Mukerjee (1999)). In this paper, we provide
results on the same problem for 2-level fractional
factorial plans represented by orthogonal arrays of
strength two. A brief remark about the applicability of
the proposed method to regular fractions is also made.

2. RESULTS

Consider a 2-level symmetric factorial experiment
involving n factors, F, . . ., F,. Suppose that a certain
combination of levels of k < n factors, say F, .. ., F},
is infeasible. We call such a combination of the & factors
as a debarred combination. Note that if k£ < n, then a
single debarred combination may lead to several of the
treatment combinations to be infeasible. In general, if
there is a single debarred combination involving k (<
n) factors, then the number of infeasible treatment
combinations is 2",

An orthogonal array, OA(N, n, 2, 2) involving n
columns, N rows, 2 symbols and strength 2 is an N X n
matrix 4 with two distinct entries in each column such
that each of the 4 combinations of the symbols appears
equally often as a row in every N X 2 submatrix of 4.
If one identifies the columns of an OA(N, n, 2, 2) with
the factors of a factorial experiment and the rows as
treatment combinations, then an OA(N, n, 2, 2)
represents a fractional factorial plan for a 2" experiment
in NV runs. Such a fractional factorial plan is orthogonal
and universally optimal (in particular, 4-, D- and
E-optimal) over the global class of competing plans
under a model that includes the mean and all main
effects, all 2-factor and higher order interactions being

assumed negligible. We also need the notion of
projectivity of a fractional factorial plan, defined below.

Definition: A fractional factorial plan involving n
factors is said to have projectivity p if in every subset
of p(< n) factors, a complete factorial with possibly
some repeated runs is produced.

It is well known that a regular fractional factorial
plan of resolution R (which is an orthogonal array of
strength R — 1) has projectivity R — 1 but cannot have
projectivity greater than R — 1. However, some non-
regular fractions represented by orthogonal arrays of
strength g(= 2) can have projectivity greater than g. As
an example, consider an OA(12, 11, 2, 2) shown in
Table 1. It can be verified that under any 3 columns, a
complete 23 factorial plus some repeated runs is
produced and thus, the array in Table 1 has projectivity
3 even though the strength is 2. For more on projectivity
of fractions represented by orthogonal arrays, a
reference may be made to Box and Tyssedal (1996),
Cheng (1995, 1998), Bulutoglu and Cheng (2003) and
Dey (2005).

Table 1. An 0A(12, 11, 2, 2)

1 110 1 1 1 0] 0] 0 1 0
0 1] 1 0f 1 1 1 Of 0] Of 1
110 1 I {0 1 1 I{ 0] 0] O
0] 110 1 110 1 1 1 0] 0
010 1 0f 1 1 0] 1 1 1 0
0]07]0 I {0 1 110 1 1 1
Ir{o0ojJo0)0] 1[0 1 1] 0 1 1
1 Ir{o]o0fO0 1 0] 1 1 0] 1
1 1 1 0O 0] 0 110 1 1 0
011 1 Ifojpofof 1| o0 1 1
110 1 1 1 0] 0] 0 1 0] 1
0ojojojJojofo]ofof o] 0] O

Consider now a fractional factorial plan for a 2"
experiment represented by an OA(N, n, 2, 2). Suppose
a certain combination of levels of & < n factors is a
debarred combination. An orthogonal array of strength
two which does not include the infeasible treatment
combination(s) can always be constructed if the
projectivity of the array is less than k. To see this, let
A= OA(N, n, 2, 2) and let A have projectivity less than
k. It then follows from the definition of projectivity that
there exist some & columns of 4 under which at least
one of the relevant 2¥ combinations is missing. If the
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set of such missing combination(s) includes the
debarred combination, then we simply assign these &
columns to the corresponding & factors involved in the
debarred combination.

Now suppose the debarred combination, say q . . .
a;, appears under the k£ columns mentioned above.
Under these k columns, at least one of the possible 2*
combinations is however missing as, the projectivity of
the array is strictly less than k. Let b,. . . b, be one such
combination. Clearly, a,. . . a; # b,. . . b;, which implies
that a, # b, for at least one i, 1 <i< k. In all the columns
where a, # b;, interchange the two symbols. If we
consider the resulting orthogonal array (after the
suggested interchange of symbols) and continue to look
at the same k£ columns as before, the combination
a,. .. a, will be missing, as desired. Assign these &
columns to the relevant k factors. We thus have the
following result.

Theorem 1. In a 2-symbol orthogonal array of strength
two, suppose a certain combination of levels of k£ < n
factors is a debarred combination. If the orthogonal
array has projectivity less than £, then it is possible to
obtain an orthogonal array which does not contain the
debarred combination.

Example. Suppose one wants to conduct a 2'
experiment in 12 runs and chooses the OA(12, 11, 2,
2) shown in Table 1 as the plan. As noted earlier, this
array has projectivity 3. Suppose a combination of
levels of k, 3 <k < 11 is a debarred combination. First
let k= 11 and suppose the combination with each factor
at its low level (i.e., the combination (0, 0, .. ., 0)) is
debarred. This is one of the combinations in the array
in Table 1. Then, by interchanging the symbols 0 and
1 in each of the columns of the array, one gets an
orthogonal array OA(12, 11, 2, 2) which does not
include the debarred combination. The same technique
works if any other combination included in the array
of Table 1 is a debarred combination. If the debarred
combination is not one of those in Table 1, then the
array in Table 1 itself can be taken as the array which
does not include the debarred combination.

