Available online at www.isas.org.in/jisas
JOURNAL OF THE INDIAN SOCIETY OF
AGRICULTURAL STATISTICS 65(2) 2011 181-193

ISAS

GGE Biplot vs. AMMI Graphs for Genotype-by-Environment Data Analysis

Weikai Yan
Eastern Cereal & Oilseed Research Centre, Agriculture and Agri-Food Canada,
960 Carling Ave., Neatby Building, Ottawa, ON, Canada, KIA 0C6.

Received 27 October 2010; Revised 07 November 2010; Accepted 29 November 2010

SUMMARY

Due to the ever-presence of genotype-by-environment interaction (GE), multi-environmental trials (MET) are essential
for effective breeding line selection and cultivar recommendation. AMMI (Additive Main effect and Multiplicative Interaction)
analysis and GGE (Genotypic main effect plus genotype-by-environment interaction) biplot analysis are two popular graphical
analysis systems for MET data analysis. This paper introduces and compares the AMMI graphs and the GGE biplots for three
major aspects of MET data analysis: mega-environment delineation, genotype evaluation, and test environment evaluation.
The conclusions are: 1) when used properly, both systems are capable of mega-environments delineation and genotype evaluation;
2) the GGE biplot is also effective in test environment evaluation; 3) the GGE biplots are simpler to construct than the AMMI
graphs; while different views of the same GGE biplot can be used to address all three aspects of MET data analysis, a different
graph has to be constructed in AMMI analysis to address each aspect; 4) the GGE biplots are more informative than the AMMI
graphs because of its inner-product property, whereby information on the performance of each genotype in each environment
is preserved. Therefore, the GGE biplot graphs are highly preferable over AMMI graphs in MET data analysis.

Keywords : Additive Main effect and Multiplicative Interaction, Genotype main effect, Genotype-by-environment interaction,
Interaction principal component, Multi-environment trials, Principal component, Singular-value decomposition, Singular-value
partitioning.

1. THREE OBJECTIVES OF MET DATA
ANALYSIS

almost universally the most important trait. In the paper,
I use “MET data’ and ‘genotype-by-environment data’
for a trait interchangeably. Within a single year, the term

Multi-location trials, or more generally, multi- ‘multi-environments’ is used interchangeably with the

environment trials (MET), are conducted routinely to
generate essential information for breeding line
selection, new cultivar release, and cultivar
recommendation. MET are essential because of the
existence of genotype-by-environment interactions
(GE), which complicates genotype evaluation/selection,
and for this reason, analysis of genotype-by-
environment data from MET trials has been an
important component of plant breeding and cultivar
recommendation. Data from MET include genotype-by-
environment data for multiple traits, although yield is
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term multi-locations.

Early analysis of MET data treated GE as a
confounding factor, and the purpose was to identify
“stable” cultivars less affected by GE. Many stability
indices have been developed to help selecting for stable
genotypes (Lin and Binns 1994) thus avoiding GE.
Later, it was recognized that some GE can be repeatable
across years and therefore are exploitable (Cooper and
DelLacy 1994), and a graphical method was developed
to delineate mega-environment based on genotype main
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effect (G) and GE to exploit GE (Gauch and Zobel
1997). Further, it was realized that MET data are
valuable not only in selecting superior genotypes but
also in identifying test environments that are more
effective for genotype evaluation (Yan 2001, Yan and
Kang 2003). Therefore, a full analysis of MET data
should achieve three major objectives: 1) genotype
evaluation, 2) test-environment evaluation, and
3) mega-environment delineation (Yan and Hunt 2003,
Yan and Tinker 2006, Yan et al. 2007). Logically, mega-
environment analysis should precede genotype
evaluation (including all types of “stability analyses™)
and test-environment evaluation because the latter two
are meaningful only when conducted within mega-
environments (Yan et al. 2007).

Graphical and visual analysis is always desirable,
if not essential, particularly when dealing with complex
data structures and patterns. A number of graphical
methods have been developed to visually analyze MET
data. Among those, the Additive Main effect and
Multiplicative Interaction effect (AMMI) graphs
(Gauch and Zobel 1997, Gauch et al. 2008) and the
GGE biplots (Yan 2001, Yan and Kang 2003, Yan and
Tinker 2006) are most popular, and there has been a
debate on whether the AMMI graphs or the GGE
biplots are more appropriate and effective in MET data
analysis (Gauch 2006, Yan et al. 2007, Gauch et al.
2008). The objective of this paper is to compare GGE
biplot analysis and AMMI analysis based on on their
ability to achieve three aspects of MET data analysis,
namely, mega-environment analysis, genotype
evaluation, and test-environment evaluation.

2. BIPLOT PRESENTATION OF A TWO-WAY
TABLE

The biplot method was originally developed by
Gabriel (1971) to graphically display the results from
singular value decomposition (SVD) of a genotype by
environment two-way table. Any two-way data matrix
Z, with elements of [z;], with i =1, ...g rows
(genotypes) and j = 1,...e columns (environments), can
be decomposed via SVD into ¢ principal components
(PC).

t
zj= X Ao Vi +&; (1)
k=1

with # < min(e, g — 1). Each PC is composed of an array
of genotypic scores ¢, an array of environmental

scores Jy, and a singular value 4, the square of which,
Zkz, is the sum square explained by the kth PC. g; is
the residue for genotype 7 in environment j that is not
explained by the model. The model is subject to the
constraint 4, > 4, > ... 2 4, 2 0 and to orthonormality

. g .
on the ¢ scores, i.e., zizlaikaik’ =1if k =k and

Zle 0 0y = 0 if k # K/, with similar constraints on
the ;.

