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SUMMARY

For the problem of multiple testing, the Benjamini-Hochberg (B-H) procedure has become a very popular method in
applications. We show how the B-H procedure can be interpreted as a test based on the spacings corresponding to the p-value
distributions. Using this equivalence, we develop a class of generalized B-H procedures that maintain control of the false
discovery rate in finite-samples. We also consider the effect of correlation on the procedure; simulation studies are used to

illustrate the methodology.
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1. INTRODUCTION

Consideration of high-dimensional data has
become the norm in applied statistical practice these
days. For example, in genomics, it is quite common to
look for genes that are up-or down-regulated in
cancerous tissue relative to healthy tissue using high-
throughput data (e.g., microarrays or next-generation
sequencing technologies). Similarly, in neuroimaging,
there is consideration of thousands of voxels as a global
map of activity in the human brain using functional
magnetic resonance imaging technology. Assessing
differential expression in these settings leads to a
massive multiple comparisons problem that results from
performing thousands of tests for each gene or voxel.
This has led to an explosion of literature on statistical
methods for multiple testing. Many authors have
recently advocated for control of the false discovery rate
(FDR) (Benjamini and Hochberg 1995) relative to the
traditional familywise type I error (FWER). Many
authors have studied and developed methods for
controlling the false discovery rate (e.g., Efron et al.
2001; Sarkar 2002; Efron 2004; Storey et al. 2004;
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Genovese and Wasserman 2002, 2004; Cohen and
Sackrowitz 2005; Lehmann and Romano 2005; Sarkar
2006; Ferreira and Zwinderman 2006; Jin and Cai
2007; Chi 2007; Sarkar and Guo 2009; Finners et al.
2009). The above list is far from being completely
exhaustive.

The Benjamini-Hochberg procedure (Benjamini
and Hochberg 1995) has received much recent attention
in that it controls FDR and can lead to greater power
relative to a multiple testing adjustment using the
Bonferroni correction, for example. Much recent work
has focused on adaptive versions of the B-H procedure
(e.g., Benjamini ef al. 2006); in this literature, one
attempts to estimate the proportion of true null
hypotheses and adjust the threshold in the Benjamini-
Hochberg procedure accordingly. In addition, many
authors have noted the equivalence between the B-H
procedure with thresholding based on the empirical
distribution of the p-values, which has allowed for
development of theoretical results using empirical
process theory and related techniques (Storey et al.
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2004; Genovese and Wasserman 2004; Ferreira and
Zwinderman 2006).

Our starting point is quite different from the above.
In particular, we make explicit use of the fact that the
original B-H procedure involved sorting of the p-values
in increasing order. This sorting operation can be
equivalently characterized in terms of spacings (Pyke
1965). Doing so leads to a new characterization of the
B-H procedure as well as some new extensions that are
FDR-controlling procedures. Both exact and asymptotic
results will be presented. A major implication of our
procedures is that for multiple testing, it may not be the
case that evidence for rejecting null hypotheses exist
solely in the left-tail of the distribution of the p-values.
The structure of this paper is as follows. In Section 2,
we give some background on multiple testing and
discuss the procedure of Benjamini and Hochberg
(1995) as well as related work. In Section 3, we recast
the B-H procedure using spacing results and propose a
so-called generalized B-H procedures. We demonstrate
FDR control in finite-samples in Section 4. Section 5
explores the effects of correlation on the proposed
procedures. Some simulation studies illustrating the
proposed methodology are given in Section 6. We
conclude with some discussion in Section 7.

2. MULTIPLE TESTING BACKGROUND

Suppose we have test statistics 7}, ..., 7, for testing
hypotheses H,,, i = 1,..., n. Suppose we are interested
in testing a set of n hypotheses. Of these n hypotheses,
suppose that for n, of them, the null is true. The FDR
can be conceptualized using the following 2 x 2
contingency table

Table 1. Outcomes of » tests of hypotheses

Accept Reject Total
True Null u v n
True Alternative T S n
W Q n

The definition of false discovery rate (FDR) as put
forward by Benjamini and Hochberg (1995) is

EDR = E[g 0> O]P(Q > 0).