Next, consider the more interesting case when &
< 11. Suppose k = 4 and suppose the combination
(1, 1, 1, 0) involving the levels of the first four factors
is a debarred combination. Since this combination
appears in one of the rows of the array in Table 1, one
needs to find another OA(12, 11, 2, 2) which does not

have this combination. Under the columns 7, 8, 10 and
11 of the array in Table 1, we find that the debarred
combination does not appear. Therefore, we assign
these columns to the first four factors to get an array
which does not include the debarred combination. The
original array is as in Table 1 and the transformed one
is shown in Table 2.

Cheng (1995) showed that a fractional factorial
plan represented by an orthogonal array OA(N, n, 2, 2)
with N # 0 (mod 8) and n > 4 has projectivity three.
Using this result and Theorem 1 therefore, one can
obtain an OA(N, n, 2, 2) which does not include the
debarred combination for all £ > 3.

It is also possible to construct an OA(N , n, 2, 2)
where N = 0 (mod 8), such that it does not have
projectivity three. This construction is based on
Hadamard matrices. A Hadamard matrix H,, of order
Nis an N x N matrix with entries £1 such that Hy, H
= NI, where I, is an identity matrix of order N and a
prime over a matrix denotes its transpose. A positive
integer N is called a Hadamard number if Hy, a
Hadamard matrix of order N exists.

Table 2. An OA(12, 11, 2, 2) not containing the
debarred combination

010 1 0] 1 1 01 1 1 1 0
I 10]0 I {0 1| 1 0 1 1 0
1 Irpofof 1|0 1 110 1 0
1 Ir{o]o0fO0 1 01 1 1 01 1
011 1 O 0] 0 1] 0 1 1 1
110 1 Ifojpofof 1| o0 1 1
1 1 1 1 1| 0] 0] 0 1 0] 0
0|1 110 1 1 1 0] 0] 0 1 1
110 1 0] 1 1 I 0 0f 0 1
011 1 I {0 1 1 Iy 0] 0] O
0]07]0 1 110 1 1 1 01 1
0ojojojojofo]ofof o] o0] o0

The following facts about Hadamard matrices are
well known :

(i) One can always write a Hadamard matrix of order
N with its first column consisting of only +1°s, i.e.,
one can write Hy = [1,, B], where for a positive
integer s, 1, is an s X 1 vector of all ones.

(i) The existence of Hy, N = 4 is equivalent to that
of an OA(N, N -1, 2, 2).
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A set of 3 distinct columns of Hy(N = 4) is said
to have the Hadamard property if the Hadamard
product of any two columns in the set equals the third.
Recall that the Hadamard product of two vectors a =
(ay,....a,) andb= (b, ... b,) is definedasa * b=
(a\by, . . ., a,b,). We now have the following result.

Theorem 2. Let 1 > 4 be a Hadamard number and let
H, be written as H, = [1, B], where Bis a7 x (- 1)
matrix with entries 1. Then the orthogonal array
C =042t 2t -1, 2, 2) given by

CBHt
~|B -H,

does not have projectivity three.

Proof. It is easy to verify that C is an OA(2¢, 2¢— 1, 2,
2). Let a, be the ith column of B. Consider the three
columns of C given by

a 1 g
a -1 -a|

It is not hard to see that these three columns of C
have the Hadamard property. This implies that under
these three columns, the combinations (-1, —1, 1),
(-1,1,-1),(1,-1,-1) and (1, 1, 1) occur equally often
as a row of C while the other 4 combinations, viz.,
(-1,-1,-1), (-1, 1, 1), (1, -1, 1) and (1, 1, —1) do not
appear at all. It follows then that C does not have
projectivity three, thus completing the proof.

For each Hadamard number 7 > 4, Theorem 2 gives
an OA(2t, 2t — 1, 2, 2) which does not have projectivity
three. Combining this fact with the one in Theorem 1,
one can obtain orthogonal arrays not including a
debarred combination for all £ > 3.

Furthermore, numerical investigations show that
for N # 0 (mod 8), there exist 2-symbol orthogonal
arrays of strength two derived from H,, and not having
projectivity four for each of the following values of
N<100:

N =12, 20, 28, 36, 44, 52, 60, 68, 76, 84, 92, 100.

Hence, using such orthogonal arrays, one can
derive orthogonal arrays not including the debarred
combination for all £ > 4.

For regular fractions, one can always construct the
desired array with k£ > 3. To see this, consider a regular
fraction of a 2" factorial with resolution III or more.
Recall that such a regular fraction is characterized by
a set of defining contrasts with the property that the

resolution of the fraction is R if the smallest interaction
in the set of defining contrasts has R factors. The
interactions in the defining contrast set are called
defining words. If the fraction under consideration has
resolution III, then the projectivity of the corresponding
orthogonal array is 2 (and never more than 2) and the
technique described earlier works with & > 3. Next,
suppose the resolution R is IV or more. Choose a word
of length R in the defining contrast subgroup and
consider R — 3 letters, say /,, . . ., [ ; appearing in the
chosen defining word. Delete each of /}, . . ., [_; from
every defining word, wherever they appear. It is then
not hard to see that the fraction defined by the new
defining words is a regular fraction of resolution III.
Thus, again we have a fraction represented by an
orthogonal array of strength two and projectivity 2 and
we can proceed as earlier with & > 3.
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