When the rank-# matrix Z can be sufficiently
approximated by a rank-2 matrix, i.e.,

2 = MYt LY+ & (2)

it can be graphically presented in a 2-D biplot after an
appropriate singular value partitioning

Z; = (%f%l)(%l_f%‘l)ﬁL(ﬂ{%z)(ﬂé_f?’jz)ﬁLgij (3)

where = [0, 0.5, 1] is the singular value partitioning
(SVP) factor.

The biplot is constructed by plotting ﬂlf o as
abscissa and ﬂzf o, as ordinate for each genotype, and
at the same time plotting ﬂf_f}/jl as abscissa and

ﬂé_f}/jz as ordinate for each environment. The
exponent f'is used to rescale the row and column scores
to enhance visual interpretation of the biplot for a
particular purpose. In the context of MET data, singular
values are allocated entirely to cultivar (row) scores if
f =1 [this is “cultivar-focused singular value
partitioning” or SVP = 1 (Yan 2002)], or entirely to
environment (column) scores if = 0 (“environment-
focused singular value partitioning” or SVD = 2); and
f=0.5 will allocate the square roots of the 4, values to
both cultivar scores and environment scores
(“symmetric singular value portioning” or SVP = 3).
In GGE biplot analysis, the genotype-focused and the
environment-focused SVP are used for genotype
evaluation and test environment, respectively. An
important property of the biplot is that the rank-2
approximation of any element in the original matrix Z
can be visually estimated by the inner product of the
corresponding genotype and environment vectors and
the cosine of the angle between them. This is known
as the inner-product property of the biplot.

2.1 Constructing a GGE Biplot

For a MET dataset, each value in the table is the
average yield (or any other trait) value of a genotype
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in an environment (y;), which is the sum of the grand
mean (L), the environment main effect (E) for the
particular environment (4,), the genotypic main effect
(G) for the particular genotype (1), and the specific
interaction (GE) between the genotype and the
environment (¢,), ignoring any random errors

Vi=HE Wt g “4)

Since only G and GE interaction are pertinent to
genotype evaluation, test environment evaluation, and
mega-environment delineation, the environment main
effect E and the grand mean should be removed from
each element to only keep G and GE in the two-way
table

Vi~ M=M=t gy (5)

This newly derived two-way data, i.e.,
environment-centered MET data, after appropriate data
scaling, are then subjected to SVD and biplot analysis
as discussed above

zy = (l; T @s; . (6)

Therefore, the resulting biplot contain G and GE
and nothing else, and is therefore referred to as a “GGE
biplot” (Yan ef al. 2000). In equation (6), s; is a scaling
factor specific to environment j. It can be the standard
deviation of means (= square root of phenotypic
variance), the experimental error, or the inverse of
square-root heritability in each environment, leading to
different types of GGE biplots (Yan and Holland 2010).
Alternatively, it can be “1” for all environments, leading
to an unscaled GGE biplot. This is the type of GGE
biplot that is used in this paper for demonstration
purposes.

2.2 The Adequacy of a 2-D GGE Biplot

All biplot analysis has an implicit assumption; it
is that a 2-D biplot adequately approximates the two-
way table under study. The adequacy is usually judged
by the goodness of fit of the 2-D GGE biplot, i.e., the
percentage of total variation of the two-way table that
is explained by the first two PCs. If the goodness of fit
is high, say, greater than 70%, then the biplot is a good
approximation of the two-way table. However, there is
not an objective criterion on what is a good fit.

Yan and Tinker (2006) proposed an “information
ratio” to assess the adequacy of a biplot in displaying
the patterns of a two-way table. Assume that the two-
way table in question has g genotypes and e

environments. The maximum number of PCs that are
required to fully represent the two-way table is k£ =
min(e, g-1). If there are no correlations among the
environments, all £ PCs should be completely
independent and the proportion of the total variation
explained by each PC should be exactly 1/k. When
some correlations exist among environments, the
proportion of variation explained by the first few PCs
should be greater than 1/, and that explained by other
PCs would be less than or equal to 1/k. An information
ratio (IR) can be calculated for each PC, which is the
proportion of total variation explained by each PC
multiplied by &. The interpretation is: a PC with an IR
>1 contains patterns (associations among
environments), a PC with an IR = 1 does not contain
patterns, but it may contain some independent
information, and a PC with an IR < 1 does not contain
any pattern or information. A 2-D biplot adequately
represents the patterns in the data if only the first two
PCs have an IR > 1. If more PCs have an IR > 1, then
the 2-D biplot is not adequate. If only the first PC has
an IR >1, then biplot analysis is not needed.

2.3 Two Key Properties of a GGE Biplot

2.3.1 The inner-product property

One unique property of the biplot, compared with
all other graphical methods, is its inner-product
property. That is, the value of each element in the two-
way table can be graphically visualized by the product
of the length of its row (genotype) vector (L,), the length
of its column (environment) vector (L), and the cosine
of the angle (4,)) between the two vectors in the biplot

z; = L,L; cos 4 (7

The inner-product property is the basis for the
GGE biplot to be used in mega-environment
delineation, genotype evaluation, and test environment
evaluation.

2.3.2 The cosine-correlation equality

Another key property of a GGE biplot is the
correlation-cosine equality

=~ c0os Ay;. (8)

That is, when the biplot is based on environment-
centered data (i.e., a GGE biplot) and when
the environment-focused SVP is used, the cosine of
the angle between two environments approximates the

Ty
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genetic correlation between them. This property allows
visualization of similarity and dissimilarity between
environments in ranking genotypes.