The conditioning on the event [Q > 0] is needed
because the fraction V /Q is not well-defined when Q

= 0. Benjamini and Hochberg (1995) propose a simple
algorithm for selecting the hypotheses that are
significant that controls the false discovery rate (FDR).
Note that it involves converting the statistics 77,...,7,
into p-values p,..., p,. Note that there are many ways
in which this could be done, such as model-based
p-values or permutation methods. In this paper, all we
will assume is that there exists some method of
converting test statistics into p-values. Let & denote the
rate at which it is desired to control the false discovery
rate. The algorithm of Benjamini and Hochberg (1995)
is then summarized in Box 1.

Box 1. Benjamini and Hochberg (1995) procedure

(@) Letpy<pp)<---<p, denote the ordered, observed
p-values.

(b) Find k =max{l <i<n:p, < ailn}.

(¢) If k exists, then reject null hypotheses pj) < -+ - <
Py Otherwise, reject nothing.

Benjamini and Hochberg (1995) show that the
procedure in Box 1 controls the FDR at level & when
the p-values are independent and uniformly distributed.
Benjamini and Yekutieli (2001) show that the procedure
in Box 1 controls the FDR at level « under the
condition that the joint distribution of the test statistics
corresponding to the true null hypotheses are positively
regression dependent. A more recent simplified proof
of the FDR control was developed by Finners et al.
(2009).

In terms of results involve error control of the FDR
procedure, there are two types of results typically
found: exact FDR control in finite samples and
asymptotic FDR control. For the first class of results,
Benjamini and Yekutieli (2001) showed that the
Benjamini-Hochberg procedure has exact error control
under positive regression dependence. A simplified
proof was given by Storey ef al. (2004) in the situation
when the p-values for the true null hypotheses are
independent. More recently, Sarkar (2002, 2006) has
developed useful inequalities in order to prove the exact
FDR control of generalizations of the Benjamini-
Hochberg procedure under positive regression
dependence. Sarkar et al. (2008) proved the exact FDR
control of a procedure based on the so-called Bayesian
false discovery rate. With respect to asymptotic control
of FDR, authors such as Storey et al. (2004), Genovese
and Wasserman (2004) and Ferreira and Zwinderman
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(2006) have all observed the following fact: the B-H
procedure is equivalent to the thresholding rule

ca(lﬁ), where
cF)=sup{0<r<1:F)< af,

where (Fﬁ) is an estimator of the false discovery
rate. Using this equivalence, the previously mentioned
authors are able to derive asymptotic results. In their
work, the necessary crucial assumption is that the
distribution functions for the p-values corresponding to
the true nulls and true alternatives converge to
population limits. This is a Glivenko-Cantelli type of
result, so the results that have been derived can allow
for some dependence between the p-values.

3. SPACINGS AND THE B-H PROCEDURE

Spacings have a long history in statistics, dating
back to the first half of the 20th century (e.g., Pearson
1902 Greenwood, 1946 Moran 1947). A very
comprehensive review of the topic can be found in Pyke
(1965). Let U,,..., U, denote a random sample from
the Uniform(0, 1) distribution. Then the spacings are
definedas V;, = U, — U, ), fori=1,...,n+ 1, where
U denotes the ith order statistic of U, Uy = 0 and
U(,,Jr 1y = 1. Note that while the joint density of U, ...
U, is

1 if 0<u <lforalli
0 otherwise,

f(ula R ) {

the joint density of the spacings is given by

n+l

n! if v; 20foralli and
fp,..nv)= 2
0 otherwise.

ey
We observe that the joint density of the spacings

is defined on the simplex {Zi:l Vi =1, v20,i=

I,...n+1 } However, we also note that the Vs are

not statistical independent because of the constraint that
they must sum to one. Similarly, the order statistics are
not statistically independent even if the original random
variables are independent and identically distributed.