3. GGE BIPLOTS FOR MET DATA ANALYSIS

In this section, an example will be given on the
use of GGE biplot in MET data analysis using the data
in Table 1, which are environment-centered yield values
of 18 winter wheat genotypes tested at nine locations
in Ontario in 1993. The environment-centered data were
derived by subtracting the mean yield of each
environment from the original yield value of each
genotype in that environment (equation (5)).

The GGE biplot based on this dataset is presented
in Fig. 1. The abscissa of the biplot represents the PC1
scores and the ordinate the PC2 scores, of the genotypes
and the environments. The biplot explained 78% of the
total G + GE variation. The biplot is based on
environment-focused SVP (SVP = 2). According to the
information ratios of the first six PC (Table 2), only the
first two PC contain patterns (with an IR > 1).
Therefore, the 2-D biplot is considered to have
adequately represented the patterns in the data.

The 18 genotypes are labeled as g1 to g18 and the
nine environments as £1 to £9. The straight line drawn
from the biplot origin to the placement of a genotype

Table 1. Environment-centered yield data of 18 winter wheat genotypes (G1 through G18) tested at nine

Ontario locations (E1 through £9) in 1993. E1, ES, and E7 are locations in eastern Ontario and

E2, E3, E4, E6, E8, and E9 are locations in southern Ontario.

Genotype Environments
El E2 E3 E4 E5 E6 E7 E8 E9 Mean

Gl 0.10 -0.29 -0.29 -0.41 0.26 —-0.61 0.11 —-0.32 -0.23 -0.19
G2 0.05 0.33 -0.23 0.01 0.02 0.09 0.72 0.03 0.04 0.12
G3 0.31 0.14 —0.04 —-0.04 0.39 —0.04 0.49 —-0.46 -0.28 0.05
G4 0.37 0.31 0.24 0.41 0.54 0.28 —-0.01 0.53 0.55 0.36
G5 0.03 0.17 0.37 0.35 0.09 0.36 0.91 -0.26 -0.07 0.22
G6 0.82 0.04 —-0.15 0.28 0.90 —-0.02 -0.25 -0.09 -0.12 0.16
G7 -0.99 -0.26 —-0.40 -0.34 | -0.34 -0.79 —-0.08 -0.30 —-0.87 -0.48
G8 0.49 0.23 1.29 0.46 | -0.15 0.77 -0.07 0.70 0.67 0.49
G9 0.68 0.30 0.37 —-0.06 0.28 -0.20 0.74 0.15 —0.04 0.25
G10 0.83 0.22 0.46 0.26 0.25 0.29 —-0.34 0.09 0.40 0.27
Gll1 -0.07 0.09 —0.38 -0.07 0.46 0.19 0.62 -0.22 0.25 0.10
G12 -1.21 -1.40 -0.75 -1.15 | -145 —-0.80 —-0.85 -0.29 —-0.80 -0.97
G13 -0.26 —-0.56 —0.84 022 | —1.13 0.09 —1.64 0.60 —-0.01 -0.39
Gl14 —-1.02 —-0.58 -0.72 -0.71 | -1.05 0.03 —-0.96 —0.44 —-0.34 —0.64
G15 0.01 0.26 0.52 0.10 0.51 0.08 -0.31 -0.15 0.03 0.12
Gl6 0.58 0.26 -0.19 0.40 0.38 0.27 0.06 —-0.06 0.13 0.20
G17 —-0.58 0.53 0.24 -0.14 | -0.91 0.24 0.08 0.50 0.48 0.05
G18 -0.13 0.22 0.47 0.42 0.96 -0.23 0.78 0.00 0.21 0.30
SD+ 0.60 0.45 0.53 0.42 0.69 0.40 0.66 0.35 0.40

SD+: standard deviation of means within environments.
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PC1 =58.9%, PC2 = 19.1%, Sum = 78%
Transform = 0, Scaling = 0, Centering = 2, SVP = 2

Fig. 1. The inner-product property view of the GGE biplot. This
view allows visualization of the relative performance of
each genotype in each environment. The biplot explained
78% of the total G + GE variation. It is environment-
centered (centering = 2) and un-scaled (scaling =0). It is
based on environment-focused singular value partitioning
(SVP =2). The genotypes are labeled as g1 to g18, and the
environments as £1 to E9.

Table 2. Singular value, proportion explained, and
information ratio (IR) of the first six principal
components (PC)

PC Singular Variation
value explained (%) IR
1 5.0 58.9 5.3
2 2.9 19.1 1.7
3 2.1 10.0 0.9
4 1.1 2.9 0.3
5 0.9 1.8 0.2
6 0.3 0.3 0.0

or an environment is called a “vector”. From these
vectors, the environment-centered yield of each
genotype in each environment can be approximately
visualized. For example, the genotype g12 has obtuse
angles with all environments. This means that g12 had
lower than average yields in all environments (because
the cosine of an obtuse angle is smaller than 0).
Examining the data in Table 1 confirms this
observation. The same statement is true for genotype
gl4. Since g12 has a longer vector than g14, g12 should
have lower yields (i.e. more negative values) than g14
in all environments; this observation can also be
confirmed from Table 1. Deviations from this prediction
may occur because the two genotypes do not have
exactly the same angles with the environments and
because the goodness of fit of the biplot is 78% rather

than 100%. As another example, g8 has acute angles
with all environments except £5 and E7, suggesting that
it yielded higher than average in all environments
except £5 and E7, where it should yield lower than or
equal to the environmental means. This again can be
confirmed from Table 1.

Owing to the inner-product property, when a MET
dataset is sufficiently approximated by a rank-2 matrix,
it can be graphically studied in a 2-D GGE biplot for
three aspects: 1) differences/similarities among
genotypes, 2) relationships among test environments,
and 3) specific genotype-by-environment interactions.
These correspond to the three objectives of MET data
analysis mentioned earlier, namely, genotype
evaluation, test environment evaluation, and mega-
environment analysis. The GGE biplot analysis system
consists of a set of views that were designed to
specifically address each of these issues, as discussed
below.

3.1 Mega-environment Analysis

A mega-environment is a group of environments
or sub-regions in which a single genotype or a group
of similar genotypes are specifically adapted and
champion in performance (Gauch and Zobel 1997). The
purpose of mega-environment analysis is to try to divide
a target crop region into meaningful sub-regions so that
repeatable GE can be exploited.

When a 2-D GGE biplot is judged as a sufficient
approximation of the data, as is in this example, the
“which-won-where” view of the GGE biplot (Fig. 2) is
an effective tool for visual mega-environment analysis.
This view consists of an irregular polygon and a set of
straight lines that radiate from the biplot origin to
intersect each of the polygon sides at right angles. The
vertices of the polygon are the genotype markers
located farthest away from the biplot origin in all
directions, such that all genotypes are contained within
the polygon. A radiate line that perpendicularly
intersects a polygon side represents hypothetical
environments in which the two cultivars defining that
polygon side would perform equally well; the relative
ranking of the two cultivars would be reversed in
environments on opposite sides of the line (the so-called
“crossover GE”). Thereby, the radiate lines divide the
biplot into sectors. For each sector, a vertex genotype
exists, which is the nominal winner for environments
falling in that sector.
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PC1 =58.9%, PC2 = 19.1%, Sum = 78%
Transform = 0, Scaling = 0, Centering = 2, SVP = 2
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Fig. 2. The which-won-where view of the GGE biplot. This view
allows visual grouping of the test environments based on
crossover genotype-by-environment interactions among the
best genotypes. This is the same GGE biplot presented in
Fig. 1 except for the supplementary lines.

In Fig. 2, the vertex genotypes that form the
polygon are g8, g18, g7, g12, and g13. The nine
environments are cut into two groups by the radiate
lines: E5 and E7 as one group and all other
environments as the other. g18 is the vertex genotype
in sector where E5 and E7 are placed and is therefore
the nominally highest yielding cultivar in these two
environments; g8 is the vertex genotype in the sector
where the other seven environments are placed and
therefore the nominal winner in these environments.
This crossover GE pattern suggests that the target
environments may be divided into two different mega-
environments. This pattern appeared to be repeatable
across years and the mega-environment delineation is
therefore meaningful (Yan ez al. 2000). £1, ES, and E7
are locations in eastern Ontario and the others are in
southern Ontario. Eastern Ontario is characterized by
having longer and severe winters than southern Ontario,
and therefore requires different winter wheat cultivars
for maximum yield. Although belonging to eastern
Ontario, E1 is different from E5 and E7 in that it is
located by the St. Laurence River and has relatively
milder winters.

No environments fell into the sectors of g7, g12,
or g13. This means that these genotypes were not the
winner in any of the environment; rather, they are likely
to be the poorest genotypes in some or all of the
environments.

PC1 =45%, PC2 = 23.6%, Sum = 68.6%
Transform = 0, Scaling = 0, Centering = 2, SVP = 2
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-0.72 -0.48 -0.24 -0.00 -0.24 -048 -0.72 -0.96 -1.20 -1.44
PC1

Fig. 3. The which-won-where view of the GGE biplot based on a
subset of the genotypes. This view allows visual grouping
of the test environments based on crossover genotype-by-
environment interactions among the best genotypes. The
biplot explained 69% of the total G + GE variation. It is
environment-centered (centering = 2) and un-scaled (scaling
=0). It is based on environment-focused singular value
partitioning (SVP =2).

If a 2-D GGE biplot is considered as not adequate
in displaying the GE patterns, one option is to construct
a GGE biplot based on a subset of the data by removing
genotypes that yielded poorly in all or most test
environments. This is justifiable from the viewpoint of
variety selection as these genotypes will not be selected
as superior genotypes (Fig. 3). Deleting low-yielding
genotypes lead to reduced proportion of G relative to
GE in the new biplot, and therefore greater separation
of the test environments. Thus, the nine test
environments are separated into three groups in Fig. 3:
E7 standing alone, with g5 as the winner; £1 and ES
form a group, with g6 as the winner; and all other six
test environments form a third group, with g8 as the
winner.

It has to be emphasized that mega-environment
delineation must be based on data from multiple years
becaue repeatability of a GE pattern is the key for
making decisions that have long-term impacts (Yan et
al. 2011). Appropriate mega-environment analysis
should classify the target environment into one of three
possible types (Table 3) (Yan et al. 2007). Type 1
consists of a single mega-environment with little GE.
Theoretically a single test location would suffice to
identify the best genotypes for such mega-environments.
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Table 3. Three types of target environments based on mega-environment analysis (adapted from Yan et al. (2007))

With Crossover genotype-by-
environment interaction

Without crossover genotype-by-
environment interaction

Crossover genotype-by-environment
interaction repeatable across years

Crossover genotype-by-environment
interaction not repeatable across
years

Type 2: the target environment
consists of multiple mega-
environments.

Strategy: select specifically adapted
genotypes for each mega-
environment. A single year multi-
location test may be sufficient for
making selection decisions.

Type 3: the target environment
consists of a single but complex
mega-environment.