Based on (1), we observe that the joint density of
the spacings is invariant to permutation of the indices.
This implies that the marginal distribution of V; will be
the same as that of V. It can be shown that E(V)) =

(n + 1)_ fori=1,...,n+ 1 and that E(V,V}) =
(n+ D'+ 2)"! for 1<j,k<n+ 1. From these
expressions, it is easy to find the second moment of V'
as well as its variance. Determining higher-order
moments of 7 can also be done, although it becomes
much more algebraically tedious. In fact, because the
U’s are distributed from a Uniform(0, 1) distribution,
we can say that marginally, the V;’s will have a Beta(1,
n + 1) distribution, i.e., the pdf of V' is given by
S ) =n ="

However, we again stress that there is dependence
among V,..., V,

ne

We now return to the Benjamini-Hochberg
procedure. We will begin by assuming that the p-values
D> - - Dy are statistically independent. Let us define p(,,

=0, pie1)= 1 and
Pi =Puy—Pi-1pi=1...ont 1l

It is straightforward to show that we can express

Po~ 2

(n+ 1), we can express the B-H procedure from Box
1 in the following manner: reject p(;y,. .., p, where

i
max{z i 2

.. Based on this and the fact that E( p, ) =

<a(n+Dn'E( ;31)} )

with k = 0 if the set in (2) is empty. Equation (2) is
illuminating. It says that the B-H procedure can be
phrased in terms of a comparison between the
cumulative average of the spacings with the
corresponding expected value. As demonstrated in
Benjamini and Hochberg (1995), such a procedure has
expected value nyor/n, where o is the desired FDR to
control. We can also view (2) as a test for clustering of
p-values on the unit interval, which is one application
of spacings in statistics (e.g., Moran 1947, Cressie
1979). The B-H procedure assesses clustering of
p-values using first-order differences in the sorted
p-values. In particular, gaps between the sorted p-values
that are smaller than expected, i.e. E( p; ), constitute
evidence against the null hypothesis. As will be seen
in the next section, we can make other choices for
assessing clustering of p-values in the multiple testing
problem that will also lead to FDR-controlling
procedures. Finally, we also observe the presence of the
factor (n + 1)/n in (2). We note that as » tends to
infinity, this factor will approach one.
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4. PROPOSED METHODOLOGY: EXACT AND
ASYMPTOTIC RESULTS

Based on analogy with the B-H procedure, we can
extend it in an obvious way using firstorder differences
(i.e. the spacings). This leads to what we term the
generalized Benjamini-Hochberg (gBH) procedure.

gBH procedure : Reject p(;), . ...py), where

k=max|i:i' Y g(pp<eElg(m))|. ()
j=1

If g is some suitably chosen monotonic function, and
k =0 if the set in (3) is empty.

If g in (3) is taken to be the identity function, then
this will almost yield the original B-H procedure. The
difference will be the factor (n + 1)/n on the right-hand
side of the equality sign. However, if we replace ia/n
by icd/(n + 1) in part (b) of Box 1, then this is in fact
slightly more stringent than the B-H procedure so that
we will still maintain FDR control.

For the procedure in (3) to work in practice, it is
desirable to choose a g function so that the expected
value in the expression is analytically tractable. A
natural class of functions to use is the following family
of power functions: for 4 >0

A
Z A>0
= ? 4
&%) {log(z) A=0. @

By exploiting the fact that p, has a Beta distribution,
it is easy to show that

.. _ |BA+A,n+1)/B(,n+1) A>0,

E{gy ()} = {w(l)—!//(n+2) P
where B(u, v) = T@)L(")[T(u + v)]"", and
o d _I'v)
Y(x) = - log I'(x) = _F(x)

is the digamma function.

One important question to answer is whether or
not the proposed procedure maintains the proper error
control. To this end, we have the following theorem.

Theorem 1: Assuming that the p-values are
independent, the generalized B-H procedure given by
(3) maintains FDR control at level c.