Strategy Type 1: select a set of
cultivars (not a single cultivar) for
the whole region based on both
mean performance and stability; data
from multiple years and multiple

Type 1: the target environment is a
single, simple mega-environment.

Strategy: test at a single or a few test
locations suffices to select for a
single best cultivar. A single year test
may be sufficient for making
selection decisions.

locations are essential

Type 2 consists of different mega-environments, which
can and should be dealt with individually, whereby the
repeatable GE can be converted into productivity by
selecting and employing specifically adapted genotypes
in each mega-environment. Identifying and exploring
such opportunities is a key point in all GE-related
analyses. Type 3 consists of a single mega-environment
with large but unpredictable GE, which cannot be
exploited and must be avoided by selecting widely
adapted, high yielding and stable genotypes across years
and locations.

3.2 Genotype Evaluation

A superior genotype should have both high mean
performance and high stability across a mega-
environment. The “Mean vs. Stability” view of the GGE
biplot (Fig. 4) is an effective tool for visual evaluation
of genotypes on both aspects. In Fig. 4, the small circle
represents the “average environment”. It is defined by
the averaged coordinates of all test environments in the
biplot. The straight line with a single arrow passes
through the biplot origin and the average environment,
and is referred to as the “average environment axis” or
AEA. The arrow points to higher mean performance for
the genotypes. The line with two arrows passes through
the biplot origin and is perpendicular to the AEA. The
arrows point to higher performance variability or less

PC1=58.9%, PC2 =19.1%, Sum = 78%
Transform = 0, Scaling = 0, Centering = 2, SVP =1

1.2+

0.4

PC2

0.0

-0.4

0.8

PC1

Fig. 4. The mean-vs.-stability view of the GGE biplot. This view
allows visual evaluation of genotypes based on their mean
performance and stability across environments. It is the
same biplot as Fig. 1 and Fig. 2 except that it is based on
genotype-focused singular value partitioning (SVP =1).

stability in both directions. This biplot view (or form)
is based on genotype-focused SVP, i.e., the singular
values are entirely partitioned into the genotypic scores
(“SVP = 17) (Yan 2002). Thus, the genotypes are
ranked according to their mean yield as follows: g8 >
g4 > gl10 > gl18 >...>g17 = grand mean > gl > g3 >
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g7 > gl4 > g12. The genotype g13 was least stable,
because it yielded extremely poorly in £S5 and E£7 while
it performed relatively well in £8, £6, and E9. The
genotype g8 was not stable either; it yielded only close
to the average in £5 and E7 although it did very well
in other environments. Genotype g4 yielded the second
best and was more stable than g8.

The Mean vs. Stability view of the GGE biplot is
useful only when the G is sizable. When G is too small
relative to GE, this view will not be meaningful. But
this does not undermine the usefulness of the GGE
biplot. It only reflects the common sense that no
generally adapted genotypes can be expected and
specifically adapted genotypes must be sought when G
is negligibly small.

3.3 Test Environment Evaluation

The purpose of test-environment evaluation is to
identify test environments that can be used to
effectively select superior genotypes for a mega-
environment. An “ideal” test environment should be
both discriminating of the genotypes and representative
of the target environment. The “Discrimination vs.
Representativeness” view of the biplot (Fig. 5) was
designed for this purpose.

When the GGE biplot is based on unscaled (un-
standardized), environment-centered data (“Scaling =
0”), the length of the vector of an environment is
proportional to the standard deviation of cultivar means
(SD), which equals the square root phenotypic variance
(0,) in the test environment, which can be used as a
measure of the discriminating power of the
environment. Test environments with longer vectors
(like ES, E7, and E1) are more discriminating of the
genotypes. A test environment with a short vector is less
discriminating, meaning that all genotypes tends to
perform similarly and little or no information about the
genotypic differences can be revealed in such an
environment. A short vector could also mean that the
environment is not well represented by PC1 and PC2
if the biplot does not adequately display the G+GE of
the data.

A second utility of Fig. 5 is to indicate the test-
environments’ representativeness of the target
environment. Since the AEA is the “average-
environment axis”, test environments that have small
angles with AEA, e.g., E1, E2, E3, and F4, are more
representative of the target environment than those that

PC1=58.9%, PC2 =19.1%, Sum = 78%
Transform = 0, Scaling = 0, Centering = 2, SVP = 2

0.8

0.4

—0.4-

-0.8

Fig. 5. The discriminating ability vs. representativeness view of the
GGE biplot. This view allows visual evaluation of test
environments based on their ability to discriminate the
genotypes and their representativeness of the target
environment. It is the same biplot as Fig. 1 and Fig. 2
except for the complementary lines.

have larger angles with it, e.g., E5, E7, and E8. This
interpretation is based on the cosine-correlation equality
property of the GGE biplot (equation (8)). Note that
SVP = 2 was used in all biplots presented in this paper
except Fig. 4, in which the genotype-focused SVP
(SVP=1) was applied for optimal genotype evaluation.
The inner-product property (equation (7)) is not affected
by the SVP method.

GGE biplot based test environment evaluation can
classify a test environment into one of three types
(Table 4). Type 1 environments have short vectors and
provide little or no information about the genotypic
differences and, therefore, should not be used as test
environments. Type 2 environments have long vectors
and small angles with the AEC abscissa; they are ideal

Table 4. Three types of test environments based
on test environment evaluation.
(Adopted from Yan et al. 2007)

Discriminating Non-
discriminating
Representative Type 2: Ideal for | Type l: not
selecting superior | useful.

genotypes.

Not representative | Type 3: Useful
for culling inferior

genotypes.
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test environments for selecting superior genotypes.
Type 3 environments have long vectors and large angles
with the AEC abscissa (e.g., E1); they cannot be used
in selecting superior genotypes, but are useful in culling
unstable genotypes.

Useful test environments should be further
examined for their uniqueness. Some environments may
never provide unique information because they are
always similar to some other environment(s) in ranking
the genotypes. When resources are limited (as they
always are), some (not all) of these environments can
be dropped without losing much information about the
genotypes. Testing cost can be reduced and efficiency
improved by using a minimum set of test environments.
Like mega-environment analysis, identification and
removal of non-informative and redundant test locations
must be based on multi-year data. An example of
identifying essential test locations based on biplot
analysis is presented in Yan et al. (2010) for testing oat
breeding lines in eastern Canada.

To summarize, GGE biplot can effectively address
the three major objectives of MET data analysis: mega-
environment delineation, genotype evaluation, and test
environment evaluation. GGE biplot analysis of MET
data can help researchers to better understand their
target environment, to establish more cost-effective
breeding and testing strategies, and to identify superior
genotypes that are widely or specifically adapted.

4. AMMI GRAPHS FOR MET DATA ANALYSIS

AMMI analysis first entered in the literature with
Gauch (1988) and Zobel et al. (1988). In AMMI
analysis, E, G, and GE are all of research interest

VimH= T+ Py ©

with the GE term further examined by subjecting it to
SVD

Zy = ¢U (10)

The PCs derived from AMMI analysis contains
nothing but GE, and are referred to as interaction PC
or IPC. A biplot composed of IPC1 and IPC2 is a GE
biplot (as opposed to a GGE biplot, which contains G
+ GE), sometimes referred to as an AMMI2 biplot in
the AMMI analysis literature (Gauch ez al. 2008). Since
genotype evaluation and mega-environment analysis
requires joint consideration of G and GE, a GE biplot
is not really useful. In AMMI analysis, it is noted that

although G and GE are separated, they are putting
together again to form a number of AMMI graphs to
address genotype evaluation and mega-environment
analysis. So the AMMI graphs are also G+GE graphs.
Test environment evaluation has not been a research
topic in AMMI analysis.

4.1 Mega-environment Analysis

In addressing mega-environment delineation,
AMMI analysis utilizes the information G and the first
interaction PC (IPC1) if the AMMII model is regarded
as the best model for the data. When the AMMI2 model
is regarded as the best, information IPC2 is also
considered.

4.1.1 Under the Ammil model

The AMMII regression graph (Fig. 6) was
designed to address the “which-won-where” pattern in
the data of Table 1. In this graph, the abscissa represents
the IPC1 scores for the environments and the ordinate
represents the “nominal yield” based on mean yield (G)
and the IPC1. Each genotype is represented by a straight
line defined by that genotype’s mean yield as the
intercept and the genotype IPC1 score as the regression
coefficient against the environmental IPC1 scores. If
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Fig. 6. The AMMII regression graph. This graph is used to
visualize which genotypes yielded the highest in which
environments. The environments are labeled along the
abscissa and the genotypes are presented as regression lines
to the environmental IPC scores. Adopted from Fig. 3 of
Gauch et al. (2008)
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two straight lines (two genotypes) intersect in the graph,
they are said to be involved in a crossover GE. Of the
most interesting is the crossover GE between the lines
(genotypes) that intersect on the top of the graph. In
this example, the genotypes g8 and g18 intersect on the
top, and covers all other genotypes. The vertical line
passes through the intersection of the straight lines
representing g8 and gl18, it divides the nine
environments into two groups: E£5 + E7 vs. the others.
The interpretation is clear: g18 was the nominal winner
in environments E£5 + E7, and g8 was the nominal
winner in the other seven environments. This result is
the same as that in the which-won-where view of the
GGE biplot (Fig. 2).

This example supports the statement of Ebdon and
Gauch (2002) that mega-environment classification
based on this AMMII regression graph is virtually the
same as that based on the GGE biplot. However, the
GGE biplot (Fig. 2) is more preferable to the AMMII
regression graph (Fig. 6) because it always explains
more G+GE. For a rice dataset, the GGE biplot and the
AMMII graph explained 77.3% and 64.6% of the total
G+GE, respectively (Samonte e al. 2005). The GGE
biplot is also simpler to construct and is a more elegant
presentation of the G + GE.

Gauch et al. (2008) argued that the geometry of
the AMMII regression graph is more straightforward
to interpret. This may be true for researchers who are
not familiar with the biplot theory. However, allowing
some experience, the advantages of the GGE biplot will
be easily apprehended. First, the which-won-where
view is an intrinsic property of the GGE biplot. Once
the PC scores are obtained and a GGE biplot is
constructed, the only thing the researcher needs to do
is to visually draw the polygon and the perpendicular
lines. In comparison, constructing the AMMII
regression graph involves an additional step from the
PC scores. Second, in a GGE biplot, each of the
environments and each of the genotypes are represented
as single points in a 2-D space. In comparison, in the
AMMII graph the environments are aligned along the
abscissa and the genotypes are presented as straight
lines. Often the AMMI1 graph is so crowded that only
a few genotypes and environments can be clearly
labeled. When there are many genotypes and
environments, the “which-won-where” patterns can be
difficult to visualize, see Fig 2 of Ebdon and Gauch
(2002) for an example. Failing to label all genotypes
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Fig. 7. The AMMI1 mega-environment display. This graph is a
display of the which-won-where results identified in Fig.
6. This is not an essential graph because it contains no
additional useful information beyond Fig. 6. Adopted from
Fig. 2 of Gauch et al. (2008).

and environments in the graph dramatically reduces the
information content and usefulness of the AMMI1
regression graph as a data visualization tool.