Proof : Define the filtration 7|, = o({ p;, | <i < k}),
the ofield generated by the first k spacings of the
p-values in reverse-time. Then by basic properties of
order statistics (Pyke, 1965, p. 399), the random
variable

k
Vi=k ' YIg(p)—E{g(p)}]
i=1
is a zero-mean martingale with respect to 7. Then k
in (3) represents a stopping time with respect to the
filtration so by the optional sampling theorem,

EV | F)=V, <a

Remark 1. The proof of Theorem 1 implicitly utilizes
the fact that the spacings between the order statistics
of the p-values are statistically independent. In fact, the
result would still hold if 7, were a supermartingale. We
will explore robustness of the methodology to
dependence in Section 5.

Remark 2. The B-H procedure as originally conceived
uses (4), where A= 1. The only type of information that
is being used is the first-order differences between the
sorted p-values for assessing clustering of p-values.
However, other values could be used as well. For
instance, the value of 4 = 2 has been argued as an
optimal value for assessing clustering on theoretical
grounds by Cressie (1979).

Remark 3. Given that the spacings approach has led
to a reinterpretation of the multiple testing problem as
one of assessing clustering against a uniform
distribution, this leads to a fundamental philosophical
discrepancy for multiple comparisons. To illustrate the
issue, we perform a simple simulation. We generate »
= 10000 p-values as a random sample from the
following mixture model

Doty ~ 0.9U(0, 1) + 0.05Beta(3,30)
+ 0.05Beta(30,3),

where Beta(a, f) denotes the pdf

o+ p) X1 x),
F@)T(pB)

The picture is given in Fig. 1. Based on the picture,
we have evidence against uniformly distributed
spacings based on both small p-values as well as big
p-values. Traditionally, most researchers have ruled out
evidence being contained in the right-tail of the
distribution in Fig. 1. This has been done in two ways.
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Simulated example

Frequency
200 300 400 500 600 700
] ] ] ] ]
|
|

100
|

0.0 0.2 0.4 0.6 0.8 1.0
Fig. 1y

One way has been to assume that the distribution of
p-values come from a two-component mixture model
in which the second component, Multiple testing
procedures which represents p-values from the
alternative, is stochastically smaller than a Uniform(0,1)
random variable. A second way has been to assume that
the distribution function of p-values across all
hypotheses is concave. However, if these conditions do
not hold, then it could be the case that large p-values
are the ones that are providing evidence against the null
hypothesis, as is the case in Fig. 1. By treating the
hypothesis testing problem as one of spatial clustering
against the null hypothesis of spacings corresponding
to statistics that are uniformly distributed on [0, 1], this
allows for information from both tails of the distribution
in Fig. 1 to contribute to evidence against the null
hypothesis. More generally, while univariate p-values
are important for assessing the evidence of individual
hypotheses, for the multiple testing problem, what is
more relevant is the aggregate behavior of the ensemble
of p-values relative to a reference distribution. The
Benjamini-Hochberg procedure uses the Uniform(0,1),
but other choices may be possible (e.g., Efron 2004).
Other criticisms of p-value based methods for multiple
testing have been given by Cohen and Sackrowitz
(2005), Jin and Cai (2007) and Chi (2007).

Remark 4. It is of interest to compare the proposed
methodology with the approach considered by Jin and
Cai (2007). In particular, they treat the multiple problem
by consideration of an optimization problem based on

a normal mixture model. Their methodology leads to
the optimality of the local false discovery rate for
multiple testing. Their approach is not directly
applicable to the setting here, as they work with test
statistics rather than p-values. To simplify the
exposition, we assume that the p-values come from a
mixture of two distributions,

Dis-os Dy 1 U (0, 1) + (1 — 7)Fy, %)

where F; is assumed be the cumulative distribution
function for a random variable that is stochastically
smaller than the Uniform(0, 1) random variable. The
Jin-Cai algorithm involves computing the local false
discovery rate (IFDR)