The AMMII mega-environment display (Fig. 7)
shows the which-won-where result identified from Fig.
6 except that the information on the mean yield of the
environments is also incorporated. However, since this
information is not useful for test environment
evaluation, this graph adds little to Fig. 6.

4.1.2 Under the AMMI2 model

When two IPCs are required to approximate the
data, AMMI2 mega-environment display can be used
to present the which-won-where results from AMMI
analysis (Fig. 8). In this graph, the environments are
defined by their IPC1 and IPC2 scores. This is useful
information; it indicates which environments contribute
more (or less) to GE. For example, E8, E5, and £7 had
long distances from the plot (not biplot) origin,
indicating that they contributed more to GE than others.
This is consistent to the conclusion from the GGE
biplot (Fig. 5) that these environments were less
representative of the average environment. When
information on the mean yield (G) and the genotypic
IPC1 and IPC2 scores are incorporated, the graph is
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Fig. 8. The AMMI2 mega-environment display. This graph is a
display of the which-won-where results identified based on
information of G, IPC1, and IPC2. Adopted from Fig. 4 of
Gauch et al. (2008)

divided into several irregular areas, and for each area,
a nominal winner genotype is identified. According to
Gauch et al. (2008, p.872), the AMMI2 mega-
environment display is constructed as follows. “....A
simple method is to cover the biplot with a grid of 70
by 70 or 100 by 100 or whatever evenly spaced points
(representing hypothetical environments) and then to
note the winning genotype in each pixel (based on G
and the two IPC). That suffices to delineate mega-
environments within visual accuracy. And if the exact
locations of each vertex of a polygon are desired, the
genotypes that meet at a vertex provide a system of
simultaneous equations that can be solved easily to
obtain the exact coordinates.” As can be seen from this
description, considerable effort is needed to construct
an AMMI2 display, in addition to SVD, whereas SVD
is all that is needed to construct a GGE biplot. Once
the GGE biplot is constructed, the which-won-where
pattern can be drawn by the eye.

Based on G, IPC1, and IPC2, the nine test
environments are divided into three sub areas: E£7 stands
alone, with g18 as the winner; £1 and E5 form a group,
with g6 as the winner; and the other six environments
form a third group , with g8 as the winner. Note again
this which-won-where pattern is very similar to the
GGE biplot based on a subset of higher-yielding
genotypes (Fig. 3).

So the AMMI1 mega-environment display (Fig. 6
and/or Fig. 7) is equivalent to the which-won-where
view of the GGE biplot based on the full dataset (Fig.
2), and the AMMI2 mega-environment display (Fig. 8)
is equivalent to the which-won-where view of the GGE
biplot based on a subset of higher-yielding genotypes.
However, the GGE biplot displays not only the mega-
environment delineation result but also the genotype-
by-environment data that lead to the result. The GGE
biplot contains information on all genotypes whereas
the AMMI displays contain only the “winning”
genotypes. Thus, although AMMI analysis can achieve
the same or similar mega-environment delineation, the
GGE biplot method is simpler, more informative, and
more elegant.

4.2 Genotype Evaluation

The graph for genotype evaluation in AMMI
analysis is the AMMI1 “biplot” (Fig. 9). Its abscissa
represents the main effects (G and E) and its ordinate
represents the IPC1 scores representing GE of the
genotypes and environments. This graph provides a
means to simultaneously visualize the mean
performance (G) and the stability (IPC1) of the
genotypes. Although it is often called a biplot because
it presents both genotypes and environments, the

E=72.88%, G =14.43%, IPC1=6.1%, Sum = 93.4%
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Fig. 9. The AMMII biplot. It can be used to visualize the mean
performance and stability of the genotypes across
environment. It also represent the environmental main effect
and the environments’ contribution to genotype-by-
environment interaction, but this information is not useful
for test environment evaluation. This “biplot™ is not a true
biplot because it does not have the inner-product property.
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AMMI1 biplot is not a true biplot because it does not
have the inner-product property of a biplot (Equation
(7)). In terms of genotype evaluation, the AMMII graph
is similar to the mean vs. stability view of the GGE
biplot (Fig. 4). For example, it shows that the genotype
28 had highest mean yield while g12 had the lowest. It
also shows g13 to be least stable. However, the AMMI 1
biplot is less useful than the GGE biplot because it
always explains less G+GE than the GGE biplot. In
addition, the commonly used AMMII biplot (such as
Fig. 1 of Gauch et al. 2008) has different units in the
two axes: while the units of abscissa are in yield per
unit area, those of the ordinate are in its square root.
This makes the shape of the graph completely
subjective, which may mislead the researcher on the
relative importance of the mean (G) vs. the stability
(GE). The AMMI1 biplot presented in Fig. 9 uses
square root of yield as units for both axes, which
partially removes this problem.

4.3 Test Environment Evaluation

As mentioned above, test environment evaluation
has not been a research topic in AMMI analysis. The
AMMII1 biplot (Fig. 9) displays the test environments
by their main effects E and IPC1 scores, but it provides
no information on the ability of the test environments
in identifying superior genotypes.

5. CONCLUSIONS

This paper leads to the following conclusions:

1. Graphical analysis of MET data is a major
component in plant breeding programs and
regional variety performance trials. Complete
MET data analysis involves three major
objectives: mega-environment analysis, genotype
evaluation, and test environment evaluation.

2. AMMI analysis and GGE biplot analysis are two
popular systems for MET data analysis, mainly
due to their graphical presentation of the data.

3. Both AMMI analysis and GGE biplot analysis use
the information of G+GE in mega-environment
analysis and genotype evaluation. In AMMI
analysis, G and GE are separated first and then
re-assembled together. In GGE biplot analysis, no
attempt is made to separate G from GE; they are
dealt with jointly.

4. Both AMMI analysis and GGE biplot analysis
have graphics that are capable of mega-
environment analysis. The GGE biplots is more
informative because it explains more G+GE and
preserves information on the performance of each
genotype in each environment. The GGE biplot
is also simpler to construct because no additional
calculations are needed beyond constructing the
biplot.

5. Both AMMI analysis and GGE biplot analysis
have graphics that allow visual evaluation of
genotypes in two aspects: mean performance and
stability across environments. The GGE biplot is
more effective because it contains more G+GE
variation than the AMMII “biplot”, which is not
a true biplot. The GGE biplot is also more
informative due to its inner-product property.

6. GGE biplot analysis is effective in graphical
evaluation of test environments in two aspects:
their ability to discriminate the genotypes and
their representativeness of the target environment
represented by all test environments. AMMI
analysis does not have graphics for test
environment evaluation.

7. Overall, GGE biplot analysis is a preferred
graphical system for MET data analysis.

REFERENCES

Ebdon, J.S. and Gauch, H.G. Jr. (2002). Additive Main Effect
and Multiplicative Interaction Analysis of national
turfgrass performance trials: II. Cultivar
recommendations. Crop Sci., 42, 497-506.

Cooper, M. and DelLacy, I.H. (1994). Relationships among
analytical methods used to study genotypic variation and
genotype-by-environment interaction in plant breeding
multi-environment experiments. Theo. Appl. Genetics,
88, 561-572.

Gabriel, K.R. (1971). The biplot graphic display of matrices
with application to principal component analysis.
Biometrika, 58, 453-467.

Gauch, H.G. (1988). Model selection and validation for yield
trials with interaction. Biometrics, 44, 705-715

Gauch, H.G. (2006). Statistical analysis of yield trials by
AMMI and GGE. Crop Sci., 46, 1488-1500.



Weikai Yan / Journal of the Indian Society of Agricultural Statistics 65(2) 2011 181-193

| 193

Gauch, H.G,, Jr., Piepho, H.P. and Annicchiarico, P. (2008).
Statistical analysis of yield trials by AMMI and GGE:
Further considerations. Crop Sci., 48, 866—889.

Gauch, H.G. and Zobel, R.W. (1997). Identifying mega-
environments and targeting genotypes. Crop Sci., 37,
311-326.

Lin, C.S. and Binns, M.R. (1994). Concepts and methods of
analyzing regional trial data for cultivar and location
selection. Plant Breed. Rev., 12, 271-297.

Samonte, S.0.P.B., Wilson, L.T., McClung, A.M. and
Medley, J.C. (2005). Targeting cultivars onto rice
growing environments using AMMI and SREG GGE
biplot analyses. Crop Sci., 45, 2414-2424.

Yan, W. (2001). GGEBiplot—A Windows application for
graphical analysis of multi-environment trial data and
other types of two-way data. Agron. J., 93, 1111-1118.

Yan, W. (2002). Singular-value partition for biplot analysis
of multi-environment trial data. Agron. J., 94, 990-996.

Yan, W., Pageau, D., Fregeau-Reid, J. and Durand, J. (2011).
Assessing the representativeness and repeatability of test
locations for genotype evaluation. Crop. Sci. (in press)

Yan, W., Frégeau-Reid, J., Pageau, D., Martin, R., Mitchell-
Fetch4, J., Etienne, M., Rowsell, J., Scott, P., Price, M.,
de Haan, B., Cummiskey, A., Lajeunesse, J., Durand, J.
and Sparry, E. (2010). Identifying essential test locations
for oat breeding in eastern Canada. Crop Sci., 50,
504-515.

Yan, W. and Hunt, L.A. (2003). Biplot analysis of multi-
environment trial data. p. 289-303. In : M. S. Kang (ed.)
Quantitative Genetics, Genomics, and Plant Breeding.
CAB International, Wallingford, Oxon, UK

Yan, W., Hunt, L.A., Sheng, Q., and Szlavnics, Z. (2000).
Cultivar evaluation and mega-environment investigation
based on GGE biplot. Crop Sci., 40, 596-605.

Yan., W. and Holland, J.B. (2010). A Heritability-adjusted
GGE biplot for test environment evaluation. Euphytica,
171(3), 355-369.

Yan, W. and Kang, M.S. (2003). GGE Biplot Analysis : A
Graphical Tool for Breeders, Geneticists, and
Agronomists. CRC Press. Boca Raton, FL.

Yan, W., Kang, M.S., Ma, B., Woods, S. and Cornelius, P.L.
(2007). GGE biplot vs. AMMI analysis of genotype-by-
environment data. Crop Sci., 47, 643-655.

Yan, W. and Tinker, N.A. (2005). An integrated system of
biplot analysis for displaying, interpreting, and exploring
genotype by environment interactions. Crop Sci., 45,
1004-1016.

Yan, W. and Tinker, N.A. (2006). Biplot analysis of multi-
environment trial data: Principles and applications. Can.
J. Plant. Sci., 86, 623-645.

Zobel, R.W., Wright, M.J. and Gauch, H.G. (1988). Statistical
analysis of a yield trial. Agron. J., 80, 388-393.