Ifdr, = P(no DE|p) = —2— i=1,...n,
f(p)
where f(p) is the density of p,. Based on the mixture
model (5), the local false discovery rate defined above
is simply the posterior probability that p—value i is from
the uniform (0,1) component. The Jin-Cai algorithm

then rejects hypotheses Hyy,..., H g where

i —
J = max{i:i_lz‘lfdr(k) SO{}

k=1

wherel lf/d_;a are the order statistics based on sample-

based estimators of /fdr;, i =1, ..., n. As before, if the
set is empty, then we define J = 0. Simply comparing
the structure of J with (2) implies that if the spacings
and local false discovery rates are equal, then the two
procedures will reject the same hypotheses. This will
not be true in general.

5. EFFECTS OF DEPENDENCE

So far, we assumed that the p-values are a random
sample and hence are statistically independent. In most
practical applications, this is not a reasonable
assumption. In this section, we consider the effects of
dependence. Let us reconsider the gBH procedure
again. The method compares an empirical average of
spacings to its expected value, scaled by the FDR. If
there is correlation among the p-values, intuitively we
expect that positive correlations between them will
make spacings shorter than those from a random
sample, while negative correlations will have an
opposite effect.
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Some progress can be made in the case of positive
correlation. To do so requires results from the theory
of stochastic majorization (Proschan and Sethuraman
1977, Nevius et al. 1977). For two vectors u and v, we
define the majorization partial ordering as u < v if

J J
Dy S XV 1= 2
k=1 k=1

J J
Zum - Zv/m
k=1 k=1

where y and f are permutations of the indices 1,..., J
that reorder w and v, i.e.

IA

Up1y S Uy S S Uy, Va1 S VR S S Vg,

A function f: R’ — R" is said to be Schur-convex
if uw < v implies that f(u) < f(v) componentwise in
R". A random vector U stochastically majorizes a
random vector V if f(U) 2, f(V) for every Schur-
convex function f: R — R, where X >_, ¥ denotes that
X is stochastically larger than Y or equivalently, that P
(X>x) =P (Y>x) for all x.

Lemma 1 : If the spacings corresponding to the joint
distribution of p is stochastically majorized by the joint
distribution of spacings for » Uniform(0, 1) random
variables, then the gBH procedure will provide exact
control of the FDR.

Proof : Let q denote the n—dimensional vector whose
components are a random sample from the
Uniform(0,1) distribution. By assumption, p
stochastically majorizes q. Let f,(U) = Uy, k= 1,...,
n. Because this is a Schur-convex function, p) 2, g,
k=1,..., n. This implies that the spacings for p will
be smaller than those for q. Since the gBH procedure
controls the FDR for q, it will also control the FDR
for p.

It is now important to develop a characterization
of the classes of distributions that will stochastically
majorize a random sample of » Uniform(0,1) p-values.
We formulate the following model

PHT, <1, Ty < ty,.... T, < 1,)=C{P(T, < 1)),
PATy < b),.... PUT,< 1)t (6)

where C is a function that maps from [0, 1]", the n-fold
product space of [0, 1], to [0, 1]. Then it can be shown
that given the joint distribution of 7,...,7,, there

always exists a function C such that (6) holds with the

marginal distribution of 7, being F,, i = 1,..., n.
Equation (6) is known as a copula model.

Without loss of generality, we will take the first
n, arguments of C to correspond to the true null
hypotheses. Benjamini and Yekutieli (2001) prove that
the Benjamini-Hochberg procedure described in Box 1
is valid under the assumption that the joint distribution
of the test statistics which are true under the null
hypothesis is positive regression dependent. What this
means is

o
PHT S0, Ty Sty T S 1) 2 rllPr(ﬁ <)
1=
Using the copula framework, we have that positive
regression dependence can be expressed in terms of the
copula model (6). We have the following theorem.

Lemma 2 : Positive regression dependence of
(1y,...,T,) is equivalent to

L0
Cluy, ..., uy) 2 Hul-.
i=1

Based on the lemma, what we find is that positive
regression dependence is a function of the copula. It
also implies the following condition with which one can
check if the joint distribution of the test statistics satisfy
the positive regression dependency criterion.

Proposition 1 : The joint distribution of (7,..., T,)
satisfies positive regression dependency if and only if

Cluyy ..o u,,o)/Hj +; Y 1s a concave function for all
i=1,...,n

We now provide examples of joint distributions
that satisfy the positive regression dependence criterion.
Note that independent p-values for the true null
hypotheses trivially satisfies Lemma 1.

Example 1 : (Archimedean Copulas). As mentioned
earlier, one particular class of copulas are Archimedean
copulas. The copula function defines a proper joint
distribution if ¢ refers to the Laplace transform of a
nonnegative random variable W. These probability
models also have a two-stage formulation. We can write
Archimedean copulas in the following

Coly, .. uy) = [FAaw)dG(O), (7

where F are univariate cumulative distribution
functions, and G is a mixing distribution for €. It can
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be shown using arguments in Ahmed et al. (1981) that
this copula function satisfies the positive regression
dependency criterion. Note that this class of examples
will include random effects models.

Example 2 : (Mixtures of Copulas). We can generalize
(7) in the following manner

Ca...q, (W ) = [KCFO (), F% ().,
Fo (4, )dG(8),.... §,).  (8)

Then if K and G satisfy the positive regression
criterion, it can again be shown by arguments in Ahmed
et al. (1981) that C satisfies a positive regression
dependency criterion.

6. SIMULATION STUDIES

Here, we report on the results of some simulation
studies to assess the finite-sample properties of the
proposed methodologies. We generated n = 300
statistics using a multivariate normal distribution with
mean g, for the ith statistic and variance one. We set
n, of the test statistics to have g, = 0 and the remaining
ones to have mean g, = 2. Data were sumulated
assuming a correlation of zero (independent case) and
0.2 (dependent case). Note that for this condition, the
positive dependence conditions in Lemma 1 are
satisfied. The results are given in Table 2. All
procedures are controlled at an FDR of 0.05. We find
that the operating characteristics of the BH procedure
and the proposed methodology are quite similar. How
to determine the optimal choice of g remains an open
problem that should be investigated further. In addition,
the FDR typically tends to be conservative, leaving
open the possibility that adaptive methods (e.g.,
Benjamini et al. 2006) should be explored as well.

Table 2. FDR results of simulation studies from Section 6

Independent Dependent

Method | n, | 20 | 60 | 100 | 20 60 100
BH 0.003]0.01{0.017{0.003|0.008 {0.0121
0.003]0.01]0.016(0.002|0.007 [0.0116

Proposed

7. DISCUSSION

In this article, we have developed a new family of
multiple testing procedures based on generalization of
the B-H procedure by incorporating the fact that the
B-H procedure can be thought of as a test of clustering

based on sample averages of spacings compared to its
expected value. This leads to a natural extension of
B-H procedures that we have shown to maintain FDR
control and 4-FDR control in finite samples as well as
asymptotically. Simulation studies show that the
generalized B-H procedure has suitable operating
characteristics.

While the B-H procedure does compare empirical
averages of spacings to its expected value uniformity,
there is a restriction made that only small p-values can
be rejected. This is problematic for a situation such as
Fig. 1, in which evidence against the null hypothesis
is suggested by both small and large p-values. This
highlights a fundamental disconnect in the problem of
multiple comparisons. One approach would be to use
a different reference distribution other than uniform.
Such an approach has been taken by Efron (2004); he
uses the concept of a theoretical null distribution.
However, that work only dealt with the test statistic
scale; we are currently exploring extensions to p-values.
An alternative approach is to not work with p-values;
this is what is done by Sun and Cai (2007). However,
they control a quantity termed marginal FDR which is
different from the FDR considered in this paper.
